首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to demonstrate the constitutive expression of mitochondrial uncoupling protein 1 (UCP 1) in pure thymocytes using laser scanning confocal microscopic imagery. To that end we probed thymocytes from UCP 1 knock-out and wild-type mice. Mitochondrial location in thymocytes was determined using Mitotracker Red and the nucleus was labelled using Hoescht stain. We demonstrate that all cells investigated were thymocytes as determined by a monoclonal antibody specific for the thymocyte surface marker Thy 1 (CD90) pre-coupled to a fluorescent labelled (Alexa 448, green). Using a primary peptide antibody specific to UCP 1, and secondary fluorescently labelled (Alexa 647, magenta) antibody, we were able to demonstrate that UCP 1 is associated with mitochondria in thymocytes from UCP 1 wild-type mice but not thymocytes from UCP1-knock-out mice. These are the first images demonstrating the presence of UCP 1 in thymocyte mitochondria, in situ, and the first to clearly demonstrate UCP 1 expression in cells other than brown adipocytes. We conclude that mouse thymocytes contain UCP 1 in their mitochondria.  相似文献   

2.
Using an antibody specific and selective to mitochondrial uncoupling protein 1 (UCP1) peptide, this study confirms the observation that UCP 1 is present in thymocytes isolated from UCP 1 wild-type, but not UCP 1 knock-out mice. UCP 1 is also shown to be present in thymocytes isolated from rat. It was also demonstrated that an antibody raised to the full-length UCP 1 protein appears to be non-specific for UCP 1, as it detects protein in UCP 1 wild-type and UCP 1 knock-out mice, protein in mitochondria isolated from brown adipose tissue of both UCP 1 wild-type and UCP 1 knock-out mice, as well as detecting protein in mitochondria isolated from rat spleen, kidney, skeletal muscle and liver, tissues that do not express UCP 1. We were also able to show that CIDEA, a soluble protein with a suggested role in regulating UCP 1 function, is equally abundant in thymocytes from UCP 1 wild-type and UCP 1 knock-out mice. Taken together our data demonstrate that (a) UCP 1 is present in rat and mouse thymocytes, (b) that the antibody to full-length UCP 1 is not specific for UCP 1 and (c) that the absence of UCP 1 does not affect native expression of CIDEA in thymocytes.  相似文献   

3.
Mitochondrial uncoupling protein 3 (UCP3) is constitutively expressed in mitochondria from thymus and spleen of mice, and confocal microscopy has been used to visualize UCP3 in situ in mouse thymocytes. UCP3 is present in mitochondria of thymus and spleen up to at least 16 weeks after birth, but levels decrease by a half in thymus and a fifth in spleen after three weeks, probably reflecting the suckling to weaning transition. UCP3 protein levels increase approximately 3-fold in thymus on starvation, but expression levels in spleen were unaffected by starvation. Lack of UCP3 had little effect on thymus mass or thymocyte number. However, lack of UCP3 affected spleen mass and splenocyte number (in the fasted state) and results in reduced CD4+ single positive cell numbers and reduced double negative cells in the thymus, but as a 2-fold increase in the proportion of CD4(+), CD8(+) and DP cells in spleen. Starvation attenuates these proportionate differences in the spleen. A lack of UCP3 had no apparent effect on basal oxygen consumption of thymocytes or splenocytes or on oxygen consumption due to mitochondrial proton leak. Splenocytes from UCP3 knock-out mice are also more resistant to apoptosis than those from wild-type mice. Overall we can conclude that UCP3 affects thymocyte and spleen cell profiles in the fed and fasted states.  相似文献   

4.
Our laboratory has previously demonstrated the presence of constitutively expressed mitochondrial uncoupling protein 1 in mouse thymocytes. In our endeavours to understand the role of mitochondrial uncoupling protein 1 in thymocyte function, we compared cell profiles in thymus and spleen of wild-type with those of UCP 1 knock-out mice, which in turn led to comparative investigations of apoptotic potential in thymocytes from these mice. We demonstrate that spleen cell numbers were reduced ~ 3-fold in UCP 1 knock-out mice compared to wild-type mice. We record a halving of CD8 single positive cell numbers in thymus with a significant incremental increase in CD4/CD8 double positives cell numbers in the thymus of UCP 1 knock-out mice compared to wild-type mice. These data are mirrored by an approximate halving of CD8 single positive cell numbers and a doubling of CD4/CD8 double positive cell numbers in the spleen of UCP 1 knock-out mice compared to wild-type mice. These differences are most probably explained by our observations of decreased apoptotic potential and higher ATP levels in thymocytes of UCP 1 knock-out mice when compared to wild-type controls. We conclude that constitutively expressed UCP 1 is a factor in determining T-cell population selection in mice.  相似文献   

5.
A novel peptide antibody to UCP 3 is characterized which is sensitive and discriminatory for UCP 3 over UCP 2, UCP 1 and other mitochondrial transporters. The peptide antibody detects UCP 3 expression in E. coli, COS cells and yeast expression systems. The peptide antibody detects a single ∼33 kDa protein band in mitochondria from isolated rat skeletal muscle, mouse and rat brown adipose tissue, and in whole muscle groups (soleus and extensor digitorum longus) from mice. No 33 kDa band is detectable in isolated mitochondria from liver, heart, brain, kidney and lungs of rats, or gastrocnemius mitochondria from UCP 3 knock-out mice. From our data, we conclude that the peptide antibody is detecting UCP 3 in skeletal muscle, skeletal muscle mitochondria and brown adipose tissue mitochondria. It is also noteworthy that the peptide antibody can detect human, mouse and rat forms of UCP 3. Using the UCP 3 peptide antibody, we confirm and quantify the increased (2.8-fold) UCP 3 expression observed in skeletal muscle mitochondria isolated from 48-h-starved rats. We show that UCP 3 expression is increased (1.6-fold) in skeletal muscle of rats acclimated over 8 weeks to 8 °C and that UCP 3 expression is decreased (1.4-fold) in rats acclimated to 30 °C. Furthermore, UCP 3 expression is increased (2.3-fold) in skeletal muscle from hyperthyroid rats compared to euthyroid controls. In addition, we show that UCP 3 expression is only coincident with the mitochondrial fraction of skeletal muscle homogenates and not peroxisomal, nuclear or cytosolic and microsomal fractions.  相似文献   

6.
A novel peptide antibody to UCP 3 is characterized which is sensitive and discriminatory for UCP 3 over UCP 2, UCP 1 and other mitochondrial transporters. The peptide antibody detects UCP 3 expression in E. coli, COS cells and yeast expression systems. The peptide antibody detects a single approximately 33 kDa protein band in mitochondria from isolated rat skeletal muscle, mouse and rat brown adipose tissue, and in whole muscle groups (soleus and extensor digitorum longus) from mice. No 33 kDa band is detectable in isolated mitochondria from liver, heart, brain, kidney and lungs of rats, or gastrocnemius mitochondria from UCP 3 knock-out mice. From our data, we conclude that the peptide antibody is detecting UCP 3 in skeletal muscle, skeletal muscle mitochondria and brown adipose tissue mitochondria. It is also noteworthy that the peptide antibody can detect human, mouse and rat forms of UCP 3. Using the UCP 3 peptide antibody, we confirm and quantify the increased (2.8-fold) UCP 3 expression observed in skeletal muscle mitochondria isolated from 48-h-starved rats. We show that UCP 3 expression is increased (1.6-fold) in skeletal muscle of rats acclimated over 8 weeks to 8 degrees C and that UCP 3 expression is decreased (1.4-fold) in rats acclimated to 30 degrees C. Furthermore, UCP 3 expression is increased (2.3-fold) in skeletal muscle from hyperthyroid rats compared to euthyroid controls. In addition, we show that UCP 3 expression is only coincident with the mitochondrial fraction of skeletal muscle homogenates and not peroxisomal, nuclear or cytosolic and microsomal fractions.  相似文献   

7.
The oncoprotein c-Myc is essential for thymocyte development, and its dysregulation causes lymphoid malignancies. We have demonstrated previously that spontaneous DNA synthesis in Atm(-/-) thymocytes is markedly increased over that of Atm(+/+) thymocytes and that glucocorticoid dexamethasone suppresses thymocyte DNA synthesis and prevents the ultimate development of thymic lymphoma in Atm(-/-) mice. Recently, we reported that in Atm(-/-) thymic lymphoma cells c-Myc is overexpressed compared with the levels of c-Myc in primary thymocytes from wild-type or Atm(-/-) mice. In this study, we show that c-Myc expression progressively increases with age in primary thymocytes from Atm(-/-) mice and that the upregulation of c-Myc parallels the elevated DNA synthesis in the cells, suggesting that deregulation of c-Myc may drive the uncontrolled proliferation of thymocytes in Atm(-/-) mice. Here we also demonstrate that Atm(-/-) thymocytes exhibit increased levels of hydrogen peroxide, NF-E2-related factor (Nrf-2), peroxiredoxin-1, and intracellular glutathione relative to thymocytes from Atm(+/+) mice. Importantly, reduction of hydrogen peroxide by administration of the antioxidant N-acetylcysteine to Atm(-/-) mice attenuates the elevation of Nrf-2, c-Myc, and DNA synthesis in their thymocytes, suggesting that ATM may control c-Myc and DNA synthesis during postnatal thymocyte development by preventing accumulation of reactive oxygen species.  相似文献   

8.
Mitochondrial uncoupling protein 1 is usually associated with brown adipose tissue but has recently been discovered in rat and mouse thymus. We wished to establish whether there was a thermogenic role for UCP 1 in thymus and thus examined the effect of 5 weeks cold-acclimation on rat thymus tissue abundance, thymocyte oxygen consumption, thymus mitochondrial abundance, uncoupling protein 1 expression and function. We found that thymocytes from cold-acclimated rats had oxygen consumption rates 8 times less than those from rats held at room temperature and that thymocytes from cold-acclimated rats or rats kept at room temperature were noradrenaline insensitive. In addition, we found that thymus tissue or mitochondrial abundance was not increased after cold-acclimation. However uncoupling protein 1 expression per unit mass of mitochondria was increased after cold-acclimation, as determined by immunoblotting (approximately 1.7-fold) and GDP binding (approximately 1.5-fold). Consistent with our protein expression data, we also observed an increased, state 4 (approximately 1.5-fold), GDP-inhibitable (approximately 1.3-fold) and palmitate activatable (approximately 1.6-fold) oxygen consumption rates in isolated thymus mitochondria. However, extrapolation of our data showed that cold-acclimation only increased the amount of UCP 1 per gram of thymus tissue approximately 1.2-fold. Taken together, we conclude that UCP 1 does not have a thermogenic role in thymus.  相似文献   

9.
10.
To examine the thermogenic significance of the classical uncoupling protein-1 (UCP1), the thermogenic potential of brown adipocytes isolated from UCP1-ablated mice was investigated. Ucp1(-/-) cells had a basal metabolic rate identical to wild-type; the mitochondria within them were coupled to the same degree. The response to norepinephrine in wild-type cells was robust ( approximately 10-fold increase in thermogenesis); Ucp1(-/-) cells only responded approximately 3% of this. Ucp1(-/-) cells were as potent as wild-type in norepinephrine-induced cAMP accumulation and lipolysis and had a similar mitochondrial respiratory complement. In wild-type cells, fatty acids induced a thermogenic response similar to norepinephrine, but fatty acids (and retinoate) were practically without effect in Ucp1(-/-) cells. It is concluded that no other adrenergically induced thermogenic mechanism exists in brown adipocytes except that mediated by UCP1 and that entopic expression of UCP1 does not lead to overt innate uncoupling, and it is suggested that fatty acids are transformed to an intracellular physiological activator of UCP1. High expression of UCP2 and UCP3 in the tissue was not associated with an overt innate highly uncoupled state of mitochondria within the cells, nor with an ability of norepinephrine or endo- or exogenous fatty acids to induce uncoupled respiration in the cells. Thus, UCP1 remains the only physiologically potent thermogenic uncoupling protein in these cells.  相似文献   

11.
Clare M. Brennan 《BBA》2006,1757(11):1463-1468
Mitochondrial uncoupling protein 1 is usually associated with brown adipose tissue but has recently been discovered in rat and mouse thymus. We wished to establish whether there was a thermogenic role for UCP 1 in thymus and thus examined the effect of 5 weeks cold-acclimation on rat thymus tissue abundance, thymocyte oxygen consumption, thymus mitochondrial abundance, uncoupling protein 1 expression and function. We found that thymocytes from cold-acclimated rats had oxygen consumption rates 8 times less than those from rats held at room temperature and that thymocytes from cold-acclimated rats or rats kept at room temperature were noradrenaline insensitive. In addition, we found that thymus tissue or mitochondrial abundance was not increased after cold-acclimation. However uncoupling protein 1 expression per unit mass of mitochondria was increased after cold-acclimation, as determined by immunoblotting (∼ 1.7-fold) and GDP binding (∼ 1.5-fold). Consistent with our protein expression data, we also observed an increased, state 4 (∼ 1.5-fold), GDP-inhibitable (∼ 1.3-fold) and palmitate activatable (∼ 1.6-fold) oxygen consumption rates in isolated thymus mitochondria. However, extrapolation of our data showed that cold-acclimation only increased the amount of UCP 1 per gram of thymus tissue ∼ 1.2-fold. Taken together, we conclude that UCP 1 does not have a thermogenic role in thymus.  相似文献   

12.
The recruitment process induced by acclimation of mammals to cold includes a marked alteration in the acyl composition of the phospholipids of mitochondria from brown adipose tissue: increases in 18:0, 18:2(n-6), and 20:4(n-6) and decreases in 16:0, 16:1, 18:1, and 22:6(n-3). A basic question is whether these alterations are caused by changes in the concentration of uncoupling protein-1 (UCP1) or the thermogenesis it mediates-implying that they are secondary effects-or whether they are an integrated, independent part of the recruitment process. This question was addressed here using wild-type and UCP1-ablated C57BL/6 mice acclimated to 24 degrees C or 4 degrees C. In wild-type mice, the phospholipid fatty acyl composition of mitochondria from brown adipose tissue showed the changes in response to cold that were expected from observations in other species and strains. The changes were specific, as different changes occurred in skeletal muscle mitochondria. In UCP1-ablated mice, cold acclimation induced acyl alterations in brown adipose tissue that were qualitatively identical and quantitatively similar to those in wild-type mice. Therefore, neither the increased content of UCP1 nor mitochondrial uncoupling altered the effect of cold on acyl composition. Cold acclimation in wild-type mice had little effect on phospholipid acyl composition in muscle mitochondria, but cold-acclimation in UCP1-ablated mice caused significant alterations, probably due to sustained shivering. Thus, the alterations in brown adipose tissue phospholipid acyl composition are revealed to be an independent part of the recruitment process, and their functional significance for thermogenesis should be elucidated.  相似文献   

13.
Although the literature contains many studies on the function of UCP3, its role is still being debated. It has been hypothesized that UCP3 may mediate lipid hydroperoxide (LOOH) translocation across the mitochondrial inner membrane (MIM), thus protecting the mitochondrial matrix from this very aggressive molecule. However, no experiments on mitochondria have provided evidence in support of this hypothesis. Here, using mitochondria isolated from UCP3-null mice and their wild-type littermates, we demonstrate the following. (i) In the absence of free fatty acids, proton conductance did not differ between wild-type and UCP3-null mitochondria. Addition of arachidonic acid (AA) to such mitochondria induced an increase in proton conductance, with wild-type mitochondria showing greater enhancement. In wild-type mitochondria, the uncoupling effect of AA was significantly reduced both when the release of O2˙̄ in the matrix was inhibited and when the formation of LOOH was inhibited. In UCP3-null mitochondria, however, the uncoupling effect of AA was independent of the above mechanisms. (ii) In the presence of AA, wild-type mitochondria released significantly more LOOH compared with UCP3-null mitochondria. This difference was abolished both when UCP3 was inhibited by GDP and under a condition in which there was reduced LOOH formation on the matrix side of the MIM. These data demonstrate that UCP3 is involved both in mediating the translocation of LOOH across the MIM and in LOOH-dependent mitochondrial uncoupling.  相似文献   

14.
To delineate the cellular targets and mechanisms by which glucocorticoids (GCs) exert their actions, we generated mice in which a green fluorescent protein (GFP)-GC receptor (GR) fusion gene is knocked into the GR locus. In these mice, the GFP-GR protein, which is functionally indistinguishable from endogenous GR, allows the tracking and quantitation of GR expression in single living cells. In GFP-GR thymus, GR expression is uniform among embryonic thymocyte subpopulations but gradually matures over a 3-wk period after birth. In the adult, GR is specifically induced to high levels in CD25(+)CD4(-)CD8(-) thymocytes and returns to basal levels in CD4(+)CD8(+) thymocytes of wild-type and positively selecting female HY TCR-transgenic mice, but not negatively selecting male HY TCR-transgenic mice. In GFP-GR/recombinase-activating gene 2(-/-) thymocytes, GR expression is down-regulated by pre-TCR complex stimulation. Additionally, relative GR expression is dissociated from GC-induced apoptosis in vivo. Results from these studies define differential GR expression throughout ontogeny, suggest pre-TCR activation as a specific mechanism of GR down-regulation, define immature CD8(+) thymocytes as novel apoptosis-sensitive GC targets, and separate receptor abundance from susceptibility to apoptosis across thymocyte populations.  相似文献   

15.
In this study we show that mitochondrial uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) and thymus mitochondria can be ubiquitinylated and degraded by the cytosolic proteasome. Using a ubiquitin conjugating system, we show that UCP1 can be ubiquitinylated in vitro. We demonstrate that UCP1 is ubiquitinylated in vivo using isolated mitochondria from brown adipose tissue, thymus and whole brown adipocytes. Using an in vitro ubiquitin conjugating-proteasome degradation system, we show that the cytosolic proteasome can degrade UCP1 at a rate commensurate with the half-life of UCP1 (i.e. 30-72h in brown adipocytes and ~3h, in thymocytes). In addition, we demonstrate that the cytoplasmic proteasome is required for UCP1 degradation from mitochondria that the process is inhibited by the proteasome inhibitor MG132 and that dissipation of the mitochondrial membrane potential inhibits degradation of UCP1. There also appears to be a greater amount of ubiquitinylated UCP1 associated with BAT mitochondria from cold-acclimated animals. We have also identified (using immunoprecipitation coupled with mass spectrometry) ubiquitinylated proteins with molecular masses greater than 32kDa, as being UCP1. We conclude that there is a role for ubiquitinylation and the cytosolic proteasome in turnover of mitochondrial UCP1. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

16.
The bioenergetics of brown fat mitochondria isolated from UCP1-ablated mice were investigated. The mitochondria had lost the high GDP-binding capacity normally found in brown fat mitochondria, and they were innately in an energized state, in contrast to wild-type mitochondria. GDP, which led to energization of wild-type mitochondria, was without effect on the brown fat mitochondria from UCP1-ablated mice. The absence of thermogenic function did not result in reintroduction of high ATP synthase activity. Remarkably and unexpectedly, the mitochondria from UCP1-ablated mice were as sensitive to the de-energizing ("uncoupling") effect of free fatty acids as were UCP1-containing mitochondria. Therefore, the de-energizing effect of free fatty acids does not appear to be mediated via UCP1, and free fatty acids would not seem to be the intracellular physiological activator involved in mediation of the thermogenic signal from the adrenergic receptor to UCP1. In the UCP1-ablated mice, Ucp2 mRNA levels in brown adipose tissue were 14-fold higher and Ucp3 mRNA levels were marginally lower than in wild-type. The Ucp2 and Ucp3 mRNA levels were therefore among the highest found in any tissue. These high mRNA levels did not confer on the isolated mitochondria any properties associated with de-energization. Thus, the mere observation of a high level of Ucp2 or Ucp3 mRNA in a tissue cannot be taken as an indication that mitochondria isolated from that tissue will display innate de-energization or thermogenesis.  相似文献   

17.
The phenotypes observed in mice whose uncoupling protein (Ucp2) gene had been invalidated by homologous recombination (Ucp2(-/-) mice) are consistent with an increase in mitochondrial membrane potential in macrophages and pancreatic beta cells. This could support an uncoupling (proton transport) activity of UCP2 in the inner mitochondrial membrane in vivo. We used mitochondria from lung or spleen, the two organs expressing the highest level of UCP2, to compare the proton leak of the mitochondrial inner membrane of wild-type and Ucp2(-/-) mice. No difference was observed under basal conditions. Previous reports have concluded that retinoic acid and superoxide activate proton transport by UCP2. Spleen mitochondria showed a higher sensitivity to retinoic acid than liver mitochondria, but this was not caused by UCP2. In contrast with a previous report, superoxide failed to increase the proton leak rate in kidney mitochondria, where no UCP2 expression was detected, and also in spleen mitochondria, which does not support stimulation of UCP2 uncoupling activity by superoxide. Finally, no increase in the ATP/ADP ratio was observed in spleen or lung of Ucp2(-/-) mice. Therefore, no evidence could be gathered for the uncoupling activity of the UCP2 present in spleen or lung mitochondria. Although this may be explained by difficulties with isolated mitochondria, it may also indicate that UCP2 has another physiological significance in spleen and lung.  相似文献   

18.
T cells developing in the thymus undergo rigorous positive and negative selection to ensure that those exported to peripheral lymphoid organs bear T-cell receptors (TCRs) capable of reacting with foreign antigens but tolerant of self. At each checkpoint, whether a thymocyte survives or dies is determined by antiapoptotic and proapoptotic Bcl-2 family members. We used Mcl-1 transgenic (tg) mice to investigate the impact of elevated expression of antiapoptotic Mcl-1 on thymocyte apoptosis and selection, making a side-by-side comparison with thymocytes from BCL-2tg mice. Mcl-1 was as effective as Bcl-2 at protecting thymocytes against spontaneous cell death, diverse cytotoxic insults and TCR–CD3 stimulation-driven apoptosis. In three different TCR tg models, Mcl-1 markedly enhanced positive selection of thymocytes, as did Bcl-2. In H-Y TCR tg mice, elevated Mcl-1 and Bcl-2 were equally effective at inhibiting deletion of autoreactive thymocytes. However, in the OT-1tg model where deletion is mediated by a peripheral antigen whose expression is regulated by Aire, Mcl-1 was less effective than Bcl-2. Thus, the capacity of Mcl-1 overexpression to inhibit apoptosis triggered by TCR stimulation apparently depends on the thymocyte subset subject to deletion, presumably due to differences in the profiles of proapoptotic Bcl-2 family members mediating the deletion.  相似文献   

19.
Enara Aguirre 《BBA》2010,1797(10):1716-1115
The lipid peroxidation product 4-hydroxynonenal (HNE) increases the proton conductance of the inner mitochondrial membrane through effects on uncoupling proteins (UCPs) and the adenine nucleotide translocase (ANT); however, the relative contribution of the two carriers to these effects is unclear. To clarify this we isolated mitochondria from skeletal muscle and heart of wild-type and Ucp3 knockout (Ucp3KO) mice. To increase UCP3 expression, some mice were i.p. injected with LPS (12 mg/kg body weight). In spite of the increased UCP3 expression levels, basal proton conductance did not change. HNE increased the proton conductance of skeletal muscle and heart mitochondria. In skeletal muscle, this increase was lower in Ucp3KO mice and higher in LPS-treated wild-type mice, and was partially abolished by GDP (UCPs inhibitor) and completely abolished by carboxyatractylate (ANT inhibitor) or addition of both inhibitors. GDP had no effect on HNE-induced conductance in heart mitochondria, but carboxyatractylate or administration of both inhibitors had a partial effect. GDP-mediated inhibition of HNE-activated proton conductance in skeletal muscle mitochondria was not observed in Ucp3KO mice, indicating that GDP is specific for UCP3, at least in muscle. Carboxyatractylate was able to inhibit UCP3, probably through an indirect mechanism. Our results are consistent with the conclusion that, in skeletal muscle, HNE-induced increase in proton conductance is mediated by UCP3 (30%) and ANT, whereas in the heart the increase is mediated by ANT and other carriers, possibly including UCP3.  相似文献   

20.
In this study, we investigated the effects of Ets2 expression on the proliferation, maturation, and survival of thymocytes by establishing transgenic mice that specifically express Ets2 or a dominant negative form of Ets2, Deltaets2, in the thymus. We show that, in young animals, there are fewer T cells in Deltaets2 transgenic thymi and that the maturation of these T cells is affected at the CD4(-)CD8(-) double-negative to CD4(+)CD8(+) double-positive transition compared with wild-type littermate mice. Partial recovery in the number of thymocytes and full T cell maturation are restored with increasing age of Deltaets2 transgenic animals. However, thymocytes from adult Deltaets2 transgenic mice cultured ex vivo are more sensitive to cell death and to glucocorticoid-induced apoptosis than are T cells from control littermate mice. We also show that T cells from adult ets2 transgenic mice proliferate faster than their wild-type littermates. The proliferation and survival of these T cells are clearly affected upon apoptotic signals: glucocorticoid-induced apoptosis induces T cells from ets2 transgenic mice to continue to proliferate in vivo and to survive better ex vivo than T cells from control littermates. It has been shown that c-Myc expression is required for thymic proliferation and improves thymocyte survival of dexamethasone-treated animals. We show that the expression of c-Myc, an Ets2 target, is elevated in T cells freshly isolated from thymi of ets2 transgenic mice pretreated with dexamethasone. Together, these results show that Ets2 plays a role in the proliferation and survival of thymocytes, implicating a Myc-dependent pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号