首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary In the terminal ganglion of the cricket, Acheta domesticus, the somata of certain interneurones and efferent neurones consistently react to 5-HT immunohistochemistry. There are serially homologous pairs of bilateral interneurones seen in the neuromeres of the 7th to the 10th segment and hindgut neurones with their somata located at the posterior median end of the ganglion. In adult crickets, pairs of large efferent neurones with lateral somata supply specific genital muscles in the 8th and the 9th segment of females. In males, only one pair of these efferent neurones supplies genital muscles of the 9th segment only. These identified 5-HT-immunoreactive neurones are not detected in larval crickets before development of the genital apparatus.  相似文献   

2.
Summary The serotonergic innervation of the genital chamber of the female cricket, Acheta domestica, has been investigated applying anti-serotonin (5-HT) immunocyto-chemistry at both light- and electron-microscopic levels as well as using conventional electron microscopy. Whole mount and pre-embedding chopper techniques of immuno-cytochemistry reveal a dense 5-HT-immunoreactive network of varicose fibers in the musculature of the genital chamber. All of these immunoreactive fibers originate from the efferent serotonergic neuron projecting through the nerve 8v to the genital chamber (Hustert and Topel 1986; Elekes et al. 1987). At the electron-microscopic level, 5-HT-immunoreactive nerve terminals, which contain small (50–60 nm) and large ( 100 nm) agranular vesicles as well as granular vesicles (100nm), contact the muscle fibers or the sarcoplasmic processes without establishing specialized neuromuscular connections. In addition to the 5-HT-immunoreactive axons, two types of immunonegative axons can also be found in the musculature. By use of conventional electron microscopy, three ultrastructurally distinct types of axon processes can be observed, one of which resembles 5-HT-immunoreactive axons. While the majority of the varicosities do not synapse on the muscle fibers, terminals containing small (50–60 nm) agranular vesicles occasionally form specialized neuromuscular contacts. It is suggested that the 5-HTergic innervation plays a non-synaptic modulatory role in the regulation circular musculature in the genital chamber of the cricket, while the musculature as a whole may be influenced by both synaptic and modulatory mechanisms.Fellow of the Alexander von Humboldt-Stiftung  相似文献   

3.
Summary Serotonin-immunoreactivity is mapped in wholemounts and slices of the suboesophageal ganglion (SOG) of larval Manduca sexta by means of immunocytochemistry. An extensive meshwork of serotonin-immunoreactive nerve fibres on some peripheral nerves of the SOG has been demonstrated. This meshwork appears to belong to a serotonergic neurohemal system, probably supplied by two pairs of bilateral serotonin-immunoreactive neurons with big cell bodies on the dorsal side near the midline in the mandibular neuromere. Intracellular recording and staining revealed their physiology and morphology. These neurons produce long lasting (50 msec) action potentials, which suggest that they are neurosecretory cells. Two pairs of bilateral serotonin-immunoreactive interneurons similar to those of other insects are stained in the labial and maxillar neuromeres, but not in the mandibular neuromere. Their ventrolaterally located cell bodies project through a ventral commissure into the contralateral hemiganglion and then cross back again through a dorsal commissure. The axons project into the contralateral circumoesophageal connective.  相似文献   

4.
Summary Serotonin-immunoreactive neurons in the median protocerebrum and suboesophageal ganglion of the sphinx moth Manduca sexta were individually reconstructed. Serotonin immunoreactivity was detected in 19–20 bilaterally symmetrical pairs of interneurons in the midbrain and 10 pairs in the suboesophageal ganglion. These neurons were also immunoreactive with antisera against DOPA decarboxylase. All major neuropil regions except the protocerebral bridge are innervated by these neurons. In addition, efferent cells are serotonin-immunoreactive in the frontal ganglion (5 neurons) and the suboesophageal ganglion (2 pairs of neurons). The latter cells probably give rise to an extensive network of immunoreactive terminals on the surface of the suboesophageal ganglion and suboesophageal nerves. Most of the serotonin-immunoreactive neurons show a gradient in the intensity of immunoreactive staining, suggesting low levels of serotonin in cell bodies and dendritic arbors and highest concentrations in axonal terminals. Serotonin-immunoreactive cells often occur in pairs with similar morphological features. With one exception, all serotonin-immunoreactive neurons have bilateral projections with at least some arborizations in identical neuropil areas in both hemispheres. The morphology of several neurons suggests that they are part of neuronal feedback circuits. The similarity in the arborization patterns of serotonin-immunoreactive neurons raises the possibility that their outgrowing neurites experienced similar forces during embryonic development. The morphological similarities further suggest that serotonin-immunoreactive interneurons in the midbrain and suboesophageal ganglion share physiological characteristics.Abbreviations CNS central nervous system - DDC DOPA decarboxylase - LAL lateral accessory lobe - SLI serotonin-like immunoreactivity - SOG suboesophageal ganglion - VLP ventro-lateral protocerebrum  相似文献   

5.
Summary Neurons with proctolin-like immunoreactivity were mapped in the terminal ganglion of Periplaneta americana. The effect of different fixation methods on the variability of immunostaining is described and discussed. The appearance of immunoreactive presynaptic terminals, described here for the first time in insects, points to a function of proctolin as neurotransmitter or neuromodulator in the central nervous system of P. americana besides its known role in the periphery. Proctolin-like immunoreactivity was shown in pre- and postsynaptic profiles. Synaptic contacts are described in detail.Supported by the Ministerium für Wissenschaft und Technik der DDR and by Sächsische Akademie der Wissenschaften zu Leipzig.The authors are indebted for excellent technical assistance to Mrs. Angelika Schmidt and Mr. Bernd Mäusezahl.  相似文献   

6.
An immunogold-labelling electron-microscopic study of the frontal ganglion of two noctuids, Lacanobia oleracea and Helicoverpa armigera, has been carried out with antisera directed against three neuropeptides; allatostatins of the Y/FXFGL-NH2 type, Manduca sexta allatostatin (Mas-AS) and M. sexta allatotropin. The ganglion of both noctuids has two pairs of large peptidergic neurones with many clusters of electron-dense granules, one pair being situated anteriorly and the other posteriorly. By means of a double-labelling (flip-flop) technique, with different sizes of gold particles, all possible paired combinations of the three different types of peptide have been visualised within granules of the anterior neurones, leading to the conclusion that the three peptides are co-packaged and co-stored in these cells. Within the posterior neurones of L. oleracea, gold labelling of granules is only linked to the Y/FXFGL-NH2 allatostatin antisera and, in contrast to the anterior cells of this species in which double gold labelling results in a sparse accumulation of gold particles for any one peptide type, single labelling gives a more intense, uniform pattern of gold particles. In contrast to L. oleracea, the gold-labelling pattern seen in the posterior neurones of H. armigera reflects the co-localisation of allatostatins of the Y/FXFGL-NH2 type with Mas-AS in this species. Allatotropin is absent in the posterior neurones of both species.Grant funding was from the Wellcome Trust: grant no. 068105 (A.T.)  相似文献   

7.
Summary Ventral thoracic neurosecretory cells (VTNCs) of the blowflies, Calliphora erythrocephala and C. vomitoria, innervating thoracic neuropil and the dorsal neural sheath of the thoracico-abdominal ganglion have been shown to be immunoreactive to a variety of mammalian peptide antisera. In the neural sheath the VTNC terminals form an extensive neurohaemal network that is especially dense over the abdominal ganglia. The same areas are invaded by separate, ut overlapping serotonin-immunoreactive (5-HT-IR) projections derived from neuronal cell bodies in the suboesophageal ganglion. Immunocytochemical studies with different antisera, applied to adjacent sections at the lightmicroscopic level, combined with extensive cross-absorption tests, suggest that the perikarya of the VTNCs contain co-localized peptides related to gastrin/cholecystokinin (CCK), bovine pancreatic polypeptide (PP), Met- and Leuenkephalin and Met-enk-Arg6-Phe7 (Met-enk-RF). Electron-microscopic immunogold-labeling shows that some of the terminals in the dorsal sheath react with several of the individual peptide antisera, whilst others with similar cytology are non-immunoreactive. In the same region, separate terminals with different cytological characteristics contain 5-HT-IR. Both 5-HT-IR and peptidergic terminals are localized outside the cellular perineurium beneath the acellular permeable sheath adjacent to the haemocoel. Hence, we propose that various bioactive substances may be released from thoracic neurosecretory neurons into the circulating haemolymph to act on peripheral targets. The same neurons may also interact by synaptic or modulatory action in the CNS in different neuropil regions of the thoracic ganglion.  相似文献   

8.
Summary The serotoninergic innervation of the corpus cardiacum (CC) of Locusta migratoria was investigated using two antisera against serotonin. A dense network of immunoreactive nerve fibres was present in the storage lobe of the CC. Immunopositive fibres only sporadically crossed the border between the storage lobe and the glandular lobe of the CC. Immunopositive fibres entered the storage lobe of the CC via the nervus corporis cardiaci I (NCCI); NCCII was immunonegative. Unilateral retrograde fillings of the NCCI with the fluorescent tracer Lucifer yellow, followed by antiserotonin immunocytochemistry, revealed about 20 double-labelled neurones in the anterior part of the pars intercerebralis. The double-labelled neurones were scattered between fluorescent non-immunoreactive neurones. Additionally, 5–7 neurones labelled only with Lucifer yellow were found at the ventrolateral side of the tritocerebrum. No immunopositive neurones were observed in the hypocerebral ganglion. Immunopositive fibres from neurones in the frontal ganglion ran via the recurrent nerve and the neuropile of the hypocerebral ganglion into the paired oesophageal nerve. At most, a few immunopositive nerve fibres occurred in the cardiostomatogastric nerves II, which connect the storage lobe of the CC with the paired oesophageal nerve at the caudal end of the hypocerebral ganglion.  相似文献   

9.
Summary The ultrastructure of the corpus cardiacum (CC) and corpus allatum (CA) of the house cricket, Acheta domesticus, is described. Axon profiles within the CC contain neurosecretory granules 160–350 nm in diameter which are indistinguishable from those found in type I neurosecretory cells of the pars intercerebralis and in the nervus corporis cardiaci I. The CC itself contains two cell types: intrinsic neurosecretory cells and glial cells. Intrinsic NSC cytoplasm contains Golgi bodies and electron dense neurosecretory granules 160–350 nm in diameter. Synaptoid configurations with 20–50 nm diameter electron lucent vesicles were observed within axon profiles of the CC. The structure of the CA is relatively uniform with one cell type predominating. Typical CA cells possess large nucleoli, active Golgi complexes, numerous mitochondria, and occassional microtubules. Groups of dark staining cells scattered throughout the CA of some animals were interpreted as evidence of cellular death.This work was done while JTB was supported by USPHS Training Grant HD-0266 from NICHDI wish to express my thanks to Dr. Richard A. Cloney for sharing his expertise in electron microscopy  相似文献   

10.
Summary Two groups of cerebral dorsal cells of the pulmonate snail Planorbarius corneus stain positively with antisera raised against synthetic fragments of the B- and C-chain of the molluscan pro-insulin-related prohormone, proMIP-I, of another pulmonate snail, Lymnaea stagnalis. At the light-microscopic level the somata of the dorsal cells and their axons and neurohemal axon terminals in the periphery of the paired median lip nerves are immunoreactive with both antisera. Furthermore, the canopy cells in the lateral lobes of the cerebral ganglia are positive. In addition, MIPB-immunoreactive neurons are found in most other ganglia of the central nervous system. At the ultrastructural level, pale and dark secretory granules are found in somata and axon terminals of the dorsal cells. Dark granules are about 4 times as immunoreactive to both antisera as pale granules. Release of anti-MIPB- and anti-MIPC-immunopositive contents of the secretory granules by exocytosis is apparent in material treated according to the tannic acid method. It is concluded that the dorsal and canopy cells synthesize a molluscan insulin-related peptide that is packed in the cell body into secretory granules and that is subsequently transported to the neurohemal axon terminals and released into the hemolymph by exocytosis. Thus, MIP seems to act as a neurohormone on peripheral targets. On the basis of the analogy between the dorsal cells and the MIP-producing cells in L. stagnalis, it is proposed that the dorsal cells of P. corneus are involved in the control of body growth and associated processes.  相似文献   

11.
Summary In the lamina ganglionaris, the first optic ganglion of the fly, the inventory of cell types as well as the patterns of their connections are well known from light microscopic investigations. Even the synaptic contacts are known with relative completeness. However, the structural details visible on electron micrographs are very difficult to interpret in functional terms. This paper concentrates on two aspects: 1) the synaptic complex between a retinula cell axon and four postsynaptic elements, arranged in a constant elongated array (it is suggested that all synapses in which the retinula cell is presynaptic are of this kind), and 2) the gnarl complex in which a presynaptic specialization in one neuron is separated from another neuron by a complicated glial invagination. The participation of glia at postsynaptic sites seems to be quite common in this ganglion. Occasionally it seems that a glia cell is the only postsynaptic partner facing a presynaptic specialization within a neuron.  相似文献   

12.
Several endocrine-mediated processes in insects are influenced by environmental factors including the density and sex ratio of populations. Effects of grouping on total egg production and rate of vitellogenic ovary development were assessed in virgin Acheta domesticus (L.). Females midway through their last nymphal instar were isolated from a stock population of adults and nymphs of both sexes and maintained in groups or as isolates at 26–27°C, 70% relative humidity, on a 12L-12D photoperiod. The number of fully grown oocytes produced during the first 18 days of adult life was lower for animals in groups of 10 or 15 than for isolates, but antennectomy abolished this group effect. By contrast, terminal and penultimate oocyte length and ovary dry weight were greater in 5-day-old - pairs than in isolates. The presence of mature males during the first 21 days of adult life did not affect total egg production. Whether these group effects on cricket ovary development are mediated by the endocrine system is not yet known.
Interaction entre les facteurs sociaux et le développement ovarien d'Acheta domesticus
Résumé L'étude a examiné les effets de groupement sur la production d'oeufs et sur la vitesse de la vitellogenèse chez les femelles vierges d'Acheta domesticus. Des femelles à la moitié de leur dernier stade larvaire, isolées d'une population adulte de base, et des nymphes des deux sexes ont été conservées en groupes ou isolées dans des récipients en plastique de 150 mm de diamètre et de 25 mm de hauteur à 26–27°C, 70% d'humidité relative et avec une photopériode de 12/12. La production totale des oeufs mûrs formés pendant les 18 premiers jours de vie imaginale était plus faible pour les animaux en groupes de 10 ou 15 que pour ceux qui étaient isolés, mais l'antennotectomie a éliminé cet effet de groupe. Au contraire, la longueur des derniers et avant-derniers ovocytes et le poids sec des ovaires étaient supérieurs pour les paires de 2 femelles de 5 jours que chez les individus isolés. La présence de mâles mûrs pendant les 21 premiers jours de vie imaginale n'a pas eu d'effet sur la production totale d'oeufs. L'hypothèse avancée est que ces effets de groupe (négatifs et positifs) sur le développement des ovaires d'Acheta domesticus ont reflété respectivement des accélérations et ralentissements de la vitellogenèse. La dépendance de l'induction de la vitellogenèse chez Acheta domesticus par les hormones juvéniles est connue (Benford, 1983) ainsi que les changements dans la quantité de produits neurosécréteurs, susceptibles d'être colorés dans la pars intercerebralis au cours du cycle reproductif (Bradley et Simpson, 1981). Nous ne savons pas si ces effets de groupement sur le développement des ovaires de grillon sont médiatisés par le système endocrine.
  相似文献   

13.
Whether female crickets choose among males based on characteristics of the courtship song is uncertain, but in many species, males not producing courtship song do not mate. In the house cricket,Acheta domesticus, we examined whether a female chose or rejected a male based on his size, latency to chirp, latency to produce courtship song, or rate of the high-frequency pulse of courtship song (“court rate”). We confirmed that females mated only with males that produced courtship song, but we found no evidence that the other factors we measured affected a female’s decision to mate. In addition, we investigated whether the outcome of male agonistic encounters affected the subsequent production of courtship song. In one experiment, we observed courtship and mating behavior when a single female was placed with a pair of males following a 10-min interaction period between the two males. Winners of male agonistic encounters had higher mating success. However, winners and losers of agonistic encounters were not different in their likelihood or latency to produce courtship song or in the number of times they were disrupted by the other male in the pair. In a second experiment, we allowed two males to interact for a 10-min period, but following this interaction period, we placed a female with each male separately and observed courtship and mating behavior. The mating success of winners and losers was not different under these circumstances, and we found no differences between winners and losers in any subsequent courtship or mating behavior examined. We conclude that winning agonistic encounters influences a male’s mating success in ways other than his production of courtship song and this effect is lost when winning and losing males are separated and each is given an opportunity to mate.  相似文献   

14.
Summary The central projections of primary afferents in the terminal ganglion of the crayfish can be seen when an axonal filling with nickel chloride with subsequent silver intensification was used for identification. We describe here the topological relationships of the projections to the landmark structures of the neuropil.The terminal ganglion has five pairs of sensory nerves associated with the mechanosensory hairs and internal proprioceptors. The projection fields of the primary sensory neurons in the nerves Rl and R2 are almost entirely restricted to the ipsilateral half of the ganglion, whereas those of the nerves R3, R4 and R5 cross the midline to form three sensory commissures, A6SCI, A7SCI and A7SCII. The projection fields are segregated from each other, although all are restricted to the ventral neuropil which lies under the ventral intermediate tract (VIT). The intersegmental projections that ascend via the connective ipsilateral to their origins could be observed. This pattern of projection correlates well with the receptive fields exhibited by several mechanosensory interneurons on the body surface of the final segment.  相似文献   

15.
Summary Serotonergic cell bodies and fibers were identified in the pedal ganglia of Mytilus gattoprovincialis with a serum raised against serotonin and the unlabelled peroxidase-antiperoxidase pre- and post-embedding methods. Examination of Vibratome and serial semithin sections showed that most reactive perikarya are located in the ganglionic cortex, being mainly concentrated at the medial aspect of the postero-dorsal portion of the ganglia. Immunoreactive fibers form a dense network in the neuropil, extend throughout the commissure and run parallel in the nerves and connective tracts. The morphology of serotonin-positive cells compared with that of Golgi-impregnated neurons allows the identification of a main population of unipolar, probably projecting neurons and of smaller multipolar cells likely representing local circuit elements. The ultrastructure of labelled neurons is comparable to that of serotonergic cells described in both vertebrate and invertebrate nervous systems.Supported by Ministero Pubblica Istruzione (40%)  相似文献   

16.
Summary By use of the indirect immunofluorescent technique applied to whole mounts of tissues and organs of the American cockroach, Periplaneta americana, serotonin-like reactivity has been demonstrated in an extensive meshwork of fibers on the surface of nerves of the subesophageal ganglion and the tritocerebrum. This meshwork appears to serve the neurohemal release of serotonin. In addition, several of these nerves contain two or more centrally located axons that appear to be serotonergic. The corpora cardica show immunoreactivity but do not appear to be a principal release site for serotonin. The nerves and ganglia of the stomadeal nervous system show immunoreactivity for serotonin and provide serotonin-positive innervation to the salivary glands and the visceral muscles of the stomodeum and midgut. The heart, hindgut, Malpighian tubules, fat body, and skeletal muscles all appear to lack serotonin immunoreactivity.  相似文献   

17.
Summary Examination of the ultrastructure of retinula cells of the Australian crayfish Cherax destructor at different times over a 24-hour cycle, together with patterns of anti-rhodopsin antigenicity, has lead to the formulation of a model of photoreceptor membrane turnover in these animals. Its main features are: (a) the existence of two bursts of rhabdomeral membrane breakdown; one, light-sensitive and synchronous, occurring at dawn, the other, constituting the first part of the membrane replacement phase itself, occurring during the afternoon and night, (b) the desynchronisation of the replacement phase of turnover between animals and to a lesser extent between cells of the same retina, (c) confinement of ultrastructurally detectable signs of photoreceptor membrane processing to the retinula cells themselves, and (d) replacement of a substantial part if not all of the rhabdomeral membrane daily. This model is compatible with many of the observations reported on the American crayfish Procambarus, and utilises the same basic mechanisms that are believed to operate in photoreceptor membrane turnover in many other arthropod compound eyes.  相似文献   

18.
Summary In the American cockroach, the distribution and connections of neuronal elements of the terminal ganglion-proctodeal nerve-hindgut system were investigated by means of immunohistochemical methods and axonal CoCl2 iontophoresis. Proctolinlike immunoreactivity was localized within neurons of the terminal ganglion projecting into the proctodeal nerve on the one hand, and in nerve cells without a direct connection to this system on the other. Immunohistochemically, in whole mount preparations fibres of the proctodeal nerve and terminal structures in the hindgut musculature exhibit strong proctolinlike immunoreactivity. At the light- and electron-microscopic levels the pathways of about 30 somata of the proctodeal neural system were characterized by cobalt chloride iontophoresis. The relationships of cobalt filled and immunoreactive neuronal structures are discussed.For the preparation of tritiated proctolin we thank Dr. S. Reißmann, WB Biochemie, Sektion Biologie, FSU JenaThe authors wish to thank G. Schörlitz, Film- und Bildstelle, FSU Jena, for photographs of whole mount preparations and Ms. A. Zinßer and Mrs. B. Cosack for excellent technical assistance.  相似文献   

19.
Summary We have used immunohistochemical methods to investigate the morphology of identified, presumptive serotonergic neurons in the antennal lobes and suboesophageal ganglion of the worker honeybee. A large interneuron (deutocerebral giant, DCG) is described that interconnects the deutocerebral antennal and dorsal lobes with the suboesophageal ganglion and descends into the ventral nerve chord. This neuron is accompanied by a second serotonin-immunoreactive interneuron with projections into the protocerebrum. Two pairs of bilateral immunoreactive serial homologues were identified in each of the three suboesophageal neuromeres and were also found in the thoracic ganglia. With the exception of the frontal commissure, no immunoreactive processes could be found in the peripheral nerves of the brain and the suboesophageal ganglion. The morphological studies on the serial homologues were extended by intracellular injections of Lucifer Yellow combined with immunofluorescence.  相似文献   

20.
Summary The terminal organs of the cephalic lobes of the house fly larva, Musca domestica L., were studied by scanning and transmission electron microscopy. Six different types of sensilla were found: (1) papilla sensillum, (2) pit sensillum, (3) spot sensillum, (4) modified papilla sensillum, (5) knob sensillum, and (6) scolopidium. The papilla, pit, spot, and modified papilla sensilla have the essential structure of contact chemoreceptors, i.e., the unbranched dendritic tips are exposed externally through a single opening. However, a tubular body, which is a characteristic structure of tactile setae, is also present in some of the dendritic tips. We assume these sensilla serve a dual function—contact chemo- and mechanoreception. The role of the knob sensilla is obscure. The scolopidia present in the dorsal and the terminal organ are probably stress detectors. Two basal bodies occur in the dendritic ciliary region of all sensilla. Both of the basal bodies (except in the scolopidia) give rise to the distal ciliary microtubules as well as the proximal rootlets.This research was supported in part by the Office of Naval Research, PHS Research Grant EC-246 and NIH Training Grant ES-00069. Paper No. 3608 of the North Carolina State University Agricultural Experiment Station journal series. The advise of R. A. Steinbrecht is gratefully acknowledged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号