首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Physiological ionic strength conditions prevented low pH-mediated destabilization of the adenovirion. A conformational change of the virion was induced at low pH as demonstrated by endoproteolytic cleavage of virions with dispase at pH 5.0. Hidden cleavage sites of the hexons were exposed and upon enzymatic digestion, virions still were intact as physical entities. Enzymatic cleavage of the hexon protein increased its hydrophobicity.  相似文献   

2.
Sera from 17 patients with primary and secondary liver tumors who had been administered oncolytic adenovirus (Ad) mutant Addl1520 were analyzed for anti-Ad neutralization titers and antibodies to the Ad major capsid proteins hexon, penton base (Pb), and fiber. The antibodies recognized mainly conformational epitopes in hexon and both linear and conformational epitopes in Pb and fiber. Pb-specific antibodies were isolated from serum samples that had been obtained prior to and during the course of the treatment of four of these patients. We found that the Pb antibodies had a significant contribution toward anti-Ad neutralization, and this mainly occurred at the step of virus internalization. The Pb antigenic epitopes were determined by phage biopanning and were mapped to 10 discrete regions, which made up three major immunodominant domains within residues 51 to 120, 193 to 230, and 311 to 408, respectively. One of these domains (residues 311 to 408) overlapped the highly conserved, integrin-binding RGD (Arg-Gly-Asp) motif. The contribution of antibodies directed to RGD and other epitopes in Ad neutralization activity was determined indirectly by using a phage-mediated depletion assay. Our results suggested that circulating RGD antibodies were not prevalent and were poorly neutralizing and that other peptide motifs within residues 51 to 60, 216 to 226, and 311 to 408 in Pb sequence represented major target sites for neutralizing antibodies.  相似文献   

3.
Virus-specific neutralizing antibodies present an obstacle to the effective use of adenovirus vectors for gene therapy and vaccination. The specific sites recognized by neutralizing antibodies have not been identified for any adenovirus, but they have been proposed to reside within the hexon, in small regions of the molecule that are exposed on the capsid surface and possess sequences that vary among serotypes. We have mapped the epitopes recognized by a panel of seven hexon-specific monoclonal antibodies that neutralize the chimpanzee adenovirus 68 (AdC68). Surface plasmon resonance experiments revealed that the antibodies compete for a single hexon binding site, and experiments with synthetic peptides indicated that this site resides within just one small surface loop. Mutations within this loop (but not in other surface loops) permitted virus to escape neutralization by all seven monoclonal antibodies and to resist neutralization by polyclonal antisera obtained from animals immunized against AdC68. These results indicate that a single small surface loop defines a major neutralization site for AdC68 hexon.  相似文献   

4.
Antibodies against hexon, the major coat protein of adenovirus (Ad), are an important component of the neutralizing activity in serum from naturally infected humans and experimentally infected animals. The mechanisms by which antihexon antibodies neutralize the virus have not been defined. As a model system, murine monoclonal antibodies raised against Ad type 5 (Ad5) were screened for antihexon binding and neutralization activity; one monoclonal antibody, designated 9C12, was selected for further characterization. The minimum ratio of 9C12 to Ad5 required for neutralization was 240 antibody molecules per virus particle, or 1 antibody per hexon trimer. Analysis of antibody-virus complexes by dynamic light scattering and negative-stain electron microscopy (EM) showed that the virus particles were coated with electron-dense material but not aggregated at neutralizing ratios. Cryo-EM image reconstruction of the antibody-virus complex showed that the surface of the virus particle was covered by a meshwork of 9C12 antibody density, consistent with bivalent binding at multiple sites. Confocal analysis revealed that viral attachment, cell entry, and intracellular transport to the nuclear periphery still occur in the presence of neutralizing levels of 9C12. A model is presented for neutralization of Ad by an antihexon antibody in which the hexon capsid is cross-linked by antibodies, thus preventing virus uncoating and nuclear entry of viral DNA.  相似文献   

5.
The nucleotide sequence of a part of the HindIII-D fragment (3300 b.p.) of adenovirus KR95 DNA has been determined. Analysis of the nucleotide sequence disclosed a continuous ORF for hexon gene (2814 b.p.) coding the 937 residue protein, part of ORF for the C-terminal region of pVI polypeptide, including 114 residues and the beginning of ORF coding 25 N-terminal residues for viral endoproteinase. Comparison of predicted KR95 hexon sequence and 8 mammalian and avian adenovirus hexon sequences revealed the highest homology between KR95 strain and avian adenoviruses FAV10 and FAV1 (91.1 and 80.1%, respectively). The results were used for creating a test system on the basis of the polymerase chain reaction. The system was used in analysis of fowl samples obtained from 12 poultry farms in Russia. The sequences of hexon gene amplified fragments in the isolated strains and similar fragments of other mammalian and avian adenoviruses have been compared.  相似文献   

6.
The immunogenicity of adenovirus serotype 5 (Ad5) vectors has been shown to be suppressed by neutralizing antibodies (NAbs) directed primarily against the hexon hypervariable regions (HVRs). However, the role of NAbs directed against other capsid components, particularly the adenovirus fiber, remains unclear. Here we show that Ad5 NAbs target both hexon and fiber following vaccination and natural infection. Utilizing neutralization assays with capsid chimeric vectors, we observed that NAb responses to hexon appeared dominant and NAb responses against fiber were subdominant in sera from vaccinated mice, vaccinated humans, and naturally exposed humans. A novel chimeric Ad5 vector in which both the hexon HVRs and the fiber knob were exchanged nearly completely evaded Ad5-specific NAbs both in vitro and in vivo.  相似文献   

7.
Adenovirus is widely used in gene therapy and vaccination as a viral vector, and its hypervariable regions (HVRs) on hexon are the main antigen recognition sites of adenovirus. The modification of this area by genetic engineering will change the antigenic specificity of the virus. In addition, recent studies have demonstrated the importance of coagulation factor X (FX) in adenovirus serotype 5-mediated liver transduction in vivo. The binding site of adenovirus to FX is the HVRs on hexon. By constructing five proteins containing chimeric HVRs from different adenovirus serotypes, we focused on the antigenic specificity and the affinity for FX of these proteins compared with the corresponding viruses. Our data showed that HVR5 and HVR7 had only a part of hexon activity to neutralizing antibodies (NAbs) compared with the complete activity of HVR1-7. Results also demonstrated a differential high-affinity interaction of the HVRs proteins with FX and indicated that HVRs protein had a similar binding ability with corresponding adenovirus serotype. These results highlighted some properties of chimeric HVRs proteins and revealed the influence on the structure and function of hexon proteins and adenovirus resulting from the HVRs.  相似文献   

8.
The nonstructural 100,000-dalton (100K) protein of type 5 adenovirus was isolated and purified from infected KB cells by a combination of ion-exchange and affinity chromatographies. Rabbit antiserum containing specific 100K protein antibodies was used for indirect immunofluorescence examination of cells infected with wild-type virus, 100K mutants, and hexon mutants. The 100K protein, which is synthesized as a late protein, was observed primarily in the cytoplasm of cells infected with wild-type and mutant viruses.  相似文献   

9.
Complementation analysis assigned the mutations of strains H5ts115 and H5ts116, two hexon-minus mutants, to the 100,000-dalton (100K) protein gene. Heterotypic marker rescue (i.e., type 5 adenovirus [Ad5] temperature-sensitive mutants DNA X EcoRI restriction fragments of Ad2 DNA) confirmed the results of previous marker rescue mapping studies, and the heterotypic recombinants yielded unique hybrid (Ad5-Ad2) 100K proteins which were intermediate in size between Ad5 and Ad2 proteins and appeared to be as functionally active as the wild-type 100K protein. Phenotypic characterization of these mutants showed that both the hexon polypeptides and the 100K polypeptides were unstable at the nonpermissive temperature, whereas fiber and penton were not degraded, and that the 100K protein made at 39.5 degrees C could not be utilized after a shift to the permissive temperature (32 degrees C). The role of the 100K protein in the assembly of the hexon trimer was also examined by in vitro protein synthesis. Normally, hexon polypeptides synthesized during an in vitro reaction are assembled into immunoreactive hexons. However, this assembly was inhibited by preincubation of the cell extract with anti-100K immunoglobulin G; neither anti-fiber immunoglobulin G nor normal rabbit immunoglobulin G inhibited hexon assembly. It is postulated that an interaction between the 100K protein and hexon polypeptides is required for effective assembly of hexon trimers.  相似文献   

10.
The first full-length hexon protein DNA and deduced amino acid sequences of a subgenus D adenovirus (AV) were determined from candidate AV48 (85-0844). Comprehensive comparison of this sequence with hexon protein sequences from human subgenera A, B, C, D, F, bovine AV3, and mouse AV1 revealed seven discrete hypervariable regions (HVRs) among the 250 variable residues in loops 1 and 2. These regions differed in length between serotypes, from 2 to 38 residues, and contained > 00% of hexon serotype-specific residues among human serotypes. Alignment with the published crystal structure of AV2 established the location and structure of the type-specific regions. Five HVRs were shown to be part of linear loops on the exposed surfaces of the protein, analogous to the serotype-specific loops or "puffs" in picornavirus capsid proteins. The HVRs were supported by a common framework of conserved residues, of which 68 to 75% were hydrophobic. Unique sequences were limited to the seven HVRs, so that one or more of these regions contain the type-specific neutralization epitopes. A neutralizing AV48 hexon-specific antiserum recognized linear peptides that corresponded to six HVRs by enzyme immunoassay. Affinity-purification removal of all peptide-reactive antibodies did not significantly decrease the neutralization titer. Eluted peptide-reactive antibodies did not neutralize. Human antisera that neutralized AV48 did not recognize linear peptides. Purified trimeric native hexon inhibited neutralization, but monomeric heat-denatured hexon did not. We conclude that the AV48 neutralization epitope(s) is complex and conformational.  相似文献   

11.
S McGill  H Stenmark  K Sandvig    S Olsnes 《The EMBO journal》1989,8(10):2843-2848
We have developed a system to study the interactions of diphtheria toxin with the cell surface using non-toxic mutant proteins synthesized in vitro. Proteins obtained by N-terminal deletions containing the whole B fragment bound strongly to cells. Deletions extending into the B fragment did not yield an autonomous binding domain. Loss of only the N-terminal 3 kd of the B fragment significantly impaired the ability to recognize the receptor. This, together with previous reports that the C-terminal end of the B fragment is required for binding, suggests that both ends of the B fragment are necessary for receptor recognition. Receptor bound diphtheria toxin undergoes a conformational change at pH less than 5.3 that results in translocation of the A fragment to the cytosol and the appearance of a B fragment-derived 25 kd polypeptide (P25) resistant to externally applied protease. Only the B fragment was required for generation of P25. N-terminal deletions of 130 amino acids or more resulted in proteins that gave rise to P25 at higher pH than full length toxin. Furthermore, a second protease-inaccessible polypeptide of 18 kd (P18) was observed.  相似文献   

12.
Hexon capsomers of simian adenovirus sim16 (SA7) and of human adenoviruses h5 (Ad5) and h6 (Ad6) were proteolytically digested and the resulting products studied by SDS-polyacrylamide gel electrophoresis and by radioimmunoprecipitation analysis. The trypsinolysis of native SA7 hexon leads to a stable molecular "core" containing 4-5 fragment species of 10 to 65 kDa and resembling the intact capsomer in quarternary structure (trimer). Similar cores but consisting of smaller fragments (less than 40 kDa) were obtained after chymotryptic digestion of native SA7, Ad5 and Ad6 hexons. The chymotryptic hexon fragments were also held together in pseudotrimeric structures. The similarity of proteolytic hexon fragment patterns between different primate adenoviral hexons suggested a homology to exist in localisation of the exposed tryptic and chymotryptic cleavage sites in their respective hexon polypeptide chains. Papain caused a complete hydrolysis of native SA7 hexon (trimer) yielding small peptides, but at first stage of digestion a stable papain hexon core containing small fragments (less than 10 kDa) was observed. The tryptic SA7 hexon cores in native state retained their antigenicity in reactions with homo- and heterologous antibodies, but after core denaturation the resulting fragments had no antigenic activity of native capsomer. In contrast to the data previously published, chymotryptic cores of SA7, Ad5 and Ad6 hexons not only reacted with respective homologous antibodies but also retained (at least in part) cross-reactive antigenic determinants. The questions of formation and stability of native adenoviral hexon conformation are discussed as well as the possible nature of hexon antigenic determinants.  相似文献   

13.
Yan  Yuqian  Jing  Shuping  Feng  Liqiang  Zhang  Jing  Zeng  Zhiwei  Li  Min  Zhao  Shan  Ou  Junxian  Lan  Wendong  Guan  Wenyi  Wu  Xiaowei  Wu  Jianguo  Seto  Donald  Zhang  Qiwei 《中国病毒学》2021,36(3):354-364
Human adenoviruses(HAd Vs) are highly contagious and result in large number of acute respiratory disease(ARD) cases with severe morbidity and mortality. Human adenovirus type 3(HAd V-3) is the most common type that causes ARD outbreaks in Asia,Europe, and the Americas. However, there is currently no vaccine approved for its general use. The hexon protein contains the main neutralizing epitopes, provoking strong and lasting immunogenicity. In this study, a novel recombinant and attenuated adenovirus vaccine candidate against HAd V-3 was constructed based on a commercially-available replication-defective HAd V-5 gene therapy and vaccine vector. The entire HAd V-3 hexon gene was integrated into the E1 region of the vector by homologous recombination using a bacterial system. The resultant recombinants expressing the HAd V-3 hexon protein were rescued in AD293 cells, identified and characterized by RT-PCR, Western blots, indirect immunofluorescence, and electron microscopy. This potential vaccine candidate had a similar replicative efficacy as the wild-type HAd V-3 strain. However, and importantly, the vaccine strain had been rendered replication-defective and was incapable of replication in A549 cells after more than twentygeneration passages in AD293 cells. This represents a significant safety feature. The mice immunized both intranasally and intramuscularly by this vaccine candidate raised significant neutralizing antibodies against HAd V-3. Therefore, this recombinant,attenuated, and safe adenovirus vaccine is a promising HAd V-3 vaccine candidate. The strategy of using a clinically approved and replication-defective HAd V-5 vector provides a novel approach to develop universal adenovirus vaccine candidates against all the other types of adenoviruses causing ARDs and perhaps other adenovirus-associated diseases.  相似文献   

14.
1. A fragment of human serum albumin called `inhibitor' has been degraded by trypsin, and one of the degradation products, designated fragment F1, has been isolated. Fragment F1 has a molecular weight of 6600. It contains neither tyrosine nor tryptophan. It is not precipitated with rabbit anti-sera to human serum albumin. 2. Fragment F1 was coupled to p-aminobenzylcellulose to form an insoluble conjugate. Rabbit anti-(human serum albumin) antibodies reacting with fragment F1 were specifically adsorbed on this conjugate and were desorbed by glycine–hydrochloric acid buffer. The isolated antibodies are composed of γ-globulin and β2-macroglobulin. 3. Human serum albumin and fragment F1 formed with 7s anti-(fragment F1) antibodies soluble complexes that were studied by passive haemagglutination, ultracentrifugation and electrophoresis. Fragment F1 was shown to contain only one of the antigenic sites of albumin molecule. The 7s anti-(fragment F1) antibodies were shown to be bivalent and monospecific.  相似文献   

15.
35S-Labeled adenovirus type 2 (Ad2) (10 ng/ml) was incubated with 1% Triton X-114 at various pH values varying from 3.0 to 8.0. The detergent phase was separated from the aqueous phase by centrifugation, and the amounts of Ad2 were determined in the two phases. At pH 7.0-8.0, less than 5% of Ad2 was associated with the detergent phase; at pH 5.0 or below, about 60% of Ad2 was associated with the detergent phase. When a mixture of 35S-labeled capsid proteins was used at pH 7.0, 60-70% of the total proteins were associated with the detergent at pH 5.0, but less than 5% of the proteins interacted with detergent at pH 7.0. Among the three major external proteins (hexon, penton base, and fiber), penton base had the highest association with Triton X-114 at pH 5.0. Both intact virus and the capsid proteins that were associated with Triton X-114 at pH 5.0 were released into the aqueous phase on subsequent incubation at pH 7.0. On the basis of these results, it is suggested that mildly acidic pH induces amphiphilic properties in adenovirus capsid proteins and may help Ad2 escape from acidic endocytic vesicles.  相似文献   

16.
Mature human adenovirus particles contain four minor capsid proteins, in addition to the three major capsid proteins (penton base, hexon and fiber) and several proteins associated with the genomic core of the virion. Of the minor capsid proteins, VI plays several crucial roles in the infection cycle of the virus, including hexon nuclear targeting during assembly, activation of the adenovirus proteinase (AVP) during maturation and endosome escape following cell entry. VI is translated as a precursor (pVI) that is cleaved at both N- and C-termini by AVP. Whereas the role of the C-terminal fragment of pVI, pVIc, is well established as an important co-factor of AVP, the role of the N-terminal fragment, pVIn, is currently elusive. In fact, the fate of pVIn following proteolytic cleavage is completely unknown. Here, we use a combination of proteomics-based peptide identification, native mass spectrometry and hydrogen–deuterium exchange mass spectrometry to show that pVIn is associated with mature human adenovirus, where it binds at the base of peripentonal hexons in a pH-dependent manner. Our findings suggest a possible role for pVIn in targeting pVI to hexons for proper assembly of the virion and timely release of the membrane lytic mature VI molecule.  相似文献   

17.
Enzymic degradation of the Fc fragment of rabbit immunoglobulin IgG   总被引:8,自引:6,他引:2       下载免费PDF全文
The digestion of the Fc fragment of rabbit immunoglobulin IgG by several proteolytic enzymes was investigated by using gel filtration and starch-gel electrophoresis in 8m-urea-formate as criteria of the extent of degradation. Though fragment Fc and mildly reduced fragment Fc proved resistant to tryptic hydrolysis, papain and pepsin cleaved the fragment at acidic pH values and appeared to give rise to a similar spectrum of products. A (limit) peptide comprising the C-terminal 113 residues of the heavy chain was isolated and identified from the pepsin-digest products of fragment Fc. The products of proteolytic digestion of fragment Fc were no longer able to inhibit passive cutaneous anaphylaxis by rabbit anti-(bovine serum albumin) or demonstrate reversed passive cutaneous anaphylaxis in the guinea pig. Nor were they able to inhibit the intestinal absorption of heterologous immunoglobulin IgG in the young mouse. These studies imply that the site or sites responsible for these biological properties of intact fragment Fc reside in the N-terminal 30-40% of the fragment.  相似文献   

18.
Adenovirus serotype 5 (Ad5) has great potential for gene therapy applications. A major limitation, however, is the host immune response against Ad5 infection that often prevents the readministration of Ad5 vectors. In this regard, the most abundant capsid protein, hexon, has been implicated as the major target for neutralizing antibodies. In this study, we sought to escape the host neutralization response against Ad5 via hexon replacement. We constructed a chimeric adenovirus vector, Ad5/H3, by replacing the Ad5 hexon gene with the hexon gene of Ad3. The chimeric viruses were successfully rescued in 293 cells. Compared to that for the control Ad5/H5, the growth rate of Ad5/H3 was significantly slower and the final yield was about 1 log order less. These data indicate that the Ad3 hexon can encapsidate the Ad5 genome, but with less efficiency than the Ad5 hexon. The gene transfer efficacy of Ad5/H3 in HeLa cells was also lower than that of Ad5/H5. Furthermore, we tested the host neutralization responses against the two viruses by using C57BL/6 mice. The neutralizing antibodies against Ad5/H3 and Ad5/H5 generated by the immunized mice did not cross-neutralize each other in the context of in vitro infection of HeLa cells. Preimmunization of C57BL/6 mice with one of the two types of viruses also did not prevent subsequent infection of the other type. These data suggest that replacing the Ad5 hexon with the Ad3 hexon can circumvent the host neutralization response to Ad5. This strategy may therefore be used to achieve the repeated administration of Ad5 in gene therapy applications.  相似文献   

19.
Two of the adenovirus capsid proteins, the fiber and the hexon, complexed with either KB cell or type 5 adenovirus deoxyribonucleic acid (DNA). Maximal binding occurred at 0.01 m NaCl; increasing the ionic strength of the reaction mixture to 0.2 m NaCl resulted in a decrease in the association of either antigen to DNA. Variations of pH between 6.3 and 8.4 did not affect the binding of fiber antigen to DNA. Below pH 7.5, however, there was a small decrease in the ability of the hexon to bind nucleic acid. The association between the adenovirus structural proteins and DNA was reversible and was independent of whether the DNA was native or denatured. The fiber or hexon protein inhibited the DNA-dependent ribonucleic acid (RNA) polymerase and the DNA polymerase from KB cells. On a weight basis, the fiber protein inhibited enzymatic activity to a greater extent than the hexon. Increasing the template DNA concentration decreased this inhibition. The inhibition of the DNA-dependent RNA polymerase activity by either antigen could be reversed by increasing the ionic strength of the reaction mixture. After infection of KB cells with type 5 adenovirus, the levels of DNA and RNA polymerases remained unchanged for 15 to 20 hr. Thereafter, the specific activity of both enzymes decreased. By 30 hr postinfection, the polymerase activities were only about 30% of the enzyme activities in uninfected cells.  相似文献   

20.
The sialic-rich carbohydrate moiety of the neural cell adhesion molecule (N-CAM) undergoes major structural changes during development and plays a significant role in altering the homophilic binding of the molecule. In order to understand the mechanism of these changes, a cyanogen bromide (CNBr) fragment that contained 90% of the sialic acid of N-CAM was isolated and characterized according to the number of carbohydrate attachment sites and reactivity with specific monoclonal antibodies. The CNBr sialopeptide migrated on SDS PAGE as a broad zone of Mr 42,000-60,000. Upon treatment with neuraminidase, it was converted to a single component of Mr 42,000, and subsequent, limited treatment with endoglycosidase F gave four evenly spaced components of Mr 35,000-42,000, suggesting that it contained three attachment sites for N-linked oligosaccharides. The fragment reacted with monoclonal antibody 15G8, which detects the sialic acid in embryonic N-CAM, and with a monoclonal antibody, anti-(N-CAM) No. 2. Treatment with neuraminidase or with endoglycosidase F destroyed reactivity with 15G8 but not with anti-(N-CAM) No. 2. A similar CNBr sialopeptide was obtained from adult N-CAM; it contained sialic acid, had three N-linked oligosaccharides and reacted with anti-(N-CAM) No. 2 but not with 15G8 monoclonal antibodies. A peptide fragment, Fr2, comprising the NH2 terminal and middle regions of the molecule yielded a CNBr fragment closely similar to the fragment obtained from the whole molecule. The CNBr fragment from Fr2 reacted with monoclonal antibody anti-(N-CAM) No. 2. Fr1, comprising the NH2 terminal region alone, failed to react. These data confirm that the majority of the sialic acid is localized in the middle region of the N-CAM molecule and support the hypothesis that embryonic to adult conversion of N-CAM is the result of differences in sialidase or sialytransferase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号