首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
TruD, a recently discovered novel pseudouridine synthase in Escherichia coli, is responsible for modifying uridine13 in tRNA(Glu) to pseudouridine. It has little sequence homology with the other 10 pseudouridine synthases in E. coli which themselves have been grouped into four related protein families. Crystal structure determination of TruD revealed a two domain structure consisting of a catalytic domain that differs in sequence but is structurally very similar to the catalytic domain of other pseudouridine synthases and a second large domain (149 amino acids, 43% of total) with a novel alpha/beta fold that up to now has not been found in any other protein.  相似文献   

4.
5.
6.
7.
IscA belongs to an ancient family of proteins responsible for iron-sulfur cluster assembly in essential metabolic pathways preserved throughout evolution. We report here the 2.3 A resolution crystal structure of Escherichia coli IscA, a novel fold in which mixed beta-sheets form a compact alpha-beta sandwich domain. In contrast to the highly mobile secondary structural elements within the bacterial Fe-S scaffold protein IscU, a protein which is thought to have a similar function, the great majority of the amino acids that are conserved in IscA homologues are located in elements that constitute a well-ordered fold. However, the 10-residue C-terminal tail segment that contains two invariant cysteines critical for the Fe-S-binding function of a cyanobacterial (Synechocystis PCC) IscA homologue is not ordered in our structure. In addition, the crystal packing reveals a helical assembly that is constructed from two possible tetrameric oligomers of IscA.  相似文献   

8.
The TonB-dependent complex of Gram-negative bacteria couples the inner membrane proton motive force to the active transport of iron.siderophore and vitamin B(12) across the outer membrane. The structural basis of that process has not been described so far in full detail. The crystal structure of the C-terminal domain of TonB from Escherichia coli has now been solved by multiwavelength anomalous diffraction and refined at 1.55-A resolution, providing the first evidence that this region of TonB (residues 164-239) dimerizes. Moreover, the structure shows a novel architecture that has no structural homologs among any known proteins. The dimer of the C-terminal domain of TonB is cylinder-shaped with a length of 65 A and a diameter of 25 A. Each monomer contains three beta strands and a single alpha helix. The two monomers are intertwined with each other, and all six beta-strands of the dimer make a large antiparallel beta-sheet. We propose a plausible model of binding of TonB to FhuA and FepA, two TonB-dependent outer-membrane receptors.  相似文献   

9.
10.
11.
12.
The essential redox cofactors riboflavin monophosphate (FMN) and flavin adenine dinucleotide (FAD) are synthesised from their precursor, riboflavin, in sequential reactions by the metal-dependent riboflavin kinase and FAD synthetase. Here, we describe the 1.6A crystal structure of the Schizosaccharomyces pombe riboflavin kinase. The enzyme represents a novel family of phosphoryl transferring enzymes. It is a monomer comprising a central beta-barrel clasped on one side by two C-terminal helices that display an L-like shape. The opposite side of the beta-barrel serves as a platform for substrate binding as demonstrated by complexes with ADP and FMN. Formation of the ATP-binding site requires significant rearrangements in a short alpha-helix as compared to the substrate free form. The diphosphate moiety of ADP is covered by the glycine-rich flap I formed from parts of this alpha-helix. In contrast, no significant changes are observed upon binding of riboflavin. The ribityl side-chain might be covered by a rather flexible flap II. The unusual metal-binding site involves, in addition to the ADP phosphates, only the strictly conserved Thr45. This may explain the preference for zinc observed in vitro.  相似文献   

13.
Chorismate synthase catalyzes the conversion of 5-enolpyruvylshikimate 3-phosphate to chorismate in the shikimate pathway, which represents an attractive target for discovering antimicrobial agents and herbicides. Chorismate serves as a common precursor for the synthesis of aromatic amino acids and many aromatic compounds in microorganisms and plants. Chorismate synthase requires reduced FMN as a cofactor but the catalyzed reaction involves no net redox change. Here, we have determined the crystal structure of chorismate synthase from Helicobacter pylori in both FMN-bound and FMN-free forms. It is a tetrameric enzyme, with each monomer possessing a novel "beta-alpha-beta sandwich fold". Highly conserved regions, including several flexible loops, cluster together around the bound FMN to form the active site. The unique FMN-binding site is formed largely by a single subunit, with a small contribution from a neighboring subunit. The isoalloxazine ring of the bound FMN is significantly non-planar. Our structure illuminates the essential functional roles played by the cofactor.  相似文献   

14.
A novel soluble non-opioid dynorphin A-binding factor (DABF) was identified and characterized in neuronal cell lines, rat spinal cord, and brain. DABF binds dynorphin A(1-17), dynorphin A(2-17), and the 32 amino acid prodynorphin fragment big dynorphin consisting of dynorphin A and B, but not other opioid and non-opioid peptides, opiates, and benzomorphans. The IC50 for dynorphin A(1-17), dynorphin A(2-17), and big dynorphin is in the 5-10 nM range. Using dynorphin A and big dynorphin fragments a binding epitope was mapped to dynorphin A(6-13). DABF has a molecular mass of about 70 kDa. SH-groups are apparently involved in the binding of dynorphin A since p-hydroxy-mercuribenzoic acid inhibited this process. Upon interaction with DABF dynorphin A was converted into Leu-enkephalin, which remained bound to the protein. These data suggest that DABF functions as an oligopeptidase that forms stable and specific complexes with dynorphin A. The presence of DABF in brain structures and other tissues with low level of prodynorphin expression suggests that DABF as an oligopeptidase may degrade other peptides. Dynorphin A at the sites of its release in the CNS may attenuate this degradation as a competitor when it specifically binds to the enzyme.  相似文献   

15.
16.
Atopic eczema (AE) is a chronic inflammatory disease in which genetic predisposition and environmental factors such as microorganisms contribute to the symptoms. The yeast Malassezia Sympodialis, part of the normal human cutaneous flora, can act as an allergen eliciting specific IgE and T-cell reactivity in patients with AE. The major M. sympodialis allergen Mala s 1 is localized mainly in the yeast cell wall and exposed on the cell surface. Interestingly, Mala s 1 does not exhibit any significant sequence homology to known proteins. Here we present the crystal structure of Mala s 1 determined by single-wavelength anomalous dispersion techniques using selenomethionine-substituted Mala s 1. Mala s 1 folds into a 6-fold beta-propeller, a novel fold among allergens. The putative active site of Mala s 1 overlaps structurally to putative active sites in potential homologues, Q4P4P8 and Tri 14, from the plant parasites Ustilago maydis and Gibberella zeae, respectively. This resemblance suggests that Mala s 1 and the parasite proteins may have similar functions. In addition, we show that Mala s 1 binds to the phosphoinositides (PI) PI(3)P, PI(4)P, and PI(5)P, lipids possibly playing a role in the localization of Mala s 1 to the cell surface. The crystal structure of Mala s 1 will provide insights into the role of this major allergen in the host-microbe interactions and induction of an allergic response in AE.  相似文献   

17.
The BEACH domain is highly conserved in a large family of eukaryotic proteins, and is crucial for their functions in vesicle trafficking, membrane dynamics and receptor signaling. However, it does not share any sequence homology with other proteins. Here we report the crystal structure at 2.9 A resolution of the BEACH domain of human neurobeachin. It shows that the BEACH domain has a new and unusual polypeptide backbone fold, as the peptide segments in its core do not assume regular secondary structures. Unexpectedly, the structure also reveals that the BEACH domain is in extensive association with a novel, weakly conserved pleckstrin-homology (PH) domain. Consistent with the structural analysis, biochemical studies show that the PH and BEACH domains have strong interactions, suggesting they may function as a single unit. Functional studies in intact cells demonstrate the requirement of both the PH and the BEACH domains for activity. A prominent groove at the interface between the two domains may be used to recruit their binding partners.  相似文献   

18.
Creatinine amidohydrolase (creatininase; EC 3.5.2.10) from Pseudomonas putida, a homohexameric enzyme with a molecular mass of 28.4 kDa per subunit, is a cyclic amidohydrolase catalysing the reversible conversion of creatinine to creatine. The enzyme plays a key role in the bacterial degradation of creatinine. The three-dimensional structure of creatininase from P.putida was determined and refined to 2.1A. The structure shows the six subunits arranged as a trimer of dimers and definitely disproves previous reports that the enzyme has an octameric quaternary structure. Each monomer consists of a central, four-stranded, parallel beta-sheet flanked by two alpha-helices on both sides of the beta-sheet. This topology is unique within the superfamily of amidohydrolases. Moreover, creatininase possesses a novel fold with no close structural relatives within the Protein Data Bank. Each creatininase monomer contains a binuclear zinc centre near the C termini of the beta-strands and the N termini of the main alpha-helices. These zinc ions indicate the location of the active site unambiguously. The active site is entirely buried and is not accessible from the solution without movement of parts of the protein. The two zinc ions are bridged by a water molecule and by an aspartate residue, which acts as a bidentate ligand. They differ from each other in the number and the spatial arrangement of their ligands. One of them is tetrahedrally and the other trigonal-bipyramidally ligated. Using two water molecules of the first coordination sphere as anchor points, a creatinine-water adduct resembling the transition state of the hydrolysation reaction was modelled into the active site. The resulting complex in combination with structural comparisons with other amidohydrolases enabled us to identify the most probable candidate for the catalytic base and to suggest a putative reaction mechanism. Surprisingly these structural comparisons revealed a similarity in the active-site arrangement between creatininase and the hydantoinase-like cyclic amidohydrolases that was unexpected, given the completely unrelated primary and tertiary structures. In particular, the zinc-bridging aspartate residue of creatininase is a spatially and functionally analogue to a carboxylated lysine residue found in dihydroorotase and the hydantoinases. Hence, creatininase and the hydantoinase-like cyclic amidohydrolases represent a further example of convergent evolution within the enzyme class of hydrolases.  相似文献   

19.
Enoyl-ACP reductases participate in fatty acid biosynthesis by utilizing NADH to reduce the trans double bond between positions C2 and C3 of a fatty acyl chain linked to the acyl carrier protein. The enoyl-ACP reductase from Mycobacterium tuberculosis, known as InhA, is a member of an unusual FAS-II system that prefers longer chain fatty acyl substrates for the purpose of synthesizing mycolic acids, a major component of mycobacterial cell walls. The crystal structure of InhA in complex with NAD+ and a C16 fatty acyl substrate, trans-2-hexadecenoyl-(N-acetylcysteamine)-thioester, reveals that the substrate binds in a general "U-shaped" conformation, with the trans double bond positioned directly adjacent to the nicotinamide ring of NAD+. The side chain of Tyr158 directly interacts with the thioester carbonyl oxygen of the C16 fatty acyl substrate and therefore could help stabilize the enolate intermediate, proposed to form during substrate catalysis. Hydrophobic residues, primarily from the substrate binding loop (residues 196-219), engulf the fatty acyl chain portion of the substrate. The substrate binding loop of InhA is longer than that of other enoyl-ACP reductases and creates a deeper substrate binding crevice, consistent with the ability of InhA to recognize longer chain fatty acyl substrates.  相似文献   

20.
Riboflavin kinase (RFK) is an essential enzyme catalyzing the phosphorylation of riboflavin (vitamin B(2)) to form FMN, an obligatory step in vitamin B(2) utilization and flavin cofactor synthesis. The structure of human RFK revealed a six-stranded antiparallel beta barrel core structurally similar to the riboflavin synthase/ferredoxin reductase FAD binding domain fold. The binding site of an intrinsically bound MgADP defines a novel nucleotide binding motif that encompasses a loop, a 3(10) helix, and a reverse turn followed by a short beta strand. This active site loop forms an arch with ATP and riboflavin binding at the opposite side and the phosphoryl transfer appears to occur through the hole underneath the arch. The invariant residues Asn36 and Glu86 are implicated in the catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号