首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The expression and localization of fibronectin receptor (integrin), fibronectin, laminin and collagen type IV in the endometrium of the rat uterus during each period of the estrous cycle were investigated by immunofluorescent microscopy. Fibronectin receptor was observed at the epithelial cells of the endometrium and at vascular endothelial cells. At proestrus, when epithelial cells actively migrate, fibronectin receptor was observed at the basal and lateral epithelial cell surfaces. During estrus, fibronectin receptor had begun to disappear, little fibronectin receptor was observed at metestrus or diestrus. No prominent changes in the localization of fibronectin (seen at the vascular endothelial cells and in the stroma) or of laminin and collagen type IV (seen at the muscles and at the basement membranes of the epithelial and vascular endothelial cells) were observed in relation to the estrous cycle. Thus, uterine epithelial cells, like epithelial cells of the healing cornea, increase their expression of fibronectin receptor during active migration, probably facilitating their attachment to stromal fibronectin. This fibronectin-fibronectin receptor mechanism may underlie epithelial repair, whether the defect results from physiological processes or from an insult.  相似文献   

2.
The production and localization of laminin, as a function of cell density (sparse versus confluent cultures) and growth stage (actively growing versus resting cultures), has been compared on the cell surfaces of cultured vascular and corneal endothelial cells. Comparison of the abilities of the two types of cells to secrete laminin and fibronectin into their incubation medium reveals that vascular endothelial cells can secrete 20-fold as much laminin as can corneal endothelial cells. In contrast, both cell types produce comparable amounts of fibronectin. Furthermore, if one compares the secretion of laminin and fibronectin as a function of cell growth, it appears that the laminin released into the medium by either vascular or corneal endothelial cells, is a function of cell density and cell growth, since this release is most pronounced when the cells are sparse and actively growing, and decreases by 10- and 30-fold, respectively, when either vascular or corneal endothelial cell cultures become confluent. With regard to fibronectin secretion, no such variation can be seen with vascular endothelial cell cultures, regardless of whether they are sparse and actively growing or confluent and resting. Corneal endothelial cell cultures, demonstrated a twofold increase in fibronectin production when they were confluent and resting as compared to when they were sparse and actively growing. When the distribution of laminin versus fibronectin within the apical and basal cell surfaces of cultured corneal and vascular endothelial cells is compared, one can observe that unlike fibronectin, which in sparse and subconfluent cultures can be seen to be associated with both the apical cell surface. In confluent cultures, laminin can be found associated primarily with the extracellular matrix beneath the cell monolayer, where it codistributes with type IV collagen.  相似文献   

3.
Formation of extracellular matrix structures in cultures of rat liver epithelial nontransformed cell line IAR2 was studied with antisera to fibronectin, laminin and type IV collagen by immunofluorescence and immunoelectron microscopy of platinum replicas. Fibronectin formed peripheral spots of variable size some of which outlined free cell edges, as well as fibrils located towards the center of single cells or of cellular islands. Similarly distributed structures were seen in isolated matrices. Codistribution of fibronectin and actin was observed only for the peripheral line of fibronectin spots and marginal circular actin bundle. Basement membrane components. laminin and type IV collagen, formed mainly spots of variable size predominantly beneath the cell or each cell in an island. Occasional fibrils were seen also. Essentially the same results were obtained by immunofluorescence and immunogold electron microscopy. Cytochalasin D treated cells displayed spots of both fibronectin and laminin. The relevance of previously postulated receptor-mediated assembly of extracellular matrix structures to the epithelial cells is discussed.  相似文献   

4.
Previous studies have indicated the importance of basement membrane components both for cellular differentiation in general and for the barrier properties of cerebral microvascular endothelial cells in particular. Therefore, we have examined the expression of basement membrane proteins in primary capillary endothelial cell cultures from adult porcine brain. By indirect immunofluorescence, we could detect type IV collagen, fibronectin, and laminin both in vivo (basal lamina of cerebral capillaries) and in vitro (primary culture of cerebral capillary endothelial cells). In culture, these proteins were secreted at the subcellular matrix. Moreover, the interaction between basement membrane constituents and cerebral capillary endothelial cells was studied in adhesion assays. Type IV collagen, fibronectin, and laminin proved to be good adhesive substrata for these cells. Although the number of adherent cells did not differ significantly between the individual proteins, spreading on fibronectin was more pronounced than on type IV collagen or laminin. Our results suggest that type IV collagen, fibronectin, and laminin are not only major components of the cerebral microvascular basal lamina, but also assemble into a protein network, which resembles basement membrane, in cerebral capillary endothelial cell cultures.  相似文献   

5.
We examined the synthesis of extracellular matrix macromolecules by the differentiated rat thyroid epithelial cell line FRTL-5. As shown by electron microscopy, the extracellular material produced by these cells is deposited at the basolateral surface and focally organized in the form of a basement membrane. Biochemical and biosynthetic studies demonstrated that laminin, type IV collagen, and fibronectin are synthesized and deposited in the culture monolayer. Secretion of fibronectin into the culture medium also occurred. By immunofluorescence we observed some peculiarities in the distribution patterns of the basement membrane glycoproteins; while fibronectin and laminin had an almost superimposable distribution, type IV collagen displayed a rather different pattern. Type IV collagen and laminin localization at sites where extracellular material was detected was confirmed by immuno electronmicroscopy using the protein A-colloidal gold technique. The results indicate that under appropriate culture conditions the differentiated thyroid epithelial cell line FRTL-5 synthesizes, secretes and organizes an extracellular matrix where some basement membrane glycoproteins are present.  相似文献   

6.
We studied expression of laminin, fibronectin, and Type IV collagen in the testis by means of immunofluorescence and immunoblot analysis and also examined gene expression of fibronectin using the ribonuclease protection assay. By immunofluorescence on sections from 20-day-old rats, laminin, fibronectin, and Type IV collagen were found in the basement membrane of the seminiferous tubules and in the interstitial regions of the testis. No localization of any extracellular matrix components was found inside the sectioned cells. However, when Sertoli cells were cultured on glass coverslips, laminin and Type IV collagen were both found inside the cells, suggesting new synthesis. In cultured peritubular cells, Type IV collagen, laminin, and fibronectin were found within the cells. When examined by immunoblot analysis, freshly isolated Sertoli and peritubular cells from 20-day-old rats did not demonstrate production of laminin or fibronectin. After 5 days in culture, peritubular cells produced both laminin and fibronectin, whereas cultured Sertoli cells produced only laminin. In contrast, freshly isolated and cultured Sertoli and peritubular cells all produced Type IV collagen. Moreover, the ribonuclease protection assay indicated that the bulk of fibronectin gene expression occurs within the first 10 days of postnatal development, with lower maintenance levels occurring thereafter. These results indicate that in the testis the highest levels of expression of laminin and fibronectin occur during development and in primary cell culture, whereas expression of Type IV collagen is higher at later stages.  相似文献   

7.
Summary The immunohistochemical localization of heparan sulphate, collagen type I, III and IV, laminin, tenascin, plasma- and cellular fibronectin was studied in tooth germs from human fetuses. The lamina basalis ameloblastica or membrana preformativa, which separates the pre-ameloblasts from the pre-dentin and dentin, contained heparan sulphate, collagen type IV, laminin and fibronectin. Enamel reacted with antifibronectin, but the reaction varied depending on the type of fibronectin and the source of antibody. In early pre-dentin, collagen type I, laminin, tenascin and fibronectin were present. In late pre-dentin and dentin collagen type I was found in intertubular dentin and in the zone between enamel and dentin. The close relationship between collagen type I in dentin and fibronectin in immature enamel is interesting, as it may contribute to the stabilization of the amelodentinal interface. In dental pulp, collagen type IV and laminin were found in the endothelial basement membranes. Collagen type I and III, tenascin and fibronectin were localized to the mesenchymal intercellular matrix.The results of this study have supported the assumption that the lamina basalis ameloblastica is a basement membrane, and have lead to the suggestion that ameloblasts are producers of fibronectin or a fibronectin-like substance.  相似文献   

8.
Abstract: The influence of basement membrane proteins on cellular barrier properties of primary cultures of porcine brain capillary endothelial cells grown on permeable filter inserts has been investigated. Measurements of transcellular electrical resistance (TER) by impedance spectroscopy were performed with cells cultured on type IV collagen, fibronectin, laminin, and one-to-one mixtures of these proteins. Moreover, a one-to-one combination of type IV collagen and SPARC (secreted protein acidic and rich in cysteine) has been studied. Rat tail collagen has been used as a reference substratum. If TERs of cells from a given preparation were low (∼350 Ω× cm2) on the reference substratum, type IV collagen, fibronectin, and laminin as well as one-to-one combinations of these proteins elevated transcellular resistances significantly (2.3- to 2.9-fold) compared with rat tail collagen. TER of cells exhibiting a high reference level (∼1,000 Ω× cm2) could, by contrast, be increased only 1.1- to 1.2-fold. The type IV collagen/SPARC mixture did not elevate TER. Our findings suggest that type IV collagen, fibronectin, and laminin are involved in tight junction formation between cerebral capillary endothelial cells. The differential effects observed for individual preparations probably reflect more or less dedifferentiated states of the endothelium, in which basement membrane proteins can influence cellular differentiation more or less strongly. However, our results indicate that type IV collagen, fibronectin, and laminin enhance the reliability and suitability of primary microvascular endothelial cell cultures as an in vitro model of the blood-brain barrier.  相似文献   

9.
The distribution of certain basement membrane (BM) components including type IV collagen, laminin, BM proteoglycan, and fibronectin was studied in developing mouse molar teeth, using antibodies or antisera specific for these substances in indirect immunofluorescence. At the onset of cuspal morphogenesis, type IV collagen, laminin, and BM proteoglycan were found to be present throughout the basement membranes of the tooth. Fibronectin was abundant under the inner enamel epithelium at the region of differentiating odontoblasts and also in the mesenchymal tissues. After the first layer of predentin had been secreted by the odontoblasts at the epithelial-mesenchymal interface, laminin remained in close association with the epithelial cells whereas type IV collagen, BM proteoglycan, and fibronectin were distributed uniformly throughout this area. Later when dentin had been produced and the epithelial cells had differentiated into ameloblasts, basement membrane components disappeared from the cuspal area. These matrix components were not detected in dentin while BM proteoglycan and fibronectin were present in predentin. The observed changes in the collagenous and noncollagenous glycoproteins and the proteoglycan appear to be closely associated with cell differentiation and matrix secretion in the developing tooth.  相似文献   

10.
Specific antibodies to laminin, type IV collagen, basement-membrane proteoglycan, and fibronectin have been used in immunofluorescence microscopy to study the development of basement membranes of the embryonic kidney. Kidney tubules are known to form from the nephrogenic mesenchyme as a result of an inductive tissue interaction. This involves a change in the composition of the extracellular matrix. The undifferentiated mesenchyme expresses in the composition of the extracellular matrix. The undifferentiated mesenchyme expresses fibronectin but no detectable laminin, type IV collagen, or basement-membrane proteoglycan. During the inductive interaction, basement-membrane specific components (laminin, type IV collagen, basement membrane proteoglycan) become detectable in the induced area, whereas fibronectin is lost. While the differentiation to epithelial cells of the kidney requires an inductive interaction, the development of the vasculature seems to involve an ingrowth of cells which throughout development deposits basement-membrane specific components, as well as fibronectin. These cells form the endothelium and possibly also the mesangium of the glomerulus, and contribute to the formation of the glomerular basement membrane. An analysis of differentiation of the kidney mesenchyme in vitro in the absence of circulation supports these conclusions. Because a continuity with vasculature is required for glomerular endothelial cell differentiation, it is possible that these cells are derived from outside vasculature.  相似文献   

11.
The distribution of basement membrane glycoproteins (type IV collagen, laminin, fibronectin, and proteoglycans) was studied in foetal rat kidney by immunohistochemical techniques using polyclonal antibodies. From the first stages of nephron differentiation, all these glycoproteins were detectable by immunofluorescence in the tubular and glomerular basement membranes and in the mesangial matrix. As differentiation proceeded, labelling of glycoproteins progressively intensified, except for that of fibronectin, which gradually decreased in the glomerular basement membrane (GBM) and was barely observable at full differentiation. With immunoperoxidase staining in electron microscopy, all glycoproteins were seen to be widely dispersed in the spaces between the epithelial and endothelial glomerular cells so long as the GBM remained a loose structure. However, after it became a compact, 3-layered formation, type IV collagen and laminin were distributed throughout the GBM, whereas proteoglycans and anionic sites appeared as 2 rows of granules confined to the laminae rarae.  相似文献   

12.
To define the role of the extracellular matrix (ECM) in hepatogenesis, we examined the temporal and spatial deposition of fibronectin, laminin and collagen types I and IV in 12.5-21.5 day fetal and 1, 7 and 14 day postnatal rat livers. In early fetal liver, discontinuous deposits of the four ECM components studied were present in the perisinusoidal space, with laminin being the most prevalent. All basement membrane zones contained collagen type IV and laminin, including those of the capsule (mesothelial), portal vein radicles and bile ductules. Fibronectin had a distribution similar to that of collagen type IV early in gestation. However, at later gestational dates, fibronectin distribution in the portal triads approached that of collagen type I, being present in the interstitial connective tissues; whereas, collagen type IV and laminin were restricted to vascular and biliary basement membrane zones in those regions. The cytoplasm of some sinusoidal lining cells and hepatocytes reacted with antibodies to extracellular matrix components. By electron microscopy the immunoreactive material was localized in the endoplasmic reticulum, indicating the ability of these cells to synthesize these ECM proteins. Biliary ductular cells had prominent intracytoplasmic staining for laminin and collagen type IV from day 19.5 gestation until 7 days of postnatal life, but lacked demonstrable fibronectin or collagen type I. These results demonstrate that by 12.5 days of gestation the rat liver anlage has deposited a complex extracellular matrix in the perisinusoidal space. The prevalence of laminin in the developing hepatic lobules suggests a possible role for this glycoprotein in hepatic morphogenesis. In view of the intimate association of the hepatic lobular extracellular matrix with the developing vasculature, we hypothesize that laminin provides a scaffold of the developing liver, but once the ontogenesis is complete, intrahepatic perisinusoidal laminin expression is suppressed.  相似文献   

13.
A number of cytokines and growth factors are known to modulate proliferation and differentiation of human endometrium. In this study, the expression of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and VEGF receptors, fms-like tyrosine kinase (Flt1) and kinase insert domain-containing region (KDR), and bFGF receptor 1 (Flg) were examined in the endometrium of rhesus monkey on Day 5, 10, 16, 20, 25 of menstrual cycle and on Day 19 of early pregnancy. Western blot analysis showed the specificity of the anti-human antibodies with the monkey tissue. The expression of mRNA and protein of VEGF was correlated with that of its receptor KDR, which was detected in epithelial, vascular, and myometrial cells. The localization of bFGF and its receptor Flg was similar to that of VEGF, except that the Flg was absent in the endothelial cells. Strong expression of VEGF and bFGF in the glandular epithelial cells was observed in the proliferative phase, declined in the secretory phase during the cycle. Stronger staining of these factors was also observed in the decidual cells of the pregnant uterus, as compared with the stromal cells of cycling uterus. No expression of Flt1 was detected in the tissue examined in this study. These data suggest that VEGF, bFGF, and their receptors play important roles in epithelial and stromal development, angiogenesis, and blood vessel function in the endometrium during the menstrual cycle and early pregnancy of the rhesus monkey.  相似文献   

14.
Vascularization and the influence of growth hormone on this process were studied during endochondral bone differentiation. Vascular invasion was monitored by immunofluorescent localization of two vascular basement membrane proteins, type IV collagen and laminin, a recently described glycoprotein. In addition, endothelial cell invasion was identified by localization of Factor VIII. New bone formation was induced by subcutaneous implantation of a coarse powder of demineralized rat bone matrix. On days 1 through 9, no vascular elements were detected in the plaque. Mesenchymal cells appeared on day 3, proliferated, and differentiated into cartilage on day 7, while the capillaries proliferated at the periphery of the plaque. Beginning on day 9 with capillary incursion into the center of the plaque, type IV collagen, laminin, and Factor VIII were localized in the invading vascular endothelial cells. Type IV collagen and laminin appeared synchronously in the capillary basement membranes and later in the endothelial lining of cavernous sinusoids. Their distribution pattern was identical. The vascular invasion was prominent by day 14. In hypophysectomized rats, cartilage differentiated normally but vascularization was delayed and reduced. Bone formation was scanty as indicated by 45Ca incorporation. Administration of bovine growth hormone to hypophysectomized recipients restored vascularization and bone formation to the level observed in controls.  相似文献   

15.
Changes in epithelial substrate have been related to the cellular capacity for proliferation and to changes in cellular behavior. The effect of TGF beta 1 on the expression of the basement membrane genes, fibronectin, laminin B1, and collagen alpha 1 (IV), was examined. Northern analysis revealed that treatment of normal human epidermal keratinocytes with 100 pM TGF beta 1 increased the expression of each extracellular matrix (ECM) gene within 4 h of treatment. Maximal induction was reached within 24 h after treatment. The induction of ECM mRNA expression was dose dependent and was observed at doses as low as 1-3 pM TGF beta 1. Incremental doses of TGF beta 1 also increased cellular levels of fibronectin protein in undifferentiated keratinocytes and resulted in increased secretion of fibronectin. Squamous-differentiated cultures of keratinocytes expressed lower levels of the extracellular matrix RNAs than did undifferentiated cells. Treatment of these differentiated cells with TGF beta 1 induced the expression of fibronectin mRNA to levels seen in TGF beta-treated, undifferentiated keratinocytes but only marginally increased the expression of collagen alpha 1 (IV) and laminin B1 mRNA. The increased fibronectin mRNA expression in the differentiated keratinocytes was also reflected by increased accumulation of cellular and secreted fibronectin protein. The inclusion of cycloheximide in the protocol indicated that TGF beta induction of collagen alpha 1 (IV) mRNA was signaled by proteins already present in the cells but that TGF beta required the synthesis of a protein(s) to fully induce expression of fibronectin and laminin B1 mRNA. The differential regulation of these genes in differentiated cells may be important to TGF beta action in regulating reepithelialization.  相似文献   

16.
The connective tissue of the rat lung: electron immunohistochemical studies   总被引:6,自引:0,他引:6  
The ultrastructural distribution of specific connective-tissue components in the normal rat lung was studied by electron immunohistochemistry. Three of these components were localized: type I collagen, fibronectin and laminin. Type I collagen was present not only in major airways and vascular structures, but also in alveolar septa. Laminin was found in all basement membranes, and only in basement membranes, demonstrating once more that this glycoprotein is an intrinsic component of the basement membrane. Fibronectin was found free in the interstitium and on the surfaces of collagen fibers. The basement membranes of bronchial, glandular and endothelial cells of large vessels lacked fibronectin; however, capillary endothelial and occasionally epithelial alveolar basement membranes contained some fibronectin in an irregular, spotty distribution. This localization suggests that in the lung, as in other tissues, fibronectin is not an intrinsic component of the basement membrane, but rather a stromal and plasma protein. Only basement membranes in the alveolar parenchyma contained "trapped" plasma fibronectin.  相似文献   

17.
Polypeptides of bovine aortic, pulmonary artery, and pulmonary microvascular endothelial cells, as well as vascular smooth muscle cells and retinal pericytes were evaluated by two-dimensional gel electrophoresis. The principal cytoskeletal proteins in all of these cell types were actin, vimentin, tropomyosin, and tubulin. Cultured pulmonary microvascular endothelial cells also expressed 12 unique polypeptides including a 41 kd acidic type I and two isoforms of a 52 kd basic type II simple epithelial cytokeratin microvascular endothelial cell expression of the simple epithelial cytokeratins was maintained in cultured in the presence or absence of retinal-derived growth factor, and regardless of whether cells were cultured on gelatin, fibronectin, collagen I, collagen IV, laminin, basement membrane proteins, or plastic. Cytokeratin expression was maintained through at least 50 population doublings in culture. The expression of cytokeratins was found to be regulated by cell density. Pulmonary microvascular endothelial cells seeded at 2.5 X 10(5) cell/cm2 (confluent seeding) expressed 3.5 times more cytokeratins than cells seeded at 1.25 X 10(4) cells/cm2 (sparse seeding). Vimentin expression was not altered by cell density. By indirect immunofluorescence microscopy it was determined that the cytokeratins were distributed cytoplasmically at subconfluent cell densities but that cytokeratin 19 sometimes localized at regions of cell-cell contact after cells reached confluence. Vimentin had a cytoplasmic distribution regardless of cell density. These results suggest that pulmonary microvascular endothelial cell have a distinctive cytoskeleton that may provide them with functionally unique properties when compared with endothelial cells derived from the macrovasculature. In conjunction with conventional endothelial cell markers, the presence of simple epithelial cytokeratins may be an important biochemical criterion for identifying pulmonary microvascular endothelial cells.  相似文献   

18.
Vascular basement membrane contains laminin, fibronectin, proteoglycan and collagens. These molecules have been identified in various tissues by immunolabeling methods and biochemical analyses. We have previously localized laminin, fibronectin and type IV collagen to the basement membrane of rat retinal vessels at the ultrastructural level using an immunoperoxidase method. In this study, we use an immunogold method to re-examine the distribution of these molecules and also to study the localization of heparan sulfate proteoglycan and types I, III and V collagen in the retinal capillary basement membrane. Gold labeling for laminin, type IV collagen and proteoglycan were found diffusely on the basement membrane of the endothelium and pericyte, while that for fibronectin and type V collagen was spotty and variable and that for types I and III collagen was negligible. The segment of basement membrane between the endothelial cell and pericyte appeared less reactive to anti-laminin and anti-type IV collagen than the membrane between the pericyte and perivascular neuroretina. The immunogold method may be useful in quantitative studies of thickened basement membranes under abnormal conditions.  相似文献   

19.
20.
The distribution of laminin, type IV collagen, heparan sulfate proteoglycan, and fibronectin was investigated in the rat testicular lamina propria by electron microscopic immunocytochemistry. Distinct patterns were observed for each antigen within the extracellular matrix (ECM) layers of the lamina propria. Laminin, type IV collagen, and heparan sulfate proteoglycan all localized to the seminiferous tubule basement membrane. Type IV collagen and heparan sulfate proteoglycan, but not laminin, localized to the seminiferous tubule side of the peritubular myoid cells. All four of the antigens were localized between the peritubular and lymphatic endothelial cells. Failure to localize fibronectin in the ECM layer between the Sertoli and peritubular myoid cells tends to support the concept that adult Sertoli cells do not produce this protein in vivo. Intracellular immunostaining was insufficient to allow unambiguous identification of the cellular source of any of the ECM molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号