首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The frequencies of "words", oligonucleotides within nucleotide sequences, reflect the genetic information contained in the sequence "texts". Nucleotide sequences are characteristically represented by their contrast word vocabularies. Comparison of the sequences by correlating their contrast vocabularies is shown to reflect well the relatedness (unrelatedness) between the sequences. A single value, the linguistic similarity between the sequences, is suggested as a measure of sequence relatedness. Sequences as short as 1000 bases can be characterized and quantitatively related to other sequences by this technique. The linguistic sequence similarity value is used for analysis of taxonomically and functionally diverse nucleotide sequences. The similarity value is shown to be very sensitive to the relatedness of the source species, thus providing a convenient tool for taxonomic classification of species by their sequence vocabularies. Functionally diverse sequences appear distinct by their linguistic similarity values. This can be a basis for a quick screening technique for functional characterization of the sequences and for mapping functionally distinct regions in long sequences.  相似文献   

2.
3.
Sequence alignment is an important bioinformatics tool for identifying homology, but searching against the full set of available sequences is likely to result in many hits to poorly annotated sequences providing very little information. Consequently, we often want alignments against a specific subset of sequences: for instance, we are looking for sequences from a particular species, sequences that have known 3d-structures, sequences that have a reliable (curated) function annotation, and so on. Although such subset databases are readily available, they only represent a small fraction of all sequences. Thus, the likelihood of finding close homologs for query sequences is smaller, and the alignments will in general have lower scores. This makes it difficult to distinguish hits to homologous sequences from random hits to unrelated sequences. Here, we propose a method that addresses this problem by first aligning query sequences against a large database representing the corpus of known sequences, and then constructing indirect (or transitive) alignments by combining the results with alignments from the large database against the desired target database. We compare the results to direct pairwise alignments, and show that our method gives us higher sensitivity alignments against the target database.  相似文献   

4.
This article presents a new method for the comparison of multiple macromolecular sequences. It is based on a hierarchical sequence synthesis procedure that does not require anya priori knowledge of the molecular structure of the sequences or the phylogenetic relations among the sequences. It differs from the existing methods as it has the capability of: (i) generating a statistical-structural model of the sequences through a synthesis process that detects homologous groups of the sequences, and (ii) aligning the sequences while the taxonomic tree of the sequences is being constructed in one single phase. It produces superior results when compared with some existing methods.  相似文献   

5.
The comparisons of 170 sequences of kinetoplast DNA minicircle hypervariable region obtained from 19 stocks of Trypanosoma cruzi and 2 stocks of Trypanosoma cruzi marenkellei showed that only 56% exhibited a significant homology one with other sequences. These sequences could be grouped into homology classes showing no significant sequence similarity with any other homology group. The 44% remaining sequences thus corresponded to unique sequences in our data set. In the DTU I ("Discrete Typing Units") 51% of the sequences were unique. In contrast, in the DTU IId, 87.5% of sequences were distributed into three classes. The results obtained for T. cruzi marinkellei, showed that all sequences were unique, without any similarity between them and T. cruzi sequences. Analysis of palindromes in all sequence sets show high frequency of the EcoRI site. Analysis of repetitive sequences suggested a common ancestral origin of the kDNA. The editing mechanism that occurs in kinetoplastidae is discussed.  相似文献   

6.
Comparing DNA or protein sequences plays an important role in the functional analysis of genomes. Despite many methods available for sequences comparison, few methods retain the information content of sequences. We propose a new approach, the Yau-Hausdorff method, which considers all translations and rotations when seeking the best match of graphical curves of DNA or protein sequences. The complexity of this method is lower than that of any other two dimensional minimum Hausdorff algorithm. The Yau-Hausdorff method can be used for measuring the similarity of DNA sequences based on two important tools: the Yau-Hausdorff distance and graphical representation of DNA sequences. The graphical representations of DNA sequences conserve all sequence information and the Yau-Hausdorff distance is mathematically proved as a true metric. Therefore, the proposed distance can preciously measure the similarity of DNA sequences. The phylogenetic analyses of DNA sequences by the Yau-Hausdorff distance show the accuracy and stability of our approach in similarity comparison of DNA or protein sequences. This study demonstrates that Yau-Hausdorff distance is a natural metric for DNA and protein sequences with high level of stability. The approach can be also applied to similarity analysis of protein sequences by graphic representations, as well as general two dimensional shape matching.  相似文献   

7.
8.
Abstract

The frequencies of “words”, oligonucleotides within nucleotide sequences, reflect the genetic information contained in the sequence “texts”. Nucleotide sequences are characteristically represented by their contrast word vocabularies. Comparison of the sequences by correlating their contrast vocabularies is shown to reflect well the relatedness (unrelatedness) between the sequences. A single value, the linguistic similarity between the sequences, is suggested asa measure of sequence relatedness. Sequences as short as 1000 bases can be characterized and quantitatively related to other sequences by this technique. The linguistic sequence similarity value is used for analysis of taxonomically and functionally diverse nucleotide sequences. The similarity value is shown to be very sensitive to the relatedness of the source species, thus providing a convenient tool for taxonomic classification of species by their sequence vocabularies. Functionally diverse sequences appear distinct by their linguistic similarity values. This can be a basis for a quick screening technique for functional characterization of the sequences and for mapping functionally distinct regions in long sequences.  相似文献   

9.
Repetitive DNA sequences near immunoglobulin genes in the mouse genome (Steinmetz et al., 1980a,b) were characterized by restriction mapping and hybridization. Six sequences were determined that turned out to belong to a new family of dispersed repetitive DNA. From the sequences, which are called R1 to R6, a 475 base-pair consensus sequence was derived. The R family is clearly distinct from the mouse B1 family (Krayev et al., 1980). According to saturation hybridization experiments, there are about 100,000 R sequences per haploid genome, and they are probably distributed throughout the genome. The individual R sequences have an average divergence from the consensus sequence of 12.5%, which is largely due to point mutations and, among those, to transitions. Some R sequences are severly truncated. The R sequences extend into A-rich sequences and are flanked by short direct repeats. Also, two large insertions in the R2 sequence are flanked by direct repeats. In the neighbourhood of and within R sequences, stretches of DNA have been identified that are homologous to parts of small nuclear RNA sequences. Mouse satellite DNA-like sequences and members of the B1 family were also found in close proximity to the R sequences. The dispersion of R sequences within the mouse genome may be a consequence of transposition events. The possible role of the R sequences in recombination and/or gene conversion processes is discussed.  相似文献   

10.
11.
12.
Sim KL  Creamer TP 《Proteins》2004,54(4):629-638
Protein simple sequences, a subset of low-complexity sequences, are regions of sequence highly enriched in one or a few residue types. Simple sequences are exceedingly common, the average being more than one per protein sequence. Despite being so common, such sequences are not well-studied. The simple sequences that have been subjected to detailed study are often found to possess important functions. Here we present a survey of protein simple sequences, generally enriched in a single residue type, with the aim of studying their conservation. We find that the majority of such simple sequences are not conserved. However, conserved protein simple sequences are relatively common, with approximately 11% of the surveyed protein families possessing a conserved simple sequence. The data obtained in this study support the idea that simple sequences are conserved for functional reasons. Such functions can range from substrate binding, to mediating protein-protein interactions, to structural integrity. A perhaps surprising finding is that the residue enriching a conserved simple sequence is itself not necessarily conserved. Neither is the length of many of the highly conserved simple sequences. In the few cases where structural and functional data is available it is found that the conserved simple sequences are consistent with both local structure and function. The data presented support the idea that protein simple sequences can be conserved and have important roles in protein structure and function.  相似文献   

13.
Repetitive extragenic palindromic (REP) sequences are highly conserved inverted repeats present in up to 1000 copies on the Escherichia coli chromosome. We have shown both in vivo and in vitro that REP sequences can stabilize upstream mRNA by blocking the processive action of 3'----5' exonucleases. In a number of operons, mRNA stabilization by REP sequences plays an important role in the control of gene expression. Furthermore, differential mRNA stability mediated by the REP sequences can be responsible for differential gene expression within polycistronic operons. Despite the key role of REP sequences in mRNA stability and gene expression in a number of operons, several lines of evidence suggest that this is unlikely to be the primary reason for the exceptionally high degree of sequence conservation between REP sequences. Other possible functions for REP sequences are discussed. We propose that REP sequences may be a prokaryotic equivalent of 'selfish DNA' and that gene conversion may play a role in the evolution and maintenance of REP sequences.  相似文献   

14.

Background

Ribosomal 16S DNA sequences are an essential tool for identifying and classifying microbes. High-throughput DNA sequencing now makes it economically possible to produce very large datasets of 16S rDNA sequences in short time periods, necessitating new computer tools for analyses. Here we describe FastGroup, a Java program designed to dereplicate libraries of 16S rDNA sequences. By dereplication we mean to: 1) compare all the sequences in a data set to each other, 2) group similar sequences together, and 3) output a representative sequence from each group. In this way, duplicate sequences are removed from a library.

Results

FastGroup was tested using a library of single-pass, bacterial 16S rDNA sequences cloned from coral-associated bacteria. We found that the optimal strategy for dereplicating these sequences was to: 1) trim ambiguous bases from the 5' end of the sequences and all sequence 3' of the conserved Bact517 site, 2) match the sequences from the 3' end, and 3) group sequences >=97% identical to each other.

Conclusions

The FastGroup program simplifies the dereplication of 16S rDNA sequence libraries and prepares the raw sequences for subsequent analyses.  相似文献   

15.
Monkey mummy bones and teeth originating from the North Saqqara Baboon Galleries (Egypt), soft tissue from a mummified baboon in a museum collection, and nineteenth/twentieth-century skin fragments from mangabeys were used for DNA extraction and PCR amplification of part of the mitochondrial 12S rRNA gene. Sequences aligning with the 12S rRNA gene were recovered but were only distantly related to contemporary monkey mitochondrial 12S rRNA sequences. However, many of these sequences were identical or closely related to human nuclear DNA sequences resembling mitochondrial 12S rRNA (isolated from a cell line depleted in mitochondria) and therefore have to be considered contamination. Subsequently in a separate study we were able to recover genuine mitochondrial 12S rRNA sequences from many extant species of nonhuman Old World primates and sequences closely resembling the human nuclear integrations. Analysis of all sequences by the neighbor-joining (NJ) method indicated that mitochondrial DNA sequences and their nuclear counterparts can be divided into two distinct clusters. One cluster contained all temporary cytoplasmic mitochondrial DNA sequences and approximately half of the monkey nuclear mitochondriallike sequences. A second cluster contained most human nuclear sequences and the other half of monkey nuclear sequences with a separate branch leading to human and gorilla mitochondrial and nuclear sequences. Sequences recovered from ancient materials were equally divided between the two clusters. These results constitute a warning for when working with ancient DNA or performing phylogenetic analysis using mitochondrial DNA as a target sequence: Nuclear counterparts of mitochondrial genes may lead to faulty interpretation of results.Correspondence to: A.C. van der Kuyl  相似文献   

16.
We here present a dynamic programming algorithm which is capable of calculating arbitrary moments of the Boltzmann distribution for RNA secondary structures. We have implemented the algorithm in a program called RNA-VARIANCE and investigate the difference between the Boltzmann distribution of biological and random RNA sequences. We find that the minimum free energy structure of biological sequences has a higher probability in the Boltzmann distribution than random sequences. Moreover, we show that the free energies of biological sequences have a smaller variance than random sequences and that the minimum free energy of biological sequences is closer to the expected free energy of the rest of the structures than that of random sequences. These results suggest that biologically functional RNA sequences not only require a thermodynamically stable minimum free energy structure, but also an ensemble of structures whose free energies are close to the minimum free energy.  相似文献   

17.
The chromatin structure encompassing the lysozyme gene domain in hen oviduct nuclei was studied by measuring the partitioning of coding and flanking sequences during chromatin fractionation and by analyzing the nucleosome repeat in response to micrococcal nuclease digestion. Following micrococcal nuclease digestion, nuclei were sedimented to obtain a chromatin fraction released during digestion (S1) and then lysed in tris(hydroxymethyl)aminomethane-(ethylenedinitrilo)tetraacetic acid-[ethylenebis(oxyethylenenitrilo)]tetraacetic acid and centrifuged again to yield a second solubilized chromatin fraction (S2) and a pelleted fraction (P2). By dot-blot hybridization with 14 specific probes, it is found that the fractionation procedure defines three classes of sequences within the lysozyme gene domain. The coding sequences, which partition with fraction P2, are flanked by class I flanking sequences, which partition with fractions S1 and P2 and which extend over 11 kilobases (kb) on the 5'side and probably over about 4 kb on the 3' side. The partitioning of class II flanking sequences, which are located distal of class I flanking sequences, is different from that of class I flanking sequences. Coding sequences lack a canonical nucleosome repeat, class I flanking sequences possess a disturbed nucleosome repeat, and class II flanking sequences generate an extended nucleosomal ladder. Coding and class I flanking sequences are more readily digested by micrococcal nuclease than class II flanking sequences and the inactive beta A-globin gene. In hen liver, where the lysozyme gene is inactive, coding and class I flanking sequences fractionate into fractions S2 and P2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
19.
The diversity of serine proteases secreted from Chrysomya bezziana larvae was investigated biochemically and by PCR and sequence analysis. Cation-exchange chromatography of purified larval serine proteases resolved four trypsin-like activities and three chymotrypsin-like activities as discerned by kinetic studies with benzoyl-Arg-p-nitroanilide and succinyl-Ala-Ala-Pro-Phe-p-nitroanilide. Amino-terminal sequencing of the three most abundant fractions gave two sequences, which were homologous to other Dipteran trypsins and chymotrypsins. Analysis of products generated by PCR of cDNA from whole larvae using specific primers based on the amino-terminal sequences and generic serine protease primers identified 22 different sequences, while phylogenetic analysis of the deduced amino acid sequences differentiated two trypsin-like and four chymotrypsin-like families. Phylogenetic comparisons with Dipteran and mammalian serine protease sequences showed that all the Chrysomya bezziana sequences clustered with Dipteran sequences. The Chrysomya bezziana chymotrypsin-like sequences segregated within a Dipteran cluster of chymotrypsin sequences, but were well dispersed amongst these sequences. The largest Chrysomya bezziana serine protease family, the trypB family, clustered tightly as a group, and was closely related to a Lucilia cuprina trypsin but distinct from Drosophila melanogaster alpha and beta trypsins. The trypB family contains ten highly homologous sequences and probably represents an example of concerted evolution of a trypsin gene in Chrysomya bezziana.  相似文献   

20.
The arrangements of inverted-repeated and repeated DNA sequences in the human genome have been investigated by an electron microscope method. The arrangement of the interspersed repeated DNA sequences is found to be similar to the corresponding arrangement found in Xenopus. This arrangement consists of 300-nucleotide-long repeated DNA sequences interspersed with roughly gene-size single-copy DNA sequences. The inverted-repeated sequences are also 300 nucleotides in length and are interspersed with the other DNA sequence classes.Most inverted-repeated sequences (64%) are spaced by another sequence which is recognized by electron microscopy as a single-stranded loop in a hairpin structure. The average length of this spacer loop is 1.6 kilobases. Although some pairs of inverted-repeated sequences are clustered, most seem to be randomly distributed throughout the genome. The average distance separating two pairs of inverted-repeated sequences is 10 to 20 kilobases. The interspersed repeated sequences and inverted-repeated sequences are arranged simultaneously in a portion of the human genome resulting in an interspersion of all three sequence classes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号