首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C Lange  C Wild    T A Trautner 《The EMBO journal》1996,15(6):1443-1450
In previous work on DNA-(cytosine-C5)-methyltransferases (C5-MTases), domains had been identified which are responsible for the sequence specificity of the different enzymes (target-recognizing domains, TRDs). Here we have analyzed the DNA methylation patterns of two C5-MTases containing reciprocal chimeric TRDs, consisting of the N- and C-terminal parts derived from two different parental TRDs specifying the recognition of 5'-CC(A/T)GG-3' and 5'-GCNGC-3'. Sequences recognized by these engineered MTases were non-symmetrical and degenerate, but contained at their 5' part a consensus sequence which was very similar to the 5' part of the target recognized by the parental TRD which contributed the N-terminal moiety of the chimeric TRD. The results are discussed in connection with the present understanding of the mechanism of DNA target recognition by C5-MTases. They demonstrate the possibility of designing C5-MTases with novel DNA methylation specificities.  相似文献   

2.
In the multispecific DNA(cytosine-5)-methyltransferases (Mtases) of Bacillus subtilis phages SPR and phi 3T the domains responsible for recognition of DNA methylation targets CCA/TGG, CCGG, GGCC (SPR) and GCNGC, GGCC (phi 3T) represent contiguous sequences of approximately 50 amino acids each. These domains are tandemly arranged and do not overlap. They are part of a 'variable' segment within the enzymes which is flanked by 'conserved' amino acids, which are very similar amongst bacterial monospecific and the multispecific Mtases studied here. These results follow from a mutational analysis of the SPR and phi 3T Mtase genes. They further support our concept of a modular enzyme organization, according to which variability of type II Mtases with respect to target recognition is achieved by a combination of the same enzyme core with a variety of target-recognizing domains.  相似文献   

3.
Dnmt3L has been identified as a stimulator of the catalytic activity of de novo DNA methyltransferases. It is essential in the development of germ cells in mammals. We show here that Dnmt3L stimulates the catalytic activity of the Dnmt3A and Dnmt3B enzymes by directly binding to their respective catalytic domains via its own C-terminal domain. The catalytic activity of Dnmt3A and -3B was stimulated approximately 15-fold, and Dnmt3L directly binds to DNA but not to S-adenosyl-L-methionine (AdoMet). Complex formation between Dnmt3A and Dnmt3L accelerates DNA binding by Dnmt3A 20-fold and lowers its K(m) for DNA. Interaction of Dnmt3L with Dnmt3A increases the binding of the coenzyme AdoMet to Dnmt3A, and it lowers the K(m) of Dnmt3A for AdoMet. On the basis of our data we propose a model in which the interaction of Dnmt3A with Dnmt3L induces a conformational change of Dnmt3A that opens the active site of the enzyme and promotes binding of DNA and the AdoMet. We demonstrate that the interaction of Dnmt3A and Dnmt3L is transient, and after DNA binding to Dnmt3A, Dnmt3L dissociates from the complex. Following dissociation of Dnmt3L, Dnmt3A adopts a closed conformation leading to slow rates of DNA release. Therefore, Dnmt3L acts as a substrate exchange factor that accelerates DNA and AdoMet binding to de novo DNA methyltransferases.  相似文献   

4.
In all cytosine-C5-DNA-methyltransferases (MTases) from prokaryotes and eukaryotes, remarkably conserved amino acid sequence elements responsible for general enzymatic functions are arranged in the same canonical order. In addition, one variable region, which includes the target-recognizing domain(s) (TRDs) characteristic for each enzyme, has been localized in one region between the same blocks of these conserved elements. This conservation in the order of conserved and variable sequences suggests stringent structural constraints in the primary structure to obtain the correct folding of the enzymes. Here we report the characterization of a new type of a multispecific MTase, M.(phiphi)BssHII, which is expressed as two isoforms. Isoform I is an entirely novel type of MTase which has, in addition to the TRDs at the conventional location, one TRD located at a non-canonical position at its N-terminus. Isoform II is represented by the same MTase, but without the N-terminal TRD. The N-terminal TRD provides HaeII methylation specificity to isoform I. The TRD is fully functional when engineered into either the conventional variable region of M.(phiphi)BssHII or the related monospecific M.phi3TII MTase. The implications of this structural plasticity with respect to the evolution of MTases are discussed.  相似文献   

5.
The human Dnmt2 has residual DNA-(cytosine-C5) methyltransferase activity   总被引:11,自引:0,他引:11  
The human Dnmt2 protein is one member of a protein family conserved from Schizosaccharomyces pombe and Drosophila melanogaster to Mus musculus and Homo sapiens. It contains all of the amino acid motifs characteristic for DNA-(Cytosine-C5) methyltransferases, and its structure is very similar to prokaryotic DNA methyltransferases. Nevertheless, so far all attempts to detect catalytic activity of this protein have failed. We show here by two independent assay systems that the purified Dnmt2 protein has weak DNA methyltransferase activity. Methylation was observed at CG sites in a loose ttnCGga(g/a) consensus sequence, suggesting that Dnmt2 has a more specialized role than other mammalian DNA methyltransferases.  相似文献   

6.
In the cell, Dnmt1 is the major enzyme in maintenance of the pattern of DNA methylation after DNA replication. Evidence suggests that the protein is located at the replication fork, where it could directly modify nascent DNA immediately after replication. To elucidate the potential mechanism of this process, we investigate the processivity of DNA methylation and accuracy of copying an existing pattern of methylation in this study using purified Dnmt1 and hemimethylated substrate DNA. We demonstrate that Dnmt1 methylates a hemimethylated 958-mer substrate in a highly processive reaction. Fully methylated and unmethylated CG sites do not inhibit processive methylation of the DNA. Extending previous work, we show that unmethylated sites embedded in a hemimethylated context are modified at an approximately 24-fold reduced rate, which demonstrates that the enzyme accurately copies existing patterns of methylation. Completely unmodified DNA is methylated even more slowly due to an allosteric activation of Dnmt1 by methylcytosine-containing DNA. Interestingly, Dnmt1 is not able to methylate hemimethylated CG sites on different strands of the DNA in a processive manner, indicating that Dnmt1 keeps its orientation with respect to the DNA while methylating the CG sites on one strand of the DNA.  相似文献   

7.
Co-transfections of reporter plasmids and plasmids encoding the catalytic domain of the murine Dnmt3a DNA methyltransferase lead to inhibition of reporter gene expression. As Dnmt3a mutants with C-->A and E-->A exchanges in the conserved PCQ and ENV motifs in the catalytic center of the enzyme also cause repression, we checked for their catalytic activity in vitro. Surprisingly, the activity of the cysteine variant and of the corresponding full-length Dnmt3a variant is only two to sixfold reduced with respect to wild-type Dnmt3a. In contrast, enzyme variants carrying E-->A, E-->D or E-->Q exchanges of the ENV glutamate are catalytically almost inactive, demonstrating that this residue has a central function in catalysis. Since the glutamic acid residue contacts the flipped base, its main function could be to hold the target base at a position that supports methyl group transfer. Whereas wild-type Dnmt3a and the ENV variants form covalent complexes with 5-fluorocytidine modified DNA, the PCN variant does not. Therefore, covalent complex formation is not essential in the reaction mechanism of Dnmt3a. We propose that correct positioning of the flipped base and the cofactor and binding to the transition state of methyl group transfer are the most important roles of the Dnmt3a enzyme in the catalytic cycle of methyl group transfer.  相似文献   

8.
Rat kidney, spleen, brain, and liver DNA-methylases were partially purified by chromatography on DEAE-Trisacryl columns and their catalytic properties were studied. Crude extracts contain one or several inhibitors which are thermostable and resistant to acidic or alkaline treatments and which can be eliminated by dialysis, or by chromatography on DEAE-Trisacryl. These are most probably divalent ions, such as, Pb2+, Zn2+, Cu2+, Fe2+, Mg2+, Mn2+ or Ca2+, which inhibit the DNA-methylase activity. However, Co2+, at concentrations ranging from 0.05 mM to 1 mM, has an efficient stimulatory action on spleen, kidney or brain DNA-methylase activity. The spleen DNA-methylase activity on chicken erythrocyte DNA could be increased 10-fold, by a 0.2 mM concentration of Co2+, but no stimulation was found with liver DNA-methylase. The fact that significant differences exist between the DNA-methylases from the different organs in their behavior towards Co2+ could indicate that these enzymes are different.  相似文献   

9.
Comparisons of the amino acid sequences of m5C DNA methyltransferases (Mtases) from 11 prokaryotes and one eukaryote reveal a very similar organization. Among all the enzymes one can distinguish highly conserved "core" sequences and "variable" regions. The core sequences apparently mediate steps of the methylation reaction that are common to all the enzymes. The major variable region has been shown in our previous studies on multispecific phage Mtases to contain the target-recognizing domains (TRDs) of these enzymes. Here we have compared the amino acid sequences of various TRDs from phage Mtases. This has revealed the presence of both highly conserved and variable amino acids. We postulate that the conserved residues represent a "consensus" sequence defining a TRD, whereas the specificity of the TRD is determined by the variable residues. We have observed similarity between this consensus sequence and sequences in the variable region of the monospecific Mtases. We predict that the regions thus identified represent part of the TRDs of monospecific Mtases.  相似文献   

10.
RNA (cytosine-5)-methyltransferases (RCMTs) have been characterized both in prokaryotic and eukaryotic organisms. The RCMT family, however, remains largely uncharacterized, as opposed to the family of DNA (cytosine-5)-methyltransferases which has been studied in depth. In the present study, an in silico identification of the putative 5-methylcytosine RNA-generating enzymes in the eukaryotic genomes was performed. A comprehensive phylogenetic analysis of the putative eukaryotic RCMT-related proteins has been performed in order to redefine subfamilies within the RCMT family. Five distinct eukaryotic subfamilies were identified, including the three already known (NOP2, NCL1 and YNL022c), one novel subfamily (RCMT9) and a fifth one which hitherto was considered to exist exclusively in prokaryotes (Fmu). The potential evolutionary relationships among the different eukaryotic RCMT subfamilies were also investigated. Furthermore, the results of this study add further support to a previous hypothesis that RCMTs represent evolutionary intermediates of RNA (uridine-5)-methyltransferases and DNA (cytosine-5)-methyltransferases.  相似文献   

11.
DNA methylation at the 5th position of cytosine has been found to be correlated with tumorigenesis. An inhibitor of DNA methylase could, therefore, be used as an anticancer drug. However, only a few inhibitory compounds have been discovered due to the limitations for assaying the DNA methylation. In this study, we describe a modification of DNA cytosine-C5-methyltransferase assay system utilizing [(3)H]-labeled S-adenosyl-methionine (SAM) and Sephadex G-25 column. Pre-treatment of either lambda DNA or the promoter region of human telomerase (hTERT) with HaeIII methylase greatly reduced the digestion of the DNAs with the corresponding restriction enzyme HaeIII endonuclease (over 100-fold), and the result was further confirmed by agarose gel electrophoresis. Application of this column method to another modification/restriction system, EcoRI methylase/endonuclease, gave rise to the similar results. Our data suggest that the newly developed column method could be effective for rapid screening of large number of cytosine methylase inhibitors and could also be applicable to other DNA methylases.  相似文献   

12.
The sequence specificity domain of cytosine-C5 methylases.   总被引:9,自引:15,他引:9       下载免费PDF全文
Prokaryotic DNA[cytosine-C5]methyltransferases (m5C-methylases) share a common architectural arrangement of ten conserved sequence motifs. A series of eleven hybrids have been constructed between the HpaII (recognition sequence: Cm5CGG) and HhaI (recognition sequence: Gm5CGC) DNA-methylases. The hybrids were over-expressed in E.coli and their in vivo methylation phenotypes investigated. Six were inactive by our assay while five of them retained partial methylation activity and full specificity. In all five cases the specificity matched that of the parent methylase which contributed the so-called variable region, located between conserved motifs VIII and IX. This was the only sequence held in common between the active hybrids and for the first time provides unequivocal evidence that the specificity determinants of the mono-specific m5C-methylases are located within the variable region. Correlation of the hybrid methylase structure with the efficiency of methylation suggests that conserved motif IX may interact with the variable region whereas motif X most probably interacts with the N-terminal half of the molecule.  相似文献   

13.
14.
Enzymatic DNA methylation of carbon 5 of cytosines is an epigenetic modification that plays a role in regulating gene expression, differentiation, and tumorigenesis. DNA (cytosine-C5)-methyltransferase-1 is the enzyme responsible for maintaining established methylation patterns during replication in mammalian cells. It is composed of a large ( approximately 1100 amino acids (a.a.)) amino-terminal region containing many putative regulatory domains and a smaller ( approximately 500 a.a.) carboxy-terminal region containing conserved, catalytic domains. In this study, murine DNA (cytosine C5)-methyltransferase-1, fused to an amino-terminal hexahistidine tag, was expressed by infecting Spodoptera frugiperda cells for 46 h with a recombinant baculovirus carrying the DNA (cytosine-C5)-methyltransferase-1 cDNA. A total of 3 x 10(8) infected S. frugiperda cells yielded approximately 1 mg of full-length, hexahistidine-tagged DNA (cytosine-C5)-methyltransferase-1, which was purified approximately 450-fold from RNase-treated S. frugiperda cell extracts by nickel affinity chromatography. The characterization of hexahistidine-tagged DNA (cytosine-C5)-methyltransferase-1 through DNA methylation and inhibitor-binding assays indicated that the purified enzyme had at least a 30-fold higher catalytic efficiency with hemimethylated double-stranded oligodeoxyribonucleotide substrates than unmethylated substrates and was most active with small oligodeoxyribonucleotide substrates with a capacity for forming stem-loop structures. The expression and purification procedures reported here differ significantly from the original reports of baculovirus-mediated hexahistidine-tagged DNA (cytosine-C5)-methyltransferase-1 expression and purification by nickel affinity chromatography and provide a consistent yield of active enzyme.  相似文献   

15.
16.
A 5S rRNA gene (5S DNA) from the coniferPinus radiata D. Don has been cloned and characterized at the nucleotide, genomic and chromosomal levels. Sequencing revealed a repeat unit of 524 base pairs which is present in approximately 3000 copies per diploid genome. Two-dimensional gel electrophoresis indicated that these copies are organized in tandem arrays of various length. Using in situ hybridization techniques, the tandem arrays appear to be present on all of the chromosomes. This complexity of chromosomal organization contrasts markedly with the few sites of uniform length found in angiosperm plants such as wheat, pea, and maize.  相似文献   

17.
Cadmium is a human carcinogen that likely acts via epigenetic mechanisms. Since DNA methylation alterations represent an important epigenetic event linked to cancer, the effect of cadmium on DNA methyltransferase (MeTase) activity was examined using in vitro (TRL1215 rat liver cells) and ex vivo (M.SssI DNA MeTase) systems. Cadmium effectively inhibited DNA MeTases in a manner that was noncompetitive with respect to substrate (DNA), indicating an interaction with the DNA binding domain rather than the active site. Based on these results, the effects of prolonged cadmium exposure on DNA MeTase and genomic DNA methylation in TRL1215 cells were studied. After 1 week of exposure to 0-2.5 microM cadmium, DNA MeTase activity was reduced (up to 40%) in a concentration-dependent fashion, while genomic DNA methylation showed slight but significant reductions at the two highest concentrations. After 10 weeks of exposure, the cells exhibited indications of transformation, including hyperproliferation, increased invasiveness, and decreased serum dependence. Unexpectedly, these cadmium-transformed cells exhibited significant increases in DNA methylation and DNA MeTase activity. These results indicate that, while cadmium is an effective inhibitor of DNA MeTase and initially induces DNA hypomethylation, prolonged exposure results in DNA hypermethylation and enhanced DNA MeTase activity.  相似文献   

18.
Beef brain DNA-(cytosine-5-)-methyltransferase was partially purified by chromatography on Ultrogel AcA34 and Dyematrex Blue A. The purification was of 360 times and the recovery of 75%. The pH optimum of the reaction is 7.6 NaCl inhibits double stranded DNA methylation, but stimulates single stranded DNA methylation up to 50 mM, before inhibiting. EDTA (1 mM) and MgCl2 (4 mM) stimulate DNA methylation. Polyamines inhibit the reaction.  相似文献   

19.
20.
The product of the dcm gene is the only DNA cytosine-C5 methyltransferase of Escherichia coli K-12; it catalyses transfer of a methyl group from S-adenosyl methionine (SAM) to the C-5 position of the inner cytosine residue of the cognate sequence CCA/TGG. Sequence-specific, covalent crosslinking of the enzyme to synthetic oligonucleotides containing 5-fluoro-2'-deoxycytidine is demonstrated. This reaction is abolished if serine replaces the cysteine at residue #177 of the enzyme. These results lend strong support to a catalytic mechanism in which an enzyme sulfhydryl group undergoes Michael addition to the C5-C6 double bond, thus activating position C-5 of the substrate DNA cytosine residue for electrophilic attack by the methyl donor SAM. The enzyme is capable of self-methylation in a DNA-independent reaction requiring SAM and the presence of cysteine at position #177.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号