首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Gut proteases from the larvae of the mosquito Culex pipiens convert the 43-kilodalton (kDa) toxin from Bacillus sphaericus 2362 to a 40-kDa peptide. The 50% lethal concentration of this peptide for tissue culture-grown cells of Culex quinquefasciatus was 1.0 microgram/ml (as determined by the intracellular ATP assay), 54-fold less than that of the 43-kDa peptide. Gut proteases from Anopheles gambiae and Aedes aegypti, as well as bovine pancreatic trypsin, also converted the 43-kDa protein to a 40-kDa peptide which was indistinguishable from the peptide formed by the proteases from C. pipiens with respect to its toxicity to tissue culture-grown cells of C. quinquefasciatus. Evidence for the in vivo conversion of the 43-kDa protein to the 40-kDa peptide was also obtained from experiments in which larvae of C. pipiens, Anopheles gambiae, and Aedes aegypti were fed crystals from B. sphaericus 2362. By using the exclusion of trypan blue as an indication of cell viability, it was shown that chitobiose, chitotriose, N-acetylmuramic acid, and N-acetylneuraminic acid decreased the toxicity of the 40-kDa peptide (from 100 to 50% mortality at about 10 mM concentrations of these sugars). Muramic acid, N-acetylgalactosamine, and N-acetylglucosamine were less effective, while several sugars had no effect, suggesting that the 40-kDa toxin binds to specific receptors on the cell membrane. The 40-kDa protein was less toxic to tissue culture-grown cells of Anopheles gambiae and Aedes dorsalis, and the same sugars which reduced the toxicity for cells of C. quinquefasciatus were also effective in reduction of toxicity for these cell lines.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Gut proteases from the larvae of the mosquito Culex pipiens convert the 43-kilodalton (kDa) toxin from Bacillus sphaericus 2362 to a 40-kDa peptide. The 50% lethal concentration of this peptide for tissue culture-grown cells of Culex quinquefasciatus was 1.0 microgram/ml (as determined by the intracellular ATP assay), 54-fold less than that of the 43-kDa peptide. Gut proteases from Anopheles gambiae and Aedes aegypti, as well as bovine pancreatic trypsin, also converted the 43-kDa protein to a 40-kDa peptide which was indistinguishable from the peptide formed by the proteases from C. pipiens with respect to its toxicity to tissue culture-grown cells of C. quinquefasciatus. Evidence for the in vivo conversion of the 43-kDa protein to the 40-kDa peptide was also obtained from experiments in which larvae of C. pipiens, Anopheles gambiae, and Aedes aegypti were fed crystals from B. sphaericus 2362. By using the exclusion of trypan blue as an indication of cell viability, it was shown that chitobiose, chitotriose, N-acetylmuramic acid, and N-acetylneuraminic acid decreased the toxicity of the 40-kDa peptide (from 100 to 50% mortality at about 10 mM concentrations of these sugars). Muramic acid, N-acetylgalactosamine, and N-acetylglucosamine were less effective, while several sugars had no effect, suggesting that the 40-kDa toxin binds to specific receptors on the cell membrane. The 40-kDa protein was less toxic to tissue culture-grown cells of Anopheles gambiae and Aedes dorsalis, and the same sugars which reduced the toxicity for cells of C. quinquefasciatus were also effective in reduction of toxicity for these cell lines.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Cry11A from Bacillus thuringiensis subsp. israelensis and Cry11Ba from Bacillus thuringiensis subsp. jegathesan were introduced, separately and in combination, into the chromosome of Bacillus sphaericus 2297 by in vivo recombination. Two loci on the B. sphaericus chromosome were chosen as target sites for recombination: the binary toxin locus and the gene encoding the 36-kDa protease that may be responsible for the cleavage of the Mtx protein. Disruption of the protease gene did not increase the larvicidal activity of the recombinant strain against Aedes aegypti and Culex pipiens. Synthesis of the Cry11A and Cry11Ba toxins made the recombinant strains toxic to A. aegypti larvae to which the parental strain was not toxic. The strain containing Cry11Ba was more toxic than strains containing the added Cry11A or both Cry11A and Cry11Ba. The production of the two toxins together with the binary toxin did not significantly increase the toxicity of the recombinant strain to susceptible C. pipiens larvae. However, the production of Cry11A and/or Cry11Ba partially overcame the resistance of C. pipiens SPHAE and Culex quinquefasciatus GeoR to B. sphaericus strain 2297.  相似文献   

4.
We have shown that urea-extracted cell wall of entomopathogenic Bacillus sphaericus 2297 and some other strains is a potent larvicide against Culex pipiens mosquitoes, with 50% lethal concentrations comparable to that of the well-known B. sphaericus binary toxin, with which it acts synergistically. The wall toxicity develops in B. sphaericus 2297 cultures during the late logarithmic stage, earlier than the appearance of the binary toxin crystal. It disappears with sporulation when the binary toxin activity reaches its peak. Disruption of the gene for the 42-kDa protein (P42) of the binary toxin abolishes both cell wall toxicity and crystal formation. However, the cell wall of B. sphaericus 2297, lacking P42, kills C. pipiens larvae when mixed with Escherichia coli cells expressing P42. Thus, the cell wall toxicity in strongly toxic B. sphaericus strains must be attributed to the presence in the cell wall of tightly bound 51-kDa (P51) and P42 binary toxin proteins. The synergism between binary toxin crystals and urea-treated cell wall preparations reflects suboptimal distribution of binary toxin subunits in both compartments. Binary toxin crystal is slightly deficient in P51, while cell wall is lacking in P42.  相似文献   

5.
This work demonstrates that Bin1 and Bin2 toxins, produced by Bacillus sphaericus strains IAB59 and 2362, respectively, share a binding site in midgut brush border membranes (BBMF) from Culex pipiens complex larvae. However, a colony selected with strain IAB59, displaying a resistance ratio of only 42-fold to IAB59, but a 162,000-fold resistance to strain 2362, was found to miss receptors for Bin2 in the BBMF. This correlates with results showing that Bin1, produced in strain IAB59, failed to bind specifically to BBMF from other colony highly resistant to strain 2362. Data indicate the loss of the BBMF bound receptor as a general mechanism of resistance to binary toxins in mosquito.  相似文献   

6.
Bacillus sphaericus toxin labeled with fluorescein isothiocyanate was readily ingested by Culex pipiens, Aedes aegypti, Anopheles stephensi, Anopheles gambiae, Anopheles quadrimaculatus, and Anopheles albimanus larvae. Fluorescent toxin bound to the luminal cell surface in discrete regions of the posterior midgut and gastric caecum in C. pipiens. In Anopheles spp., toxin bound in a variable pattern to these structures and central and anterior midgut as well. The toxin did not bind to midgut cells of A. aegypti. The toxin was internalized in bright fluorescent vesicles in C. pipiens, but was not internalized in Anopheles spp. and appeared to be weakly bound in these larvae, leaking rapidly from the gut surface. The lectin, wheat germ agglutinin, which interferes with binding of the B. sphaericus toxin, bound to the posterior midgut and gastric caecum of all species, but was not internalized. These results suggest that the sugar moiety of the receptor is not solely responsible for specificity of this toxin, and that binding to Culex spp. midgut cells may be highly specific and of high affinity, whereas binding to Anopheles spp. cells may be nonspecific and/or of low affinity.  相似文献   

7.
Larvae of Culex quinquefasciatus are much more susceptible to the toxin of Bacillus sphaericus than are larvae of Aedes aegypti. In the present study, the rate of ingestion, dissolution, and the cleavage by midgut proteases of the B. sphaericus toxin were compared in larvae of these species to determine whether these factors account for the differences in susceptibility. During filter feeding, larvae of both species removed significant quantities of B. sphaericus toxin from suspensions. Filtration rates for 1 hr, the time at which C. quinquefasciatus exhibited marked intoxication, were higher for A. aegypti (576-713 microliters/larva/hr) than for C. quinquefasciatus (446-544 microliters/larva/hr). Within 24 hr of exposure, A. aegypti larvae ingested 97-99% of the toxin particulates and suffered not more than 10% mortality in suspensions which induced complete mortality in C. quinquefasciatus within 2 hr of exposure. Quantification of the particulate toxin present in larvae after exposure to B. sphaericus suspensions revealed that larvae of both species contained only minor amounts of the toxin, suggesting the larvae had been able to solubilize the toxin after ingestion. Proteases recovered from the feces of larvae cleaved at 43-kDa protein isolated from B. sphaericus toxin extract to 40 kDa in both species. Thus, differences in susceptibility to the B. sphaericus toxin between A. aegypti and C. quinquefasciatus are not due to differences in rates of ingestion, dissolution, or the specificity of proteases.  相似文献   

8.
The genes encoding the toxic determinants of Bacillus sphaericus have been expressed in a nontoxic and a toxic strain of Bacillus thuringiensis subsp. israelensis. In both cases, the B. sphaericus toxin proteins were produced at a high level during sporulation of B. thuringiensis and accumulated as crystalline structures. B. thuringiensis transformants expressing B. sphaericus and B. thuringiensis subsp. israelensis toxins did not show a significant enhancement of toxicity against Aedes aegypti, Anopheles stephensi, and Culex pipiens larvae.  相似文献   

9.
The genes encoding the toxic determinants of Bacillus sphaericus have been expressed in a nontoxic and a toxic strain of Bacillus thuringiensis subsp. israelensis. In both cases, the B. sphaericus toxin proteins were produced at a high level during sporulation of B. thuringiensis and accumulated as crystalline structures. B. thuringiensis transformants expressing B. sphaericus and B. thuringiensis subsp. israelensis toxins did not show a significant enhancement of toxicity against Aedes aegypti, Anopheles stephensi, and Culex pipiens larvae.  相似文献   

10.
The binary toxin (Bin) from Bacillus sphaericus exhibits a highly insecticidal activity against Culex and Anopheles mosquitoes. The cytotoxicity of Bin requires an interaction with a specific receptor present on the membrane of midgut epithelial cells in larvae. A direct correlation exists between binding affinity and toxicity. The toxin binds with high affinity to its receptor in its primary target, Culex pipiens, and displays a lower affinity to the receptor in Anopheles gambiae, which is less sensitive to Bin. Although the Bin receptor has previously been identified and named Cpm1 in C. pipiens, its structure in Anopheles remains unknown. In this study, we hypothesize that the Anopheles Bin receptor is an ortholog of Cpm1. By screening the Anopheles genomic database, we identified a candidate gene (Agm3) which is expressed primarily on the surface of midgut cells in larvae and which functions as a receptor for Bin. A Cpm1-like gene is also present in the Bin-refractory species Aedes aegypti. Overall, our results indicate that the three mosquito genes examined share a very similar organization and are strongly conserved at the amino acid level, in particular in the NH(2)-terminus, a region believed to contain the ligand binding site, suggesting that relatively few amino acids residues are critical for high affinity binding of the toxin.  相似文献   

11.
The 51.4-kDa-41.9-kDa binary toxin produced by different strains of Bacillus sphaericus shows differential activity toward Culex quinquefasciatus, Aedes atropalpus, and Aedes aegypti mosquito larvae. The patterns of larvicidal activity toward all three mosquito species and growth retardation in A. aegypti have been shown to be due to the 41.9-kDa protein. By using mutant toxins expressed in Escherichia coli, insecticidal activity and growth retardation correlated with amino acids centered around position 100 of the 41.9-kDa protein. In its response to these toxins, A. atropalpus resembled C. quinquefasciatus rather than its congener, A. aegypti.  相似文献   

12.
A 3.7-kilobase (kb) XbaI fragment harboring the cryIVB gene (L. Thorne, F. Garduno, T. Thompson, D. Decker, M. A. Zounes, M. Wild, A. M. Walfield, and T. J. Pollock, J. Bacteriol. 166:801-811, 1986) which encoded a 130-kilodalton (kDa) mosquitocidal toxin from a 110-kb plasmid of Bacillus thuringiensis subsp. israelensis 4Q2-72 was cloned into pUC12 and transformed into Escherichia coli. The clone with a recombinant plasmid (designated pBT8) was toxic to Aedes aegypti larvae. The fragment (3.7 kb) was ligated into pBC16 (tetracycline resistant [Tcr]) and transformed by the method of protoplast transformation into Bacillus sphaericus 1593 and 2362, which were highly toxic to Anopheles and Culex mosquito larvae but less toxic to Aedes larvae. After cell regeneration on regeneration medium, the Tcr plasmids from transformants (pBTC1) of both strains of B. sphaericus were prepared and analyzed. The 3.7-kb XbaI fragment from the B. thuringiensis subsp. israelensis plasmid was shown to be present by agarose gel electrophoresis and Southern blot hybridization. In addition, B. sphaericus transformants produced a 130-kDa mosquitocidal toxin which was detected by Western (immuno-) blot analysis with antibody prepared against B. thuringiensis subsp. israelensis 130-kDa mosquitocidal toxin. The 50% lethal concentrations of the transformants of strains 1593 and 2362 against A. aegypti larvae were 2.7 X 10(2) and 5.7 X 10(2) cells per ml, respectively. This level of toxicity was comparable to the 50% lethal concentration of B. thuringiensis subsp. israelensis but much higher than that of B. sphaericus 1593 and 2362 (4.7 X 10(4) cells per ml) against A. aegypti larvae.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
A 3.7-kilobase (kb) XbaI fragment harboring the cryIVB gene (L. Thorne, F. Garduno, T. Thompson, D. Decker, M. A. Zounes, M. Wild, A. M. Walfield, and T. J. Pollock, J. Bacteriol. 166:801-811, 1986) which encoded a 130-kilodalton (kDa) mosquitocidal toxin from a 110-kb plasmid of Bacillus thuringiensis subsp. israelensis 4Q2-72 was cloned into pUC12 and transformed into Escherichia coli. The clone with a recombinant plasmid (designated pBT8) was toxic to Aedes aegypti larvae. The fragment (3.7 kb) was ligated into pBC16 (tetracycline resistant [Tcr]) and transformed by the method of protoplast transformation into Bacillus sphaericus 1593 and 2362, which were highly toxic to Anopheles and Culex mosquito larvae but less toxic to Aedes larvae. After cell regeneration on regeneration medium, the Tcr plasmids from transformants (pBTC1) of both strains of B. sphaericus were prepared and analyzed. The 3.7-kb XbaI fragment from the B. thuringiensis subsp. israelensis plasmid was shown to be present by agarose gel electrophoresis and Southern blot hybridization. In addition, B. sphaericus transformants produced a 130-kDa mosquitocidal toxin which was detected by Western (immuno-) blot analysis with antibody prepared against B. thuringiensis subsp. israelensis 130-kDa mosquitocidal toxin. The 50% lethal concentrations of the transformants of strains 1593 and 2362 against A. aegypti larvae were 2.7 X 10(2) and 5.7 X 10(2) cells per ml, respectively. This level of toxicity was comparable to the 50% lethal concentration of B. thuringiensis subsp. israelensis but much higher than that of B. sphaericus 1593 and 2362 (4.7 X 10(4) cells per ml) against A. aegypti larvae.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The operon containing the genes encoding the subunits of the binary crystal toxin of Bacillus sphaericus strain LP1-G, BinA and BinB (41.9 kDa and 51.4 kDa, respectively), was cloned and sequenced. Purified crystals were not toxic to Culex pipiens larvae. Comparison of the amino-acid sequences of this strain (Bin4) with those of the three other known toxin types (Bin1, Bin2 and Bin3) revealed mutations at six positions, including a serine at position 93 of BinA4, whereas all other types of BinA toxin from B. sphaericus had a leucine at this position. Reciprocal site-directed mutagenesis was performed to replace this serine in BinA4 from LP1-G with a leucine and the leucine in the BinA2 protein from strain 1593 with a serine. Native and mutated genes were cloned and overexpressed. Inclusion bodies were tested on C. pipiens larvae. Unlike the native Bin4 toxin, the mutated protein was toxic, and the reciprocal mutation in Bin2 led to a significant loss of toxicity. In vitro receptor-binding studies showed similar binding behaviour for native and mutated toxins. In the absence of any experimental data on the 3D structure of these proteins, sequence analysis and secondary-structure predictions were performed. Amino acid 93 of the BinA polypeptide probably belongs to an alpha helix that is sensitive to amino-acid modifications. Position 93 may be a key element in the formation of the BinA-BinB complex responsible for the toxicity and stability of B. sphaericus Bin toxins.  相似文献   

15.
Culex pipiens larval midgut is the primary target of the binary toxin (Bin) present in parasporal inclusions of Bacillus sphaericus. Cpm1, a 60-kDa protein purified from brush border membranes, has been proposed as the receptor of the Bin toxin in the midgut epithelial cells of mosquitoes. We have cloned and characterized the corresponding cDNA from midgut of Culex pipiens larvae. The open reading frame predicted a 580 amino-acid protein with a putative signal peptide at the N-terminus and a putative GPI-anchoring signal at the C-terminus. The amino acid sequence of the cloned Cpm1 exhibited 39-43% identities with insect maltases (alpha-glucosidases and alpha-amylases). Recombinant Cpm1 expressed in E. coli specifically bound to the Bin toxin and had a significant alpha-glucosidase activity but no alpha-amylase activity. These results support the view that Cpm1 is an alpha-glucosidase expressed in Culex midgut where it constitutes the receptor for the Bin toxin. To date, this is the first component involved in the mosquitocidal activity of the Bacillus sphaericus Bin toxin to be characterized. Its identification provides a key step to elucidate the mode of action of the Bin toxin and the mechanisms of resistance developed against it by some mosquito strains.  相似文献   

16.
After site-directed mutagenesis, the genes coding for the 42- and 51-kilodalton (kDa) mosquitocidal proteins of Bacillus sphaericus 2362 were placed under the regulation of the aprE (subtilisin) promoter of the Bacillus subtilis vector pUE (a derivative of pUB18). The levels of expression of the gene products in B. subtilis DB104 and B. sphaericus 718 were assessed by bioassays with larvae of Culex pipiens and by Western immunoblots. The results indicated that a higher amount of protein was produced in B. subtilis DB104. Electron microscopic examination of B. subtilis DB104 and B. sphaericus 718 containing the 42- and 51-kDa proteins indicated that amorphous inclusions accumulated in the former species and that crystals identical in appearance to that found in B. sphaericus 2362 were produced in the latter. Strains producing only the 42- or the 51-kDa protein were not toxic to larvae of C. pipiens. A mixture of both strains, a single strain producing both proteins, or a fusion of the 51- and the 42-kDa proteins was toxic. The amount of B. subtilis DB104 containing the 42- and the 51-kDa proteins necessary to kill 50% of the larvae of C. pipiens was 5.6 ng (dry weight) of cells per ml. This value was significantly lower than that for B. sphaericus 2362 (14 ng [dry weight] per ml). Larvae consuming purified amorphous inclusions containing the 42-kDa protein degraded this protein this protein to primarily 39- and 24-kDa peptides, whereas inclusions with the 51-kDa protein were primarily degraded to a protein of 44 kDa. Past studies involving purified proteins from B. sphaericus 2362 indicate an associate of toxicity with the 39-kDa peptide. The results presented here suggest that the 44-kDa degradation product of the 51-kDa protein may also be required for toxicity.  相似文献   

17.
Mosquito control with biological insecticides, such as Bacillus sp. toxins, has been used widely in many countries. However, rapid sedimentation away from the mosquito larvae feeding zone causes a low residual effect. In order to overcome this problem, it has been proposed to clone the Bacillus toxin genes in aquatic bacteria which are able to live in the upper part of the water column. Two strains of Asticcacaulis excentricus were chosen to introduce the B. sphaericus binary toxin gene and B. thuringiensis subsp. medellin cry11Bb gene cloned in suitable vectors. In feeding experiments with these aquatic bacteria, it was shown that Culex quinquefasciatus, Aedes aegypti, and Anopheles albimanus larvae were able to survive on a diet based on this wild bacterium. A. excentricus recombinant strains were able to express both genes, but the recombinant strain expressing the B. sphaericus binary toxin was toxic to mosquito larvae. Crude protease A. excentricus extracts did not degrade the Cry11Bb toxin. The flotability studies indicated that the recombinant A. excentricus strains remained in the upper part of the water column longer than the wild type Bacillus strains.  相似文献   

18.
W H Yap  T Thanabalu    A G Porter 《Applied microbiology》1994,60(11):4199-4202
A series of plasmids bearing the binary toxin genes of Bacillus sphaericus 2297 or 2317.3, the 100-kDa toxin gene of B. sphaericus SSII-1, or the 130-kDa (cryIVB) toxin gene of Bacillus thuringiensis subsp. israelensis were constructed and introduced into Ancylobacter aquaticus by electroporation. The transformed A. aquaticus cells exhibited significant toxicity towards mosquito larvae, demonstrating a potential use of recombinant A. aquaticus for biological control of mosquitoes.  相似文献   

19.
Five new high-toxicity mosquitocidal strains of Bacillus sphaericus were isolated in Singapore. They all belong to phage group 8 and have binary toxin (51.4- plus 41.9-kDa) genes located on the chromosome but lack a 100-kDa-toxin gene. These strains of B. sphaericus constitute a new subgroup, as only two weakly toxic strains in phage group 8 have previously been described and all the known high-toxicity strains have both binary toxin and 100-kDa-toxin genes.  相似文献   

20.
The expression of the 100-kDa mosquitocidal toxin (Mtx) during vegetative growth and sporulation in nine different mosquito-larvicidal strains of Bacillus sphaericus has been analyzed. In five out of the nine strains the 100-kDa toxin was found to be expressed predominantly in the vegetative phase of growth, and in all nine strains the level of the toxin in sporulated cells was very low or undetectable. Strains in four out of the six DNA homology groups of B. sphaericus produced intracellular and extracellular proteases, which degraded the 100-kDa toxin, during sporulation. The 100-kDa toxin gene was expressed by using its native promoter on a multicopy number plasmid in B. sphaericus 1693 (protease negative) and B. sphaericus 13052 (protease positive). High levels of the 100-kDa toxin were produced in vegetative cells of both strains as well as in sporulated cells of protease-negative strain 1693, which is in contrast to the low levels of the 100-kDa toxin produced in sporulated cells of protease-positive strain 13052. Thus, the small amount of the 100-kDa toxin in sporulated cells of the nine mosquito-larvicidal strains is probably due to degradation of the 100-kDa toxin synthesized during vegetative growth by a protease(s) produced during sporulation. B. sphaericus 1693 transformed with the 100-kDa toxin gene was as toxic to mosquito larvae during both vegetative growth and sporulation as the natural high-toxicity strains of sporulated B. sphaericus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号