首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The multiple-antibiotic resistance regulator (MarR) plays an important role in modulating bacterial antibiotic resistance. However, the regulatory model of the marRAB operon in mycobacteria remains to be characterized. Here we report that a MarR, encoded by Ms6508, and its marRAB operon specifically contribute to rifampicin (RIF) resistance in Mycobacterium smegmatis. We show that the MarR recognizes a conserved 21-bp palindromic motif and negatively regulates the expression of two ABC transporters in the operon, encoded by Ms6509–6510. Unlike other known drug efflux pumps, overexpression of these two ABC transporters unexpectedly increased RIF sensitivity and deletion of these two genes increased mycobacterial resistance to the antibiotic. No change can be detected for the sensitivity of recombinant mycobacterial strains to three other anti-TB drugs. Furthermore, HPLC experiments suggested that Ms6509–Ms6510 could pump RIF into the mycobacterial cells. These findings indicated that the mycobacterial MarR functions as a repressor and constitutively inhibits the expression of the marRAB operon, which specifically contributes to RIF resistance in M. smegmatis. Therefore, our data suggest a new regulatory mechanism of RIF resistance and also provide the new insight into the regulatory model of a marRAB operon in mycobacteria.  相似文献   

2.
The cupA gene cluster of Pseudomonas aeruginosa encodes components and assembly factors of a putative fimbrial structure that enable this opportunistic pathogen to form biofilms on abiotic surfaces. In P. aeruginosa the control of cupA gene expression is complex, with the H-NS-like MvaT protein functioning to repress phase-variable (on/off) expression of the operon. Here we identify four positive regulators of cupA gene expression, including three unusual regulators encoded by the cgrABC genes and Anr, a global regulator of anaerobic gene expression. We show that the cupA genes are expressed in a phase-variable manner under anaerobic conditions and that the cgr genes are essential for this expression. We show further that cgr gene expression is negatively controlled by MvaT and positively controlled by Anr and anaerobiosis. Expression of the cupA genes therefore appears to involve a regulatory cascade in which anaerobiosis, signaled through Anr, stimulates expression of the cgr genes, resulting in a concomitant increase in cupA gene expression. Our findings thus provide mechanistic insight into the regulation of cupA gene expression and identify anaerobiosis as an inducer of phase-variable cupA gene expression, raising the possibility that phase-variable expression of fimbrial genes important for biofilm formation may occur in P. aeruginosa persisting in the largely anaerobic environment of the cystic fibrosis host lung.  相似文献   

3.
4.
5.
6.
7.
8.
9.
Mycobacterium fortuitum has emerged as a nosocomial infectious agent and biofilm formation attributed for the presence of this bacterium in hospital environment. Transposon random mutagenesis was used to identify membrane-proteins for biofilm formation in M. fortuitum. Ten mutants were shortlisted from a library of 450 mutants for examine their biofilm forming ability. Comparative biofilm ability with respect to wild type M. fortuitum ATCC 6841 showed an altered and delayed biofilm formation in one mutant namely, MT721. Sequence analysis revealed mutation in anthranilate phosphoribosyl transferase (MftrpD), which is associated with tryptophan operon. Functional interaction study of TrpD protein through STRING showed its interaction with chorismate utilizing proteins, majorly involved in synthesis of aromatic amino acid and folic acid, suggesting that biofilm establishment and maintenance requires components of central metabolism. Our study indicates important role of MftrpD in establishment and maintenance of biofilm by M. fortuitum, which may further be explored for drug discovery studies against mycobacterial infections.  相似文献   

10.
Corynebacterium glutamicum encodes a mannitol catabolic operon, which comprises three genes: the DeoR-type repressor coding gene mtlR (sucR), an MFS transporter gene (mtlT), and a mannitol 2-dehydrogenase gene (mtlD). The mtlR gene is located upstream of the mtlTD genes in the opposite orientation. In spite of this, wild-type C. glutamicum lacks the ability to utilize mannitol. This wild-type phenotype results from the genetic regulation of the genes coding for mannitol transport and catalytic proteins mediated by the autoregulated MtlR protein since mtlR mutants grow on mannitol as the sole carbon source. MtlR binds to sites near the mtlR (two sites) and mtlTD promoters (one site downstream of the promoter), with the consensus sequence 5′-TCTAACA-3′ being required for its binding. The newly discovered operon comprises the three basic functional elements required for mannitol utilization: regulation, transport, and metabolism to fructose, further processed to the common intermediate of glycolysis fructose-6-phosphate. When relieved from MtlR repression, C. glutamicum, which lacks a functional fructokinase, excretes the fructose derived from mannitol and imports it by the fructose-specific PTS. In order to use mannitol from seaweed biomass hydrolysates as a carbon source for the production of useful commodity chemicals and materials, an overexpression system using the tac promoter was developed. For congruence with the operon, we propose to rename sucR as the mtlR gene.  相似文献   

11.
12.
13.
The DNA sequence changes of 31 mutations altering the attenuation control mechanism of the histidine operon are presented. These mutations are discussed in terms of a model for operon regulation that involves a his leader peptide gene whose translation regulates formation of alternative stem-loop structures in the his leader messenger RNA. Three suppressible mutations generate nonsense codons (ochre and UGA) in the his leader peptide gene, demonstrating that translation of this gene is essential for operon expression. Eight mutations presumably reduce the efficiency of translation initiation of the his leader peptide gene, causing reduced levels of operon expression. Five of these mutations directly alter the leader peptide gene initiator codon (AUG). Three mutations alter sequences just in front of the initiator codon and presumably alter the ribosome recognition site. Fourteen mutations reduce the stability of the his leader mRNA stem-loop structures that are alternatives to the attenuator stem. The properties of these mutations provide support for the role of these stem-loop structures in preventing formation of the attenuator stem. Finally, we show that mutations that alter the attenuator stem suppress hisO mutations. This lends support to the proposal that these hisO mutations cause reduced levels of operon expression due to excessive attenuator stem formation. The properties of these 31 mutations provide substantial support for the model of his operon regulation described in this paper.  相似文献   

14.
15.
16.
Despite the economic and sanitary problems caused by harmful biofilms, biofilms are nonetheless used empirically in industrial environmental and bioremediation processes and may be of potential use in medical settings for interfering with pathogen development. Escherichia coli is one of the bacteria with which biofilm formation has been studied in great detail, and it is especially appreciated for biotechnology applications because of its genetic amenability. Here we describe the development of two new genetic tools enabling the constitutive and inducible expression of any gene or operon of interest at its native locus. In addition to providing valuable tools for complementation and overexpression experiments, these two compact genetic cassettes were used to modulate the biofilm formation capacities of E. coli by taking control of two biofilm-promoting factors, autotransported antigen 43 adhesin and the bscABZC cellulose operon. The modulation of the biofilm formation capacities of E. coli or those of other bacteria capable of being genetically manipulated may be of use both for reducing and for improving the impact of biofilms in a number of industrial and medical applications.  相似文献   

17.
18.
Gene expression systems that allow the regulation of bacterial genes during an infection are valuable molecular tools but are lacking for mycobacterial pathogens. We report the development of mycobacterial gene regulation systems that allow controlling gene expression in fast and slow-growing mycobacteria, including Mycobacterium tuberculosis, using anhydrotetracycline (ATc) as inducer. The systems are based on the Escherichia coli Tn10-derived tet regulatory system and consist of a strong tet operator (tetO)-containing mycobacterial promoter, expression cassettes for the repressor TetR and the chemical inducer ATc. These systems allow gene regulation over two orders of magnitude in Mycobacterium smegmatis and M.tuberculosis. TetR-controlled gene expression was inducer concentration-dependent and maximal with ATc concentrations at least 10- and 20-fold below the minimal inhibitory concentration for M.smegmatis and M.tuberculosis, respectively. Using the essential mycobacterial gene ftsZ, we showed that these expression systems can be used to construct conditional knockouts and to analyze the function of essential mycobacterial genes. Finally, we demonstrated that these systems allow gene regulation in M.tuberculosis within the macrophage phagosome.  相似文献   

19.
The function of pslD, which is part of the psl operon from Pseudomonas aeruginosa, was investigated in this study. The psl operon is involved in exopolysaccharide biosynthesis and biofilm formation. An isogenic marker-free pslD deletion mutant of P. aeruginosa PAO1 which was deficient in the formation of differentiated biofilms was generated. Expression of only the pslD gene coding region restored the wild-type phenotype. A C-terminal, hexahistidine tag fusion enabled the identification of PslD. LacZ and PhoA translational fusions with PslD indicated that PslD is a secreted protein required for biofilm formation, presumably via its role in exopolysaccharide export.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号