首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bidirectional chromosome replication in Bacillus subtilis 168.   总被引:21,自引:16,他引:5       下载免费PDF全文
Density transfer analysis of deoxyribonucleic acid from Bacillus subtilis 168 thy spores germinating in 5-bromouracil medium shows the order of replication of genetic markers to be: purA16, cysA14, sacA, ctrA, (narB, arol), dal, (hisA1, purB6), (tre-12, thr-5), (argA, aroG, argC4), (metC, leu-8, pheA), (ura-1, aroD), lys-1, (trpC, metB, ilvA, citB, citK, gltA). The precise order of transfer of markers within parentheses could not be determined in these experiments. Taken together with new PBS1 transduction data presented here and in the accompanying paper of J. Lepesant-Kejzlarová, J.-A. Lepesant, J. Walle, A. Billaut, and R. Dedonder (1975), the results can be resolved in terms of a symmetric, fully bidirectional mode of chromosome replication with a replication origin close to the purA16 marker and a terminus in the region of the gltA, citK loci, diametrically opposed to the origin. A new genetic map of the B. subtilis 168 chromosome is presented.  相似文献   

2.
It was previously shown that in strains of Bacillus subtilis bearing the trpE26 mutation a chromosome segment (from trpD to ilvA) is translocated to a position near the thr region. Further PBS1-mediated transduction data have now revealed that these strains also possess an inversion of part of the chromosome from the origin of replication, down to the tre locus on one side and the cysB locus on the other. These data concern evidence of linkage of tre-12- to markers in the translocation (hisH2, tyrA1, and metB3) as well as linkage of the cysB3 marker to thi-86, gly-133, and catA. They explain the previously observed absence of linkage of markers in the translocated segment to cysB3. The model proposed for the formation of merodiploids in trpE26 strains, which calls for the fusion of two genetic elements, is not incompatible with this new finding.  相似文献   

3.
James C. Copeland 《Genetics》1974,78(4):1015-1034
Replication order to map position discrepancies have been documented in B. subtilis. The discrepancies were found to occur whenever the genome of B. subtilis was replicated under a variety of physiological conditions and in both 168 and W23 strains. The earliest replicating marker involved in these discrepancies was thr versus purB and aroA versus recA. A detailed linkage analysis of the ura to argA region was consistent with its being a continuous linkage group. This led to the conclusion that an origin for new starts at replication exists between recA and aroA.  相似文献   

4.
A genetic marker responsible for the killing activity of PBSX, a defective phage carried by Bacillus subtilis 168, has been located on the bacterial chromosome. Two mutant strains of B. subtilis 168, which produced tailless phage particles upon mitomycin C induction, were shown to carry lesions, designated xtl-1 and xtl-2, which were linked by transformation and PBS1-mediated transduction to metC. The link-age relationship between xtl and adjacent auxotrophic markers was determined by three-factor PBS1 transduction, the suggested order of markers being argO 1 metA metC xtl.  相似文献   

5.
The Bacillus subtilis merodiploid strain GSY1127 contains a large nontandem duplication of a portion of its chromosome within its left (anticlockwise) replication segment. This causes displacement of the replication terminus region to a noticeably asymmetric location relative to oriC. The utilization of the subsidiary replication terminators, TerIII and TerV, in the merodiploid strain has been compared with that in B. subtilis 168. It is shown that TerIII is utilized to a significant extent in GSY1127 and that TerV is used only marginally at the most. Neither of these terminators is used to a measurable extent in the 168 strain. It is concluded that TerIII and TerV do indeed function as backups to the major terminator TerI, as has been generally thought. It is further concluded that, in the 168 strain, the vast majority of clockwise forks are arrested at the highly efficient TerI terminator, with fork fusion between the approaching forks occurring frequently while the clockwise fork is stationary at TerI.  相似文献   

6.
M T Smith  C Aynsley  R G Wake 《Gene》1985,38(1-3):9-17
A 10.9-kb segment of the Bacillus subtilis 168 chromosome has been cloned in an Escherichia coli plasmid and shown to contain terC (the replication terminus of the chromosome). The terC-containing portion of this plasmid has been subcloned within each of two overlapping fragments of DNA, 1.75 and 1.95 kb, again in E. coli plasmids. These have afforded a more precise definition of the location of terC in the B. subtilis chromosome and provided material for a detailed analysis of the structure and functioning of this site.  相似文献   

7.
The genetic map of the right arm of chromosome VII of Saccharomyces cerevisiae includes markers on a distal segment for which meiotic linkage to the centromere-proximal marker cly8 has not previously been demonstrated. According to the currently accepted map, SUF4 is the most distal marker on the right arm. We have shown by tetrad analysis that SUF4 is linked to cly8 and ade6. The genetic distance between SUF4 and cly8 is 29 cM. These data indicate that the genetic map of the right arm of chromosome VII should be revised by inverting the orientation of the distal segment so that SUF4 is located near cly8, and SUC1 and MAL1 are the most distal markers. With this revision, all of the polymeric fermentation markers that have been mapped are located at the ends of chromosomes.  相似文献   

8.
Bacteriophage PBS1 mediates generalized transduction in Bacillus pumilus NRRL B-3275 (BpB1). Transduction frequencies for single auxotrophic markers are of the order of 10(-4) transductants per plaque-forming unit in crude phage lysates. The characteristics of PBS1 propagated on BpB1 and the properties of the system of transduction are similar to those reported for PBS1 propagated on Bacillus subtilis. By transduction, eight amino acid auxotrophic markers in BpB1 have been oriented into two linkage groups. One group contains the auxotrophic markers arginine A, leucine, and phenylalanine, and the other group contains the markers lysine, serine, tryptophan, isoleucine-valine, and isoleucine. The nature and relative order of the markers within each linkage group suggest that the arrangement of genes in these areas of the chromosome of BpB1 is similar to the arrangement of phenotypically comparable genes in two linkage groups (defined by PBS1 transduction) in B. subtilis. However, transduction of any of the above cited markers in BpB1 to prototrophy with PBS1 propagated on B. subtilis 168 could not be demonstrated. In addition to BpB1, seven other strains of B. pumilus can be infected with PBS1. Transduction has been demonstrated in three of these strains.  相似文献   

9.
用AFLP的方法分析中国白桦×欧洲白桦的78个F1个体,并按照拟测交作图策略,建立了中国白桦和欧洲白桦遗传连锁图谱。从群体的45对引物组合中分离出343个分离位点,χ^2检验表明,其中有311个符合1:1拟测交分离位点。在这些位点中168个来自中国白桦,143个来自欧洲白桦。软件分析表日月,中国白桦的168个位点构成9个连锁群,11个三联体和14个连锁对,55个为非连锁位点,连锁标记覆盖的总距离为1909.2cM,平均图距为16.9cM;来自欧洲白桦的143个位点构成12个连锁群,4个三联体和9个连锁对,21个为非连锁位点,连锁标记覆盖的总距离为1857.3cM,平均图距为15.2cM。  相似文献   

10.
The close relationship between Brassica oleracea and Arabidopsis thaliana has been used to explore the genetic and physical collinearity of the two species, focusing on an inverted segmental chromosome duplication within linkage group O6 of B. oleracea. Genetic evidence suggests that these segments share a common origin with a region of Arabidopsis chromosome 1. Brassica oleracea and Arabidopsis bacterial artificial chromosome probes have been used for fluorescence in situ hybridization analysis of B. oleracea pachytene chromosomes to further characterize the inverted duplication. This has been highly effective in increasing the local resolution of the cytogenetic map. We have shown that the physical order of corresponding genetic markers is highly conserved between the duplicated regions in B. oleracea and the physical lengths of the regions at pachytene are similar, while the genetic distances are considerably different. The physical marker order is also well conserved between Arabidopsis and B. oleracea, with only one short inversion identified. Furthermore, the relative physical distances between the markers in one segment of B. oleracea and Arabidopsis have stayed approximately the same. The efficacy of using fluorescence in situ hybridization, together with other forms of physical and genetic mapping, for elucidating such issues relating to synteny is discussed.  相似文献   

11.
A genetic linkage map of markers for the short arm of human chromosome 8 has been constructed with 14 polymorphic DNA markers on the basis of genotypes obtained in 40 CEPH reference families. This unbroken map spans 45 cM in males and 79 cM in females. The 14 markers include three genes, MSR, LPL, and NEFL, and one anonymous DNA segment that were previously assigned to chromosome 8. The other 10 marker had been isolated from a chromosome 8-specific cosmid library and physically localized to chromosomal bands by fluorescence in situ hybridization. The order of loci determined by genetic linkage was consistent with their physical locations. This map will facilitate efficient linkage studies of human genetic diseases that may be segregating on chromosome 8p and will provide anchor points for development of high-resolution maps for this chromosomal region.  相似文献   

12.
We have performed linkage analysis in a large French-Acadian kindred segregating one form of autosomal dominant Charcot-Marie-Tooth disease (CMTD) (type IA) using 17 polymorphic DNA markers spanning human chromosome 17 and demonstrate linkage to several markers in the pericentromeric region, including DNA probes pA10-41, EW301, S12-30, pTH17.19, c11-2B, and p11-2c11.5. Linkage of markers pA10-41 and EW301 to CMTD type IA has been reported elsewhere. Four new markers, 1516, 1517, 1541, and LL101, which map to chromosome 17 have been identified. The marker 1516 appears to be closely linked to the CMTD locus on chromosome 17 as demonstrated by a maximum lod score of 3.42 at theta (recombination fraction) = 0. This marker has been mapped to 17p11.2 using a somatic cell hybrid constructed from a patient with Smith-Magenis syndrome [46,XY, del(17)(p11.2p11.2)]. A lod score of 6.16 has been obtained by multipoint linkage analysis with 1516 and two markers from 17q11.2, pTH17.19, and c11-2B. The markers 1517 and 1541 have been mapped to 17p12-17q11.2 and demonstrate maximum lod scores of 2.35 and 0.63 at recombination values of .1 and .2, respectively. The marker LL101 has been mapped to 17p13.105-17p13.100 and demonstrates a maximum lod score of 1.56 at a recombination value of .1. Our study confirms the localization of CMTD type IA to the pericentromeric region of chromosome 17.  相似文献   

13.
Brown SE  Severson DW  Smith LA  Knudson DL 《Genetics》2001,157(3):1299-1305
Two approaches were used to correlate the Aedes aegypti genetic linkage map to the physical map. STS markers were developed for previously mapped RFLP-based genetic markers so that large genomic clones from cosmid libraries could be found and placed to the metaphase chromosome physical maps using standard FISH methods. Eight cosmids were identified that contained eight RFLP marker sequences, and these cosmids were located on the metaphase chromosomes. Twenty-one cDNAs were mapped directly to metaphase chromosomes using a FISH amplification procedure. The chromosome numbering schemes of the genetic linkage and physical maps corresponded directly and the orientations of the genetic linkage maps for chromosomes 2 and 3 were inverted relative to the physical maps. While the chromosome 2 linkage map represented essentially 100% of chromosome 2, approximately 65% of the chromosome 1 linkage map mapped to only 36% of the short p-arm and 83% of the chromosome 3 physical map contained the complete genetic linkage map. Since the genetic linkage map is a RFLP cDNA-based map, these data also provide a minimal estimate for the size of the euchromatic regions. The implications of these findings on positional cloning in A. aegypti are discussed.  相似文献   

14.
A temperature-inducible mutant of temperate Bacillus bacteriophage phi105 was isolated and used to lysogenize a thymine-requiring strain of Bacillus subtilis 168. Synthesis of phage and bacterial deoxyribonucleic acid (DNA) was studied by sucrose gradient centrifugation and density equilibrium centrifugation of DNA extracted from induced bacteria. The distribution of DNA in the gradients was measured by differential isotope and density labeling of DNA before and after induction and by measuring the biological activity of the DNA in genetic transformation, in rescue of phage markers, and in infectivity assays. At early times after induction, but after at least one round of replication, phage DNA remains associated with high-molecular-weight DNA, whereas, later in the infection, phage DNA is associated with material of decreasing molecular weight. Genetic linkage between phage and bacterial markers can be demonstrated in replicated DNA from induced cells. Prophage induction is shown to affect replication of the bacterial chromosome. The overall rate of replication of prelabeled bacterial DNA is identical in temperature-induced lysogenics and in "mock-induced" wild-type phi105 lysogenics. The rate of replication of the bacterial marker phe-1 (and also of nia-38), located close to the prophage in direction of the terminus of the bacterial chromosome, is increased in induced cells, however, relative to other bacterial markers tested. In temperature-inducible lysogenics, where the prophage also carries a ts mutation which blocks phage DNA synthesis, replication of both phage and bacterial DNA stops after about 50% of the phage DNA has replicated once. The results of these experiments suggest that the prophage is not initially excised in induced cells, but rather it is specifically replicated in situ together with adjacent parts of the bacterial chromosome.  相似文献   

15.
Using mutants of Bacillus subtilis with alterations in the small subunit ribosomal proteins S6 and S16, the corresponding genes were mapped. rpsF was located between purA and cysA, close to the origin of replication. rpsP was located near pyrD, at about 135 degrees on the linkage map. The distribution on the chromosome of the ribosomal protein gene loci so far identified in B. subtilis was compared with the distribution of the genes for the same proteins in Escherichia coli. Considered in terms of relative distance from the origin and terminus of chromosomal replication, the order was the same in both species with the sole exception of protein S6.  相似文献   

16.
The replication order of markers was studied in Bacillus subtilis strains bearing the trpE26 mutation by the use of the density transfer technique. An important difference in this order was observed in comparison with that of strain 168 T-. All markers tested of a chromosome segment extending from trpD to ilvA replicated early, after purB6 and before thr-5. Two markers flanking this region, trpE8 and citK7, replicated late as usual. The results suggested that this segment was shifted in trpE26 strains to a region closer to the origin of replication. PBS-1-mediated transduction crosses corroborated this hypothesis and revealed the position of the translocated segment. (i) Linkage was demonstrated for markers in the segment (hisH2, tryA1, met B3, ilvA2) to thr-5 and ald; (ii) aroB2 and citK7 were found to be linked; and (iii) linkage of cysB3 to thr-5 was lost in trpE26 strains. These findings made it possible to account for the characteristics of the trpE26 mutation and to propose a model explaining the fact that all trpE26+ transformants or transductants are merodiploid. The model calls for fusion of two genetic elements: two independent chromosomes, or two arms of a replicating structure. The resulting chromosome bears a long tandem duplication. Most of the features of this system of merodiploid formation can be interpreted by use of this model: the segregation pattern of the diploids, the stabilization of the unstable clones, and the length of the duplicated region. A relatively stable diploid strain was also studied by the density transfer technique. The data show that it remained diploid for the region corresponding to the translocated segment and are in agreement with the structure predicted by the model.  相似文献   

17.
Efficient and reliable protoplasting, regeneration, and fusion techniques were established for the prototrophic strain Bacillus stearothermophilus NUB36. Auxotrophic mutants were isolated, and protoplast fusion was used to construct isogenic mutant strains and for chromosomal mapping. Markers were mapped using two-, three-, and four-factor crosses. The order of the markers was hom-1-thr-1-his-1-(gly-1 or gly-2)-pur-1-pur-2. These markers may be analogous to hom, thrA, hisA, glyC, and purA markers on the Bacillus subtilis chromosome. No analogous pur-1 marker has been reported in B. subtilis. The relative order of three of the markers (hom-1-thr-1-gly-1) was independently confirmed by transduction.  相似文献   

18.
A collection of 655 thermosensitive mutants of Bacillus subtilis 168, obtained by indirect selection, was screened for those lysing at the non-permissive temperature. Thirty-three mutations thus identified were distributed by transformation into eight linkage groups designated lssA to lssH. The distribution was non-random. With the exception of group A, all groups were small, suggesting that mutations identified in each of them may map in one gene only. Linkage groups identified here were mapped in four different regions of the B. subtilis chromosome and their positions relative to reference markers were the following: (i) aroI-lssA-dal-purB; (ii) metC-lssB-lssC-furA-pyrE-cysC-lssD; (iii) lssF-gtaA-lssG-hisA-lssH-cysB; and (iv) cysA-lssE-dnaC-purA. Kinetics of N-acetyl-D-[1-14C]glucosamine incorporation revealed that groups A, B, C, D and F are deficient in peptidoglycan synthesis at the restrictive temperature. In group G, anomalies at the cell wall level were suggested by incorporation and growth curves. It appears that in almost all known cases, thermosensitive lysis mutations in B. subtilis either affect genes involved in peptidoglycan synthesis or lead, more or less directly, to induction of prophages.  相似文献   

19.
Replication terminus of the Bacillus subtilis chromosome.   总被引:3,自引:1,他引:2       下载免费PDF全文
Bidirectional replication of the Bacillus subtilis chromosome terminates at a point on the circular chromosome which is symmetrically opposite to the replication origin. Since replication rates are similar in both "halves" of the chromosome, termination presumably occurs at the meeting point of the two replication forks. To investigate whether the DNA sequence of this region of the chromosome contributes to the termination event, we have determined the latest replicating region of a chromosome in which this DNA sequence is no longer symmetrically opposite to the origin. The merodiploid strain GSY1127 has a very large nontandem duplication (approximately 25% of the total chromosome length) in the left-hand half of the chromosome, so that size and symmetry of this chromosome are grossly different from those of normal strains. We have examined the replication order of genetic markers in this strain by measuring subtilis terminal marker for replication remains a terminal marker in the merodiploid, i.e., replicates later than a marker situated symmetrically opposite to the replication origin. These results were supported by replication orders determined by pulse-density transfer experiments during synchronous replication. The data obtained indicate that there is a preferred site for the termination of replication in the B. subtilis chromosome.  相似文献   

20.
In the past, a classical map of the tomato genome has been established that is based on linkage data from intraspecific Lycopersicon esculentum crosses. In addition, a high density molecular linkage map has recently been constructed using a L. esculentum X L. pennellii cross. As the respective maps only partially match, they provide limited information about the relative positions of classical and molecular markers. In this paper we describe the construction of an integrated linkage map of tomato chromosome 6 that shows the position of cDNA-, genomic DNA- and RAPD markers relative to 10 classical markers. Integration was achieved by using a L. esculentum line containing an introgressed chromosome 6 from L. pennellii in crosses to a variety of L. esculentum marker lines. In addition, an improved version of the classical linkage map is presented that is based on a combined analysis of new linkage data for 16 morphological markers and literature data. Unlike the classical map currently in use, the revised map reveals clustering of markers into three major groups around the yv, m-2 and c loci, respectively. Although crossing-over rates are clearly different when comparing intraspecific L. esculentum crosses with L. esculentum X L. pennellii crosses, the clusters of morphological markers on the classical map coincide with clusters of genomic- and cDNA-markers on the molecular map constructed by Tanksley and coworkers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号