首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Predawn leaf water potential, stomatal conductance and microclimatic variables were measured on 13 sampling days from November 1995 through August 1996 to determine how environmental and physiological factors affect water use at the canopy scale in a plantation of mature clonal Eucalyptus grandis Hill ex-Maiden hybrids in the State of Espirito Santo, Brazil. The simple ”big leaf” Penman-Monteith model was used to estimate canopy transpiration. During the study period the predawn leaf water potential varied from –0.4 to –1.3 MPa, with the minimum values observed in the winter months (June and August 1996), while the average estimated values for canopy conductance and canopy transpiration fell from 17.3 to 5.8 mm s–1 and from 0.54 to 0.18 mm h–1, respectively. On the basis of all measurements, the average value of the decoupling coefficient was 0.25. During continuous soil water shortage a proportional reduction was observed in predawn leaf water potential and in daily maximum values of stomatal conductance, canopy transpiration and decoupling coefficient. The results showed that water vapour exchange in this canopy is strongly dominated by the regional vapour pressure deficit and that canopy transpiration is controlled mainly by stomatal conductance. On a seasonal basis, stomatal conductance and canopy transpiration were mainly related to predawn leaf water potential and, thus, to soil moisture and rainfall. Good results were obtained with a multiplicative empirical model that uses values of photosynthetically active radiation, vapour pressure deficit and predawn leaf water potential to estimate stomatal conductance. Received: 10 June 1998 / Accepted: 20 July 1998  相似文献   

2.
 In leaves of Fraxinus excelsior L., malate and mannitol were characterized by 13C NMR spectroscopy and enzymatic specific assays as the major constituents of a soluble carbon fraction involved in an osmotic adjustment. During a summer drought where predawn leaf water potential of adult trees growing in a mesoxerophilic stand fell to – 4 MPa in August, malate and mannitol leaf contents increased by a factor of 1.8 and 2.2 respectively, compared to control trees growing on a flood plain. This drought stress led to concentrations as high as 280 mM and 600 mM for mannitol and malate, respectively. The effects of gradually developing water deficit were also studied in a semi-controlled environment in 3-year-old seedlings. When predawn leaf water potential reached -6 MPa, leaves displayed a low turgor pressure but stomatal conductance was still measurable. Malate and mannitol were also the main osmoticum involved. After rewatering, gas exchange capacities were largely restored. Altogether, these results show that the strong water-stress tolerance of Fraxinus excelsior is in part related to an accumulation of malate and mannitol. Received: 3 January 1996 / Accepted: 19 March 1996  相似文献   

3.
Hydraulic redistribution (HR), the passive movement of water via roots from moist to drier portions of the soil, occurs in many ecosystems, influencing both plant and ecosystem-water use. We examined the effects of HR on root hydraulic functioning during drought in young and old-growth Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] and ponderosa pine (Pinus ponderosa Dougl. Ex Laws) trees growing in four sites. During the 2002 growing season, in situ xylem embolism, water deficit and xylem vulnerability to embolism were measured on medium roots (2–4-mm diameter) collected at 20–30 cm depth. Soil water content and water potentials were monitored concurrently to determine the extent of HR. Additionally, the water potential and stomatal conductance (gs) of upper canopy leaves were measured throughout the growing season. In the site with young Douglas-fir trees, root embolism increased from 20 to 55 percent loss of conductivity (PLC) as the dry season progressed. In young ponderosa pine, root embolism increased from 45 to 75 PLC. In contrast, roots of old-growth Douglas-fir and ponderosa pine trees never experienced more than 30 and 40 PLC, respectively. HR kept soil water potential at 20–30 cm depth above –0.5 MPa in the old-growth Douglas-fir site and –1.8 MPa in the old-growth ponderosa pine site, which significantly reduced loss of shallow root function. In the young ponderosa pine stand, where little HR occurred, the water potential in the upper soil layers fell to about –2.8 MPa, which severely impaired root functioning and limited recovery when the fall rains returned. In both species, daily maximum gs decreased linearly with increasing root PLC, suggesting that root xylem embolism acted in concert with stomata to limit water loss, thereby maintaining minimum leaf water potential above critical values. HR appears to be an important mechanism for maintaining shallow root function during drought and preventing total stomatal closure.  相似文献   

4.
为探究气候变化背景下降雨减少对森林的影响,2013年在宝天曼锐齿栎天然次生林原位建立了3块降水减少(截雨)样地,研究降雨减少对锐齿栎水碳关系和生长的影响。结果表明:降雨减少后锐齿栎枝条水势显著低于对照,最低水势为(-1.36±0.11)MPa,但锐齿栎木质部栓塞88%的水势值为-3.19MPa,叶片气孔关闭时的水势值为-2.5MPa,故降雨减少在这一地区没有对锐齿栎水力结构造成严重的干扰。降雨减少后,锐齿栎的叶片、韧皮部和木质部的总非结构性碳浓度与对照没有显著差异。木质部导管密度和叶片气孔密度变大,而导管直径和气孔长度变小。在天气较为干旱时,降雨减少处理的锐齿栎气孔导度日变化呈"双峰"曲线,而在湿润天气时呈"单峰"曲线且中午峰值显著大于对照。降雨减少处理的锐齿栎木材密度、Huber值、比叶面积和胸径生长与对照没有显著差异。降雨减少后锐齿栎树木没有遭受水力失衡或碳饥饿的危害,生长也没有受到显著影响,但是水力输导系统发生了适应性调节。  相似文献   

5.
 The present study was carried out to elucidate the response mechanisms of 50-year-old Pinus halepensis Mill. trees to a long-term and severe drought. The amount of water available to trees was artificially restricted for 12 months by covering the soil with a plastic roof. Over the short term a direct and rapid impact of drought was evident on the water relations and gas exchanges of trees: as the soil dried out in the Spring, there was a concurrent decrease of predawn water potential; transpiration was strongly reduced by stomatal closure. Seasonal changes in the water volume fractions of twig and stem xylem were observed and interpreted as the result of cavitation and refilling in the xylem. When droughted trees recovered to a more favourable water status, refilling of embolized xylem was observed; twig predawn water potentials were still negative in the period when the embolism was reversed in the twig xylem. A few months after the removal of the covering, no differences in whole plant hydraulic resistance were observed between droughted and control trees. Needle and shoot elongation and stem radial growth were considerably reduced in droughted trees; no strategy of trees to allocate carbon preferentially to the stem conducting tissues was apparent throughout the experiment. An after-effect of the drought on growth was observed. Received: 4 August 1997 / Accepted: 1 October 1997  相似文献   

6.
Classical water relations theory predicts that predawn plant water potential should be in equilibrium with soil water potential (soil Ψw) around roots, and many interpretations of plant water status in natural populations are based on this expectation. We examined this expectation for two salt-tolerant, cold-desert shrub species in glasshouse experiments where frequent watering assured homogeneity in soil Ψw and soil-root hydraulic continuity and where NaCl controlled soil Ψw. Plant water potentials were measured with a pressure chamber (xylem Ψp) and thermocouple psychrometers (leaf Ψw). Soil Ψw was measured with in situ thermocouple psychrometers. Predawn leaf Ψw and xylem Ψp were significantly more negative than soil Ψw, for many treatments, indicating large predawn soil-plant Ψw disequilibria: up to 1.2 MPa for Chrysothamnus nauseosus (0 and 100 mm NaCl) and 1.8 MPa for Sarcobatus vermiculatus (0, 100, 300, and 600 mm NaCl). Significant nighttime canopy water loss was one mechanism contributing to predawn disequilibrium, assessed by comparison of xylem Ψp for bagged (to minimize transpiration) and unbagged canopies, and by gas exchange measurements. However, nighttime transpiration accounted for only part of the predawn disequilibrium. Other mechanisms that could act with nighttime transpiration to generate large predawn disequilibria are described and include a model of how leaf apoplastic solutes could contribute to the phenomenon. This study is among the first to conclusively document such large departures from the expectation of predawn soil-plant equilibrium for C3 shrubs, and provides a general framework for considering relative contributions of nighttime transpiration and other plant-related mechanisms to predawn disequilibrium. Received: 12 November 1998 / Accepted: 5 May 1999  相似文献   

7.
 This study examines water status regulation in plants of the Oleaceae family and in some other co-occurring species that are exposed to high solar radiation, in the same habitat. Fraxinus excelsior L., one of the most studied Oleaceae in this field exhibited, during the growing season, a close relationship between diurnal variations in leaf water potential and changes in malate, mannitol and K+ levels, depending on the weather conditions. On sunny days, similar variations can be observed in leaves of the other Oleaceae, with a concomitant decrease in the osmotic potential between predawn and solar noon. Malate, mannitol and the well-known osmoticum K+, contribute greatly to the osmotic potential decrease. This mechanism, which can be related to the osmotic adjustment described for both drought and salt-affected plants, appears as a general response in plants of the Oleaceae family. Among the other co-occurring species investigated, only Quercus robur L. displayed a similar mechanism under the same environmental conditions, but two other organic compounds, quinic and shikimic acids, are presumably involved. Alnus glutinosa (L.) Gaertn. and Robinia pseudacacia L. responded to a vapor deficit by partial stomatal closure, as transpiration progressed through the morning. Received: 19 December 1996 / Accepted: 17 February 1997  相似文献   

8.
 The tree species black alder [Alnus glutinosa (L.) Gaertn.] typically inhabits wet sites in central Europe but is also successful on well drained soils. To test the physiological adjustment of the species in situ, conductances, transpiration rates and water potentials (Scholander pressure chamber) of black alder leaves were investigated at two neighbouring sites with different water regimes: alder trees at an occasionally water logged alder forest and alder shrubs in a nearby, much drier hedgerow. Additional experiments with alder cuttings in nutrient culture showed that leaf conductances and gas exchange were both strongly influenced by the substrate water potential. In situ however, there was little spatial variability within the different parts of a crown and we found that physiological regulation at leaf level was hardly influenced by different site water regimes or different tree sizes. Diurnal courses of leaf water relations as well as their regulation at the leaf level (e.g. the hyperbolic relationship between conductances and ΔW) were strikingly similar at both sites. Leaf water potential in black alder was shown to be a consequence of immediate transpiration rates, which were high in comparison to other tree species (up to 4 mmol H2O m–2 s–1), rather than the water potentials being a factor that influenced conductance and, therefore, transpiration. The always high leaf conductances and consequent high transpiration rates are interpreted as a strategy to maximise productivity through low stomatal limitation at sites where water supply is usually not limited. However, at the same time this behaviour restricts black alder to sites where at least the deep-going roots can exploit water. Received: 10 September 1998 / Accepted: 12 January 1999  相似文献   

9.
Summary Diurnal courses of stomatal conductance, leaf water potential, and the components of tissue water potential were measured in six canopy species in an elfin cloud forest. High values of stomatal conductance were measured on cloudy days and during early morning and late afternoon of sunny days. Decreases in stomatal conductance with increases in vapour pressure deficit may have been a response to avoid further water deficits and suggested a stomatal response to changes in relative humidity. Daily transpiration varied between 470 and 1014 g m-2 day-1 during cloudy days and between 532 and 944 g m-2 day-1 during clear days. Stomatal conductance may have also responded to changes in leaf water potential, which was minimum at noon. The minimum tissue water potential measured in the field was -1.8 MPa in Myrcianthes fragrans, and the minimum turgor pressure was 0.49 MPa also in M. fragrans. There was a correlation between the osmotic potential and the minimum tissue water potential, suggesting that osmotic potential plays a major role in the maintenance of turgor in these species, in spite of the great variability in the elastic properties of leaf tissues. Turgor pressure decreased during the day following the course of water potential but never approached the turgor loss point, as it has been measured in some lowland rain forest trees. This is a strong indication that elfin cloud forest trees do not suffer severe water deficits, and that small tree stature is not directly related to water shortage.  相似文献   

10.
Studies were conducted to examine changes in soil (Ψs) and plant water status during summer in a 16-year old Quercus suber plantation in southern Portugal. Continuous measurements were conducted between May 2003 and August 2004, while discontinuous measurements were conducted on a monthly basis between May and September 2003 and repeated between March and September 2004. Intensive measurements were conducted on five trees with mean height and DBH of 5.3 m and 11.6 cm, respectively, growing at close proximity to each other. Weather conditions and soil water potential (Ψs) at the rhizosphere of each of the trees measured at 0.3 and 1 m soil depth were continuously monitored. Predawn (Ψpd) and midday (Ψmd) leaf water potentials were determined every month. Soil and plant samples were also collected in June and September from different locations within the study site for δ18O isotope composition analysis. Pressure–volume (pv) curves were constructed from plant shoots at different times during the vegetative period to determine osmotic potential at full saturation (Π100), water potential at turgor loss point (Ψtlp), relative water content at turgor loss point (R*tlp) and bulk modulus of elasticity (ε). Significant P < 0.05 decline in Ψs occurred between May and September, the lowest value recorded being –2.0 MPa. Decline in soil moisture affected tree water status, but decline in leaf water potential varied significantly (P < 0.05) among the trees. At the end of summer drought, lowest Ψpd measured was –1.7 MPa while the highest measured during this time was –0.8 MPa. Differences among trees were attributed to differences in rooting depth, as shown by regression analysis of 18O isotopes. Radial stem growth ceased when Ψs within the upper 0.3 m depth approached –1.5 MPa. The upper soil layers contributed approximately 33% of the total tree water requirement, between spring and mid summer when drought was experienced by trees. Deep soil layers however, supplied most of the water required during drought and no growth was recorded during this time. Stressed trees increased solute concentration of their tissues by a Magnitude of 0.7 MPa while bulk tissue elastic modulus increased by about 17 MPa. The study emphasizes the significance of roots as determinants of tree productivity and survival in the Mediterranean ecosystems.  相似文献   

11.
Hydraulic lift (HL) by tree roots in a young, broad-leaved, mixed temperate European forest was investigated during the 2008 growing season by injecting 18O-enriched soil water at a depth of 75–90 cm under drought conditions experimentally imposed in a rain-exclusion system. Based on sap flow, leaf water potential, 2-D root distribution measurements, soil isotope profiles, and xylem water isotope composition, water acquisition and use by two tree species, beech (Fagus sylvatica) and oak (Quercus petraea) was compared. We showed that, unlike oak, beech experienced a marked decrease in sap flow and predawn leaf water potential with increasing soil drought. This behaviour was logical considering the shallower root system in beech than in oak. Six days after 18O-labelling, we observed isotopic enrichment in the shallower soil layers. Since the intermediate soil layers did not display any enrichment, our results clearly pointed to hydraulic lift by tree roots. The superficial enrichment that was observed in the vicinity of oak trunks and the increase in the isotopic signature of xylem sap in the oak trees but not in the beech trees confirmed the predominant role of oak in the hydraulic lift at our site. Even though facilitation for water acquisition among species was not observed here, our results suggest a potential positive contribution of species like oak toward maintaining species diversity in mixed forest ecosystems submitted to severe drought events.  相似文献   

12.
Water status and gas exchange of beech (Fagus sylvatica L.) and sessile oak [Quercus petraea (Mattuschka) Liebl.] were studied in a mixed stand in the Montejo de la Sierra forest (central Iberian Peninsula), one of the southernmost locations of both species in Europe. Gas exchange and water potential were measured in leaves at different canopy levels over several days in two growing seasons. The daily variation pattern was established with the measurements of three selected dates per year, representative of the soil moisture content situations in early, mid- and late summer. A similar daily time course of leaf water potential was found for the two species. Nevertheless, beech showed a most noticeable decrease of water potential at midmorning and maintained lower leaf water potential than oak in the early afternoon. In 1994 the sessile oak saplings showed higher values of predawn water potential (Ψpd) than beech at the end of summer, when soil moisture content was lowest (20 cm depth). Beech showed a significantly lower net assimilation rate (A) than sessile oak for leaves under the same PPFD. Maximum net photosynthesis values (A max) for beech and sessile oak on sunny leaves were 10.1±0.4 μmol m–2 s–1 and 17.8±1.7 μmol m–2 s–1 respectively, and those for water vapour stomatal conductance (g wv) were 265±31 mmol m–2 s–1 and 438±74 mmol m–2 s–1. Differences in A and g wv between the two species were maintained throughout the day on all measurement dates. No clear relationship was found between water status of saplings and stomata performance; there was only a negative correlation between Ψpd and g wvmid in beech. Nevertheless, a significant response to the air vapour pressure gradient between leaf and air was translated into stomata closure on an hourly basis, more intensively in beech. Received: 4 March 1999 / Accepted: 21 December 1999  相似文献   

13.
Changes in leaf physiology with tree age and size could alter forest growth, water yield, and carbon fluxes. We measured tree water flux (Q) for 14 ponderosa pine trees in two size classes (12 m tall and ∼40 years old, and 36 m tall and ∼ 290 years old) to determine if transpiration (E) and whole-tree conductance (g t) differed between the two sizes of trees. For both size classes, E was approximately equal to Q measured 2 m above the ground: Q was most highly correlated with current, not lagged, water vapor pressure deficit, and night Q was <12% of total daily flux. E for days 165–195 and 240–260 averaged 0.97 mmol m–2 (leaf area, projected) s–1 for the 12-m trees and 0.57 mmol m–2 (leaf area) s–1 for the 36-m trees. When photosynthetically active radiation (I P) exceeded the light saturation for photosynthesis in ponderosa pine (900 μmol m–2 (ground) s–1), differences in E were more pronounced: 2.4 mmol m–2 (leaf area) s–1 for the 12-m trees and 1.2 mmol m–2 s–1 for the 36-m trees, yielding g t of 140 mmol m–2 (leaf area) s–1 for the 12-m trees and 72 mmol m–2 s–1 for the 36-m trees. Extrapolated to forests with leaf area index =1, the 36-m trees would transpire 117 mm between 1 June and 31 August compared to 170 mm for the 12-m trees, a difference of 15% of average annual precipitation. Lower g t in the taller trees also likely lowers photosynthesis during the growing season. Received: 19 April 1999 / Accepted: 23 March 2000  相似文献   

14.
Leaf gas exchange and stem xylem hydraulic and mechanical properties were studied for unburned adults and resprouting burned Juglans californica (southern California black walnut) trees 1 year after a fire to explore possible trade-offs between mechanical and hydraulic properties of plants. The CO2 uptake rates and stomatal conductance were 2–3 times greater for resprouting trees than for unburned adults. Both predawn and midday water potentials were more negative for unburned adult trees, indicating that the stems were experiencing greater water stress than the stems of resprouting trees. In addition, the xylem specific conductivity was similar in the two growth forms, even though the stems of resprouting trees were less vulnerable to water-stress-induced embolism than similar diameter, but older, stems of adult trees. The reduced vulnerability may have been due to less cavitation fatigue in stems of resprouts. The modulus of elasticity, modulus of rupture and xylem density were all greater for resprouts, indicating that resprouts have greater mechanical strength than do adult trees. The data suggest that there is no trade-off between stem mechanical strength and shoot hydraulic and photosynthetic efficiency in resprouts, which may have implications for the success of this species in the fire-prone plant communities of southern California.  相似文献   

15.
Does turgor limit growth in tall trees?   总被引:16,自引:2,他引:14  
The gravitational component of water potential contributes a standing 0.01 MPa m?1 to the xylem tension gradient in plants. In tall trees, this contribution can significantly reduce the water potential near the tree tops. The turgor of cells in buds and leaves is expected to decrease in direct proportion with leaf water potential along a height gradient unless osmotic adjustment occurs. The pressure–volume technique was used to characterize height‐dependent variation in leaf tissue water relations and shoot growth characteristics in young and old Douglas‐fir trees to determine the extent to which growth limitation with increasing height may be linked to the influence of the gravitational water potential gradient on leaf turgor. Values of leaf water potential (Ψl), bulk osmotic potential at full and zero turgor, and other key tissue water relations characteristics were estimated on foliage obtained at 13.5 m near the tops of young (approximately 25‐year‐old) trees and at 34.7, 44.2 and 55.6 m in the crowns of old‐growth (approximately 450‐year‐old) trees during portions of three consecutive growing seasons. The sampling periods coincided with bud swelling, expansion and maturation of new foliage. Vertical gradients of Ψl and pressure–volume analyses indicated that turgor decreased with increasing height, particularly during the late spring when vegetative buds began to swell. Vertical trends in branch elongation, leaf dimensions and leaf mass per area were consistent with increasing turgor limitation on shoot growth with increasing height. During the late spring (May), no osmotic adjustment to compensate for the gravitational gradient of Ψl was observed. By July, osmotic adjustment had occurred, but it was not sufficient to fully compensate for the vertical gradient of Ψl. In tall trees, the gravitational component of Ψl is superimposed on phenologically driven changes in leaf water relations characteristics, imposing potential constraints on turgor that may be indistinguishable from those associated with soil water deficits.  相似文献   

16.
Seasonal variations in photosynthesis and water relations parameters were quantified for Myrica cerifera, the dominant woody species on the barrier islands along the eastern shore of Virginia. From June through September of 1989, maximum values were 35 μmol m−-2 sec−-1 for net CO2 assimilation, 10.5 mm sec−-1 for stomatal conductance to water vapor diffusion, and –0.3 MPa for xylem pressure potential at the field site on Hog Island. Midday minimum xylem pressure potential often was less than –1.5 MPa. Data from the field and measurements on glasshouse plants indicated that stomatal opening and photosynthesis were sensitive to leaf water potential (<–0.8 MPa) and the leaf-to-air humidity deficit (>1.5 kPa). Using meteorological data and derived photosynthetic responses, predictions indicated that M. cerifera photosynthesis would have been limited at the field site due to nonoptimal air temperatures and humidity deficits on at least 90% of the days during the relatively wet summer of 1989. By comparison, these parameters were expected to limit photosynthesis on all but 2 d, or more than 98% of the time during the relatively dry summer of 1990. The sensitivity of Myrica cerifera to atmospheric humidity and plant moisture status may explain the distributional preference for the more mesic swale sites of barrier islands.  相似文献   

17.
We investigated scaling of physiological parameters between age classes of Quercus rubra by combining in situ field measurements with an experimental approach. In the in situ field study, we investigated changes in drought response with age in seedlings, juveniles, and mature trees of Q. rubra. Throughout the particularly dry summer of 1995 and the unusually wet summer of 1996 in New England, we measured water potential of leaves (ΨLeaf) and gas exchange of plants at three sites at the Harvard Forest in Petersham, Massachusetts. In order to determine what fraction of the measured differences in gas exchange between seedlings and mature trees was due to environment versus ontogeny, an experiment was conducted in which seedlings were grown under light and soil moisture regimes simulating the environment of mature trees. The photosynthetic capacity of mature trees was three-fold greater than that of seedlings during the wet year, and six-fold greater during the drought year. The seedling experiment demonstrated that the difference in photosynthetic capacity between seedlings and mature trees is comprised equally of an environmental component (50%) and an ontogenetic component (50%) in the absence of water limitation. Photosynthesis was depressed more severely in seedlings than in mature trees in the drought year relative to the wet year, while juveniles showed an intermediate response. Throughout the drought, the predawn leaf water potential (ΨPD) of seedlings became increasingly negative (–0.4 to –1.6 MPa), while that of mature trees became only slightly more negative (–0.2 to –0.5 MPa). Again, juveniles showed an intermediate response (–0.25 to –0.8 MPa). During the wet summer of 1996, however, there was no difference in ΨPD between seedlings, juveniles and mature trees. During the dry summer of 1995, seedlings were more responsive to a major rain event than mature trees in terms of ΨLeaf , suggesting that the two age classes depend on different water sources. In all age classes, instantaneous measurements of intrinsic water use efficiency (WUEi), defined as C assimilation rate divided by stomatal conductance, increased as the drought progressed, and all age classes had higher WUEi during the drought year than in the wet year. Mature trees, however, showed a greater ability to increase their WUEi in response to drought. Integrated measurements of WUE from C isotope discrimination (Δ) of leaves indicated higher WUE in mature trees than juveniles and seedlings. Differences between years, however, could not be distinguished, probably due to the strong bias in C isotope fractionation at the time of leaf production, which occurred prior to the onset of drought conditions in 1995. From this study, we arrive at two main conclusions: Received: 14 July 1999 / Accepted: 10 January 2000  相似文献   

18.
We measured the stable deuterium isotopic composition of xylem sap, the shoot predawn and midday water potentials, and the leaf δ13C of Mediterranean shrubs Pistacia lentiscus, Globularia alypum and Rosmarinus officinalis in a south-oriented transect from a large (12 m tall) Aleppo pine tree, Pinus halepensis. We aimed to study the possibility of hydraulic lift from the deep roots of this pine tree to the shallow soil layers and its influence on these neighbour shrubs. These same traits were also studied in several individuals of the shrub Pistacia lentiscus growing with different types of neighbours: just shrubs, a small (3 – 4 m) pine tree, and the above mentioned large pine tree. The greater the distance from P. halepensis the plants grew, the higher xylem water δD, the lower the soil water content, and, the lower the predawn and midday water potentials were found. These results suggest the existence of an hydraulic lift from deep roots to shallow soil in this big tree. Further indication of this existence is provided by the improved water status of P. lentiscus (higher water potentials and δD, and lower δ13C and, therefore, lower water use efficiencies) when growing close to the big pine in comparison with the same shrub species growing close to small pines or just surrounded by other shrubs. Moreover, all these trends occurred in the dry summer season, but disappeared in the wet spring season. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Leuzinger S  Hartmann A  Körner C 《Planta》2011,233(6):1087-1096
Ivy (Hedera helix) is the most important liana in temperate European forests. We studied water relations of adult ivy in a natural, 35 m tall mixed deciduous forest in Switzerland using a construction crane to access the canopy. Predawn leaf water potential at the top of climbing ivy ranged from −0.4 to −0.6 MPa, daily minima ranged from −1.3 to −1.7 MPa. Leaf water potentials as well as relative sap flow were held surprisingly constant throughout different weather conditions, suggesting a tendency to isohydric behaviour. Maximum stomatal conductance was 200 mmol m−2 s−1. The use of a potometer experiment allowed us to measure absolute transpiration rates integrated over a whole plant of 0.23 mmol m−2 s−1. Nightly sap flow of ivy during warm, dry nights accounted for up to 20% of the seasonal maximum. Maximum sap flow rates were reached at ca. 0.5 kPa vpd. On the other hand, the host trees showed a less conservative stomatal regulation, maximum sap flow rates were reached at vpd values of ca. 1 kPa. Sap flow rates of ivy decreased by ca. 20% in spring after bud break of trees, suggesting that ivy profits strongly from warm sunny days in early spring before budbreak of the host trees and from mild winter days. This species may benefit from rising winter temperatures in Europe and thus become a stronger competitor against its host trees.  相似文献   

20.
In order to determine how environmental and physiological factors affect leaf gas exchange in a 9-year-old clonal eucalypt plantation (Eucalyptus grandis Hill ex. Maiden hybrids) in the State of Espirito Santo, Brazil, the diurnal patterns of predawn leaf water potential (Ψpd), and leaf gas exchange were monitored from November 1995 to August 1996. Soil water content (Θ) and microclimatic variables were also recorded. Most of the rainfall during the experimental period occurred from October to December 1995 and from March to April 1996, causing a significant variation in Θ and Ψpd. A high positive correlation (r 2=0.92) was observed between Ψpd and Θ measured at 0.3 m depth from the soil surface. During conditions of high soil water availability, the maximum values of stomatal conductance for water vapor (g s) and net photosynthetic rate (A) were over 0.4 mol m–2 s–2 and l5 μmol m–2 s–1, respectively. The results showed that Ψpd and leaf gas exchange of the examined trees were susceptible to changes in the water content of the upper soil layers, where the major concentration of active roots occur. Multiple linear regression analysis indicated that photosynthetic active radiation (Q), vapor pressure deficit (VPD), atmospheric CO2 molar fraction (C a), and Ψpd were the most important factors controlling g s whereas Q and VPD were the main microclimatic variables controlling A. Received: 5 November 1998 / Accepted: 10 November 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号