首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the process of lipoprotein lipolysis, masses of fatty acid are generated at the surface of the lipoprotein. The newly generated fatty acid may at least partly redistribute from the site of lipolysis to phospholipid-rich membranes and to albumin. We have studied the distribution of [1-13C]oleic acid in model systems consisting of chylomicron-like triacylglycerol-rich emulsions, unilamellar phosphatidylcholine vesicles, and bovine serum albumin. By using high resolution 13C NMR spectroscopy it was possible to distinguish fatty acid in each compartment (emulsion, vesicle, albumin) and quantitate the fatty acid distribution under various conditions of lipid compartment concentration and aqueous pH. When emulsions and vesicles were present in equivalent mass amounts, fatty acid exhibited a profound preference for the lipid bilayers. The release of oleic acid to phospholipid bilayers was presumably also a function of its high molar stoichiometry (5:1) with the albumin present. More equitable distributions of fatty acid between vesicles and emulsions were seen when higher concentrations of emulsion were used. The distribution of fatty acid between compartments was in good agreement with predictions made using the apparent ionization constant, expressed as pKapp, of 7.5 and the surface to core (phospholipid to triacylglycerol) distribution coefficient of 7.0, measured for unionized oleic acid in chylomicron particles (Spooner, P. J. R., Bennett Clark, S., Gantz, D. L., Hamilton, J. A., and Small, D. M. (1988) J. Biol. Chem. 263, 1444-1455). These results indicate that the affinities of fatty acid for phospholipid bilayer and chylomicron-like emulsion surfaces are equivalent. Redistribution of lipolytically generated fatty acid from chylomicron surface to cell membrane may simply be driven by the predominant quantity of the cell membrane surfaces.  相似文献   

2.
The ionization behavior of retinoic acid (RA) in an aqueous phase and when bound to bovine serum albumin was studied. Titrations of RA in the various phases were followed by monitoring the red shift in the absorption maximum of RA that occurred upon deprotonation. The apparent pK of RA was dependent on the concentration of this compound. At the concentration range 6-20 microM, the pK of RA in water had a value of approximately 8.0. As the concentration was decreased in the range 1-6 microM, the value of the pK decreased continuously. The lowest pK observed was approximately 6.0. It was concluded that RA in an aqueous phase at concentrations in the microM range, forms micelles, and that the values of the pK of RA monomers and micelles in water are less than 6.0 and 8.0, respectively. The presence of 0.15 M NaCl caused a decrease in the pK of RA micelles and lowered the value of the CMC. Titration of RA in the presence of bovine serum albumin revealed the presence of a heterogeneous population comprised of three distinct microenvironments for RA associated with this protein. Two populations of RA were found to undergo complete titration in the pH range 4-8. A third population became apparent at pH greater than 9.5.  相似文献   

3.
An NMR method was developed for determining binding sites of small molecules on human serum albumin (HSA) by competitive displacement of (13)C-labeled oleic acid. This method is based on the observation that in the crystal structure of HSA complexed with oleic acid, two principal drug-binding sites, Sudlow's sites I (warfarin) and II (ibuprofen), are also occupied by fatty acids. In two-dimensional [(1)H,(13)C]heteronuclear single quantum coherence NMR spectra, seven distinct resonances were observed for the (13)C-methyl-labeled oleic acid as a result of its binding to HSA. Resonances corresponding to the major drug-binding sites were identified through competitive displacement of molecules that bind specifically to each site. Thus, binding of molecules to these sites can be followed by their displacement of oleic acids. Furthermore, the amount of bound ligand at each site can be determined from changes in resonance intensities. For molecules containing fluorine, binding results were further validated by direct observations of the bound ligands using (19)F NMR. Identifying the binding sites for drug molecules on HSA can aid in determining the structure-activity relationship of albumin binding and assist in the design of molecules with altered albumin binding.  相似文献   

4.
The effects of bovine serum albumin on rat pancreatic lipase and bovine milk lipoprotein lipase were studied in a system of triacylglycerol emulsions stabilized by 1 1 mg/ml albumin. At concentrations greater than 1 mg/ml, albumin inhibited the activity of pancreatic lipase and interfered with enzyme binding to emulsified triacylglycerol particles. These effects could be countered by occupying five fatty acid binding sites on albumin with oleic acid. Following an initial lag period which increased with albumin concentrations, enzyme activity escaped from inhibition presumably due to saturation of fatty acid sites on albumin with oleic acid. Pancreatic lipase was active at 1 mg/ml albumin and 1 mM emulsion-bound oleic acid in the system. The effects of albumin on lipoprotein lipase were diametrically opposed to the above; enzyme activity was completely inhibited by 0.1 mM oleic acid, it increased with increasing fatty acid-free albumin concentrations and decreased as the fatty acid sites on albumin were filled. At 1 mM oleic acid and no added albumin the enzyme failed to bind at the oil water interface, whereas fatty acid-free or saturated albumin had no effect on binding. It is concluded that if the inhibition of pancreatic lipase by albumin is due to the inaccessibility of the enzyme to an oil-water interface blocked by denatured albumin, then albumin saturated with oleic acid would seem to be protected from unfolding at the interface and more readily displaced by the lipase. Pancreatic lipase and lipoprotein lipase, although sharing a number of common features, are distinct enzymes both functionally and mechanistically.  相似文献   

5.
Effect of albumin on oleic acid lymphatic absorption in rats   总被引:1,自引:0,他引:1  
1. The aim of this study was to investigate how fatty acid absorption was affected when exogenous fatty acids were complexed with albumin in absence of bile. Experiments were carried out in vivo, in order to study overall absorption processes. 2. An equimolar mixture of 14C oleic acid, palmitic acid and monopalmitin was infused intraduodenally in bile- and pancreatic juice-diverted rats. 3. Lipids were emulsified with either sodium taurocholate or fatty acids complexed with albumin. 4. Lymphatic lipid output was compared during the 6 hr following infusion of 90 mumol of the radioactive lipid mixture. 5. Lymphatic radioactive lipid recovery was significantly decreased by albumin. 6. Only 17% of the infused radioactivity was recovered in lymph when fatty acids were complexed with albumin against 37% when lipids were emulsified with sodium taurocholate. 7. Unrecovered lymph radioactivity was found at the distal part of intestine. Moreover, albumin significantly decreased lymph flow. 8. We conclude that undigested albumin acted at the luminal level of lipid absorption processes and specifically decreased fatty acid uptake.  相似文献   

6.
Bovine serum albumin or fatty-acid-binding protein rapidly lose oleic acid when incubated in the presence of dimyristoyl lecithin liposomes. The phenomenon is dependent on vesicle concentration and no measurable quantities of protein are found associated with liposomes. Upon gel filtration on Sepharose CL-2B of incubated mixtures of microsomes containing [1-14C] oleic acid and albumin or fatty-acid-binding protein, association of fatty acid with the soluble proteins could be demonstrated. Both albumin and fatty-acid-binding protein stimulated the transfer of oleic acid from rat liver microsomes to egg lecithin liposomes. These results indicate that albumin is more effective in the binding of oleic acid than fatty-acid-binding protein, which allows a selective oleic acid dissociation during its interaction with membranes.  相似文献   

7.
The binding of oleic acid to human serum albumin causes progressive changes in (a) the pK of some amino acid residues, as detected by pH-stat titration and (b) the induced molar ellipticities of albumin-bound drugs (diazepam and oxyphenbutazone), as measured by c.d. It is concluded that albumin undergoes several conformational transitions as the amount of oleic acid bound increases from 0 to about 9 molecules/molecule of protein. At least three different conformations of the protein seem to be involved. These conformations can be linked with the three classes of oleic acid-binding sites on albumin.  相似文献   

8.
By a combination of polyanion precipitation and ultracentrifugation, chylomicrons, very low density, low density, and high density lipoproteins have been isolated from human serum as discrete classes free from contamination with any other major class of lipoprotein or protein. After removal of the lipid, the proteins from each class were hydrolyzed and their amino acid compositions were determined by use of the amino acid analyzer. Application of the "t" test to the concentrations of amino acid residues showed that the amino acid composition of the proteins from each of these lipoprotein classes differs significantly from class to class. However, when the logarithms of the moles of amino acid residues are plotted, there are similarities in the amino acid "profiles" between the chylomicrons and high density lipoproteins on the one hand, and between the very low density and low density lipoproteins on the other. The differences in amino acid composition between the lipoproteins suggest that any metabolic interconversions between them probably do not occur by simple lipolysis.  相似文献   

9.
10.
11.
The absorption of sulphobromophthalein changes upon addition of bovine serum albumin or fatty-acid-binding protein at pH 8.4. The sulphobromophthalein spectrum is changed most drastically after the addition of albumin than in the presence of fatty-acid-binding protein isolated from rat liver, suggesting as a first approximation that binding capacity of albumin is much higher than that of fatty-acid-binding protein. When both soluble proteins are saturated with oleic acid it is observed a decrease in the binding of sulphobromophthalein which suggests that the presence of fatty acids in those soluble proteins may affect the binding of other ligands.  相似文献   

12.
13.
The glass-like transition behavior of concentrated aqueous solutions of bovine serum albumin was examined using rheological techniques. At mass fractions >0.4, there was a marked concentration dependence of viscosity with a glass-like kinetic arrest observed at mass fractions in the region of 0.55. At mass fractions >0.6 the material behaved as a solid with a Young's modulus rising from approximately 20 MPa at a mass fraction of 0.62-1.1 GPa at 0.86. The solid was viscoelastic and exhibited stress relaxation with relaxation times increasing from 33 to 610 s over the same concentration range. The concentration dependence of the osmotic pressure was measured, at intermediate concentrations, using an osmotic stress technique and could be described using a hard sphere model, indicating that the intermolecular interactions were predominantly repulsive. In summary, a major structural relaxation results from the collective motion of the globules at the supra-globule length scale and, at 20 degrees C, this is arrested at water contents of 40% w/w. This appears to be analogous to the glass transition in colloidal hard spheres.  相似文献   

14.
The aim of this investigation was to elucidate the distribution and reactions of the enantiomers of thalidomide at their main site of biotransformation in vivo, i.e., in human blood. Plasma protein binding, erythrocyte: plasma distribution, and the kinetics of chiral inversion and degradation in buffer, plasma, and solutions of human serum albumin (HSA) were studied by means of a stereospecific HPLC assay. The enantiomers of thalidomide were not extensively bound to blood or plasma components. The geometric mean plasma protein binding was 55% and 66%, respectively, for (+)-(R)- and (−)-(S)-thalidomide. The corresponding geometric mean blood:plasma concentration ratios were 0.86 and 0.95 (at a haematocrit of 0.37) and erythrocyte:plasma distributions were 0.58 and 0.87. The rates of inversion and hydrolysis of the enantiomers increased with pH over the range 7.0–7.5. HSA, and to a lesser extent human plasma, catalysed the chiral inversion, but not the degradation, of (+)-(R)- and (−)-(S)-thalidomide. The addition of capric acid or preincubation of HSA with acetylsalicylic acid or physostigmine impaired the catalysis to varying extents. Correction for distribution in blood enhances previously observed differences between the pharmacokinetics of the enantiomers in vivo. The findings also support the notion that chiral inversion in vivo takes place mainly in the circulation and in albumin-rich extravascular spaces while hydrolysis occurs more uniformly in the body. In addition, the chiral inversion and hydrolysis of thalidomide apparently occur by several different mechanisms. Chirality 10:223228, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
16.
17.
18.
A method for studying the distribution of a high molecular weight solute (serum albumin) between physiological saline and human articular cartilage is described. Samples of normal and fibrillated articular cartilage from both femoral condyles and femoral heads have been studied. Limited studies have also been performed where the glycosaminoglycan content of normal cartilage has been reduced by chemical or enzymatic methods. With naturally occuring cartilage large a wide range of partition coefficients (0.3 to less than 0.002) was obtained. The partition coefficients are very dependent upon proteoglycan concentration, with the partitiion coefficient decreasing with increasing fixed charge density. An attempt is made to interpret the observed partitioning in terms of the steric exclusion by the proteoglycans.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号