首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.

Background

Chlamydomonas reinhardtii is a model system for algal and cell biology and is used for biotechnological applications, such as molecular farming or biological hydrogen production. The Chlamydomonas metal-responsive CYC6 promoter is repressed by copper and induced by nickel ions. However, induction by nickel is weak in some strains, poorly reversible by chelating agents like EDTA, and causes, at high concentrations, toxicity side effects on Chlamydomonas growth. Removal of these bottlenecks will encourage the wide use of this promoter as a chemically regulated gene expression system.

Methodology

Using a codon-optimized Renilla luciferase as a reporter gene, we explored several strategies to improve the strength and reversibility of CYC6 promoter induction. Use of the first intron of the RBCS2 gene or of a modified TAP medium increases the strength of CYC6 induction up to 20-fold. In the modified medium, induction is also obtained after addition of specific copper chelators, like TETA. At low concentrations (up to 10 µM) TETA is a more efficient inducer than Ni, which becomes a very efficient inducer at higher concentrations (50 µM). Neither TETA nor Ni show toxicity effects at the concentrations used. Unlike induction by Ni, induction by TETA is completely reversible by micromolar copper concentrations, thus resulting in a transient “wave” in luciferase activity, which can be repeated in subsequent growth cycles.

Conclusions

We have worked out a chemically regulated gene expression system that can be finely tuned to produce temporally controlled “waves” in gene expression. The use of cassettes containing the CYC6 promoter, and of modified growth media, is a reliable and economically sustainable system for the temporally controlled expression of foreign genes in Chlamydomonas.  相似文献   

5.
6.
7.
Cells usually cope with oxidative stress by activating signal transduction pathways. In the budding yeast Sacchromyces cerevisiae, the high osmolarity glycerol (HOG) pathway has long been implicated in transducing the oxidative stress‐induced signal, but the underlying mechanisms are not well defined. Based on phosphorylation of the mitogen‐activated protein kinase (MAPK) Hog1, we reveal that the signal from hydrogen peroxide (H2O2) flows through Ssk1, the response regulator of the two‐component system of the HOG pathway. Downstream signal transduction into the HOG MAPK cascade requires the MAP kinase kinase kinase (MAP3K) Ssk2 but not its paralog Ssk22 or another MAP3K Ste11 of the pathway, culminating in Hog1 phosphorylation via the MAP2K Pbs2. When overexpressed, Ssk2 is also activated in an Ssk1‐independent manner. Unlike in mammals, H2O2 does not cause endoplasmic reticulum stress, which can activate Hog1 through the conventional unfolded protein response. Hog1 activated by H2O2 is retained in the cytoplasm, but is still able to activate the cAMP‐ or stress‐responsive elements by unknown mechanisms.  相似文献   

8.
The genes encoding two vanadium-binding proteins, vanabin1 and vanabin2, from a vanadium-rich ascidian, Ascidia sydneiensis samea, were recently identified and cloned (T. Ueki, T. Adachi, S. Kawano, M. Aoshima, N. Yamaguchi, K. Kanamori, and H. Michibata, Biochim. Biophys. Acta 1626:43-50, 2003). The vanabins were found to bind vanadium(IV), and an excess of copper(II) ions inhibited the binding of vanadium(IV) to the vanabins in vitro. In this study, we constructed Escherichia coli strains that expressed vanabin1 or vanabin2 fused to maltose-binding protein (MBP) in the periplasmic space. We found that both strains accumulated about twenty times more copper(II) ions than the control BL21 strain, while no significant accumulation of vanadium was observed. The strains expressing either MBP-vanabin1 or MBP-vanabin2 absorbed approximately 70% of the copper ions in the medium to which 10 μM copper (II) ions were initially added. The MBP-vanabin1 and MBP-vanabin2 protein expressed in the periplasm bound to copper ions at a copper:protein molar ratio of 8:1 and 5:1, respectively, but MBP did not bind to copper ions. These data showed that the metal-binding proteins vanabin1 and vanabin2 bound copper ions directly and enhanced the bioaccumulation of copper ions by E. coli.  相似文献   

9.
10.
Jonak C  Nakagami H  Hirt H 《Plant physiology》2004,136(2):3276-3283
Excessive amounts of heavy metals adversely affect plant growth and development. Whereas some regions naturally contain high levels of heavy metals, anthropogenic release of heavy metals into the environment continuously increases soil contamination. The presence of elevated levels of heavy metal ions triggers a wide range of cellular responses including changes in gene expression and synthesis of metal-detoxifying peptides. To elucidate signal transduction events leading to the cellular response to heavy metal stress we analyzed protein phosphorylation induced by elevated levels of copper and cadmium ions as examples for heavy metals with different physiochemical properties and functions. Exposure of alfalfa (Medicago sativa) seedlings to excess copper or cadmium ions activated four distinct mitogen-activated protein kinases (MAPKs): SIMK, MMK2, MMK3, and SAMK. Comparison of the kinetics of MAPK activation revealed that SIMK, MMK2, MMK3, and SAMK are very rapidly activated by copper ions, while cadmium ions induced delayed MAPK activation. In protoplasts, the MAPK kinase SIMKK specifically mediated activation of SIMK and SAMK but not of MMK2 and MMK3. Moreover, SIMKK only conveyed MAPK activation by CuCl(2) but not by CdCl(2). These results suggest that plants respond to heavy metal stress by induction of several distinct MAPK pathways and that excess amounts of copper and cadmium ions induce different cellular signaling mechanisms in roots.  相似文献   

11.
12.
13.
Genetic characterization of a signal transduction pathway requires the isolation of mutations in the pathway. Characterization of these mutated genes and their loci enumerates the components of the pathway and leads to an understanding of the role of each gene locus in the pathway under study. We have designed and developed a strategy based on resistance to the chemical flucytosine for the identification of mutations in a given pathway. In this study, the Escherichia coli codA gene, which encodes the enzyme cytosine deaminase, was fused to the light-intensity-regulated gene promoter psbDII. Cytosine deaminase converts 5′-fluorocytosine to the toxic product 5-fluorouracil. Wild-type cells containing an intact signal transduction pathway that regulates the psbDII promoter will die in the presence of this chemical. Cells that carry mutations in the pathway that inactivate the psbDII promoter will not express the codA gene and, consequently, will live on 5′-fluorocytosine, allowing the isolation and subsequent characterization of mutations in this signaling pathway. Utilizing this selection method, we have successfully isolated and characterized mutations in the psbDII pathway. This selection scheme can be used with a tissue-specific or phase-specific promoter fused to the codA gene to direct the timing of expression of codA to obtain mutants defective in temporal or cell-specific expression of a particular pathway. This scheme also allows the isolation of mutants even when a clearly identifiable phenotype is not available. The selection scheme presented here extends the molecular tools available for the genetic dissection of signal transduction pathways.  相似文献   

14.
Copper is an essential nutrient that is toxic to cells when present in excess. The fungal pathogen Candida albicans employs several mechanisms to survive in the presence of excess copper, but the molecular pathways that govern these responses are not completely understood. We report that deletion of GPA2, which specifies a G-protein α subunit, confers increased resistance to excess copper and propose that the increased resistance is due to a combination of decreased copper uptake and an increase in copper chelation by metallothioneins. This is supported by our observations that a gpa2Δ/Δ mutant has reduced expression of the copper uptake genes, CTR1 and FRE7, and a marked decrease in copper accumulation following exposure to high copper levels. Furthermore, deletion of GPA2 results in an increased expression of the copper metallothionein gene, CRD2. Gpa2p functions upstream in the cyclic AMP (cAMP)-protein kinase A (PKA) pathway to govern hyphal morphogenesis. The copper resistance phenotype of the gpa2Δ/Δ mutant can be reversed by artificially increasing the intracellular concentration of cAMP. These results provide evidence for a novel role of the PKA pathway in regulation of copper homeostasis. Furthermore, the connection between the PKA pathway and copper homeostasis appears to be conserved in the pathogen Cryptococcus neoformans but not in the nonpathogenic Saccharomyces cerevisiae.  相似文献   

15.
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most important diseases of wheat worldwide. To isolate defense-related genes against the pathogen, a suppression subtractive hybridization library was constructed for an incompatible interaction. From the library, 652 sequences were determined to be unigenes, of which 31 were determined as genes involved in signal transduction and 77 were predicted to encode defense-related proteins. Expression patterns of 12 selected signal transduction and defense-related genes were determined using quantitative real-time polymerase chain reaction. Signal transduction genes started increasing their expression at 12 h post inoculation (hpi), and expressions of the most of the transport and resistance-related genes were induced at 18 hpi. The gene expression results indicate specific molecular and cellular activities during the incompatible interaction between wheat and the stripe rust pathogen. In general, the expression increase of wheat signal transduction genes soon after inoculation with the pathogen inducing various defense-related genes, including reactive oxygen species, ATP-binding cassette (ABC) transporters, pathogenesis-related proteins, and genes involved in the phenylpropanoid pathway. The activities of these defense genes work in a sequential and concerted manner to result in a hypersensitive response.  相似文献   

16.
17.
Bone mass is maintained by the balance between the activities of bone-forming osteoblasts and bone-resorbing osteoclasts. It is well known that adequate mechanical stress is essential for the maintenance of bone mass, whereas excess mechanical stress induces bone resorption. However, it has not been clarified how osteoblasts respond to different magnitudes of mechanical stress. Here we report that large-magnitude (12%) cyclic stretch induced Ca2+ influx, which activated reactive oxygen species generation in MC3T3-E1 osteoblasts. Reactive oxygen species then activated the ASK1-JNK/p38 pathways. The activated JNK led to transiently enhanced expression of FGF-inducible 14 (Fn14, a member of the TNF receptor superfamily) gene. Cells with enhanced expression of Fn14 subsequently acquired sensitivity to the ligand of Fn14, TNF-related weak inducer of apoptosis, and underwent apoptosis. On the other hand, the ASK1-p38 pathway induced expression of the monocyte chemoattractant protein 3 (MCP-3) gene, which promoted chemotaxis of preosteoclasts. In contrast, the ERK pathway was activated by small-magnitude stretching (1%) and induced expression of two osteogenic genes, collagen Ia (Col1a) and osteopontin (OPN). Moreover, activated JNK suppressed Col1a and OPN induction in large-magnitude mechanical stretch-loaded cells. The enhanced expression of Fn14 and MCP-3 by 12% stretch and the enhanced expression of Col1a and OPN by 1% stretch were also observed in mouse primary osteoblasts. These results suggest that differences in the response of osteoblasts to varying magnitudes of mechanical stress play a key role in switching the mode of bone metabolism between formation and resorption.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号