首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNase VIII is an exonuclease purified from human placenta trophoblast nuclei. The enzyme has a pH optimum of 9.5 and requires a divalent cation. It is inhibited by salt and stimulated by Triton X-100. Glycerol gradient analysis of the activity indicates a sedimentation coefficient of 2.8 S (31,000 daltons if globular). This enzyme initiates hydrolysis from 5'-phosphorylated termini of single-stranded DNA and acts at internal phosphodiester bonds liberating 5'-phosphorylated oligonucleotides. It degrades polynucleotides of repeating base sequence as well as single-stranded DNA, yielding oligonucleotides of even number, in which the main reaction products are dinucleotides. The activity on denatured DNA is not inhibited by the presence of ultraviolet-induced photoproducts. DNase VIII can also initiate hydrolysis at those distorted termini produced by the action of Micrococcus luteus dimer specific endonuclease on duplex DNA, which contains cyclobutane dimers.  相似文献   

2.
The DNase that is associated with a multiprotein form of HeLa cell DNA polymerase alpha (polymerase alpha 2) has two distinct exonuclease activities: the major activity initiates hydrolysis from the 3' terminus and the other from the 5' terminus of single-stranded DNA. The two exonuclease activities show identical rates of thermal inactivation and coincidental migration during chromatofocusing, glycerol gradient centrifugation, and nondenaturing polyacrylamide gel electrophoresis of the DNase. Moreover, the purified DNase shows a single protein band of Mr 69,000 following nondenaturing polyacrylamide and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The 3'----5' exonuclease activity hydrolyzes only single-stranded DNA substrates and the products are 5' mononucleotides. This activity recognizes and excizes mismatched bases at the 3' terminus of double-stranded DNA substrates. The 3'----5' exonuclease does not hydrolyze 3' phosphoryl terminated single-stranded DNA substrates. The 5'----3' exonuclease activity also only hydrolyzes single-stranded DNA substrates. The rate of hydrolysis, however is only about 1/25th the rate of the 3'----5' exonuclease. This exonuclease activity requires a 5' single-stranded terminus in order to initiate hydrolysis and does not proceed into double-stranded regions. The products of hydrolysis by 5'----3' exonuclease are also 5' nucleoside monophosphates.  相似文献   

3.
3'----5' Exonuclease specific for single-stranded DNA copurified with DNA polymerase of nuclear polyhedrosis virus of silkworm Bombyx mori (BmNPV Pol). BmNPV Pol has no detectable 5'----3' exonuclease activity on single-stranded or duplex DNA. Analysis of the products of 3'----5' exonucleolytic reaction showed that deoxynucleoside monophosphates were released during the hydrolysis of single-stranded DNA. The exonuclease activity cosedimented with the polymerase activity during ultracentrifugation of BmNPV Pol in glycerol gradient. The polymerase and the exonuclease activities of BmNPV Pol were inactivated by heat with nearly identical kinetics. The mode of the hydrolysis of single-stranded DNA by BmNPV Pol-associated exonuclease was strictly distributive. The enzyme dissociated from single-stranded DNA after the release of a single dNMP and then reassociated with a next polynucleotide being degradated.  相似文献   

4.
Bacteriophage T5-induced DNA polymerase has an associated 3′→5′ exonuclease activity for which both single-stranded and duplex DNA serve as substrate (1). In this report, we demonstrate that hydrolysis of single-stranded DNA homopolymers (template) is inhibited in the presence of complementary (Watson-Crick sense) oligonucleotides (primer). Almost complete inhibition is observed at a primer/template ratio of ? 0.1. Formation of “H-bonded” primer-template complex seems to be necessary for the inhibition of template hydrolysis because (a) similar amounts of noncomplementary oligonucleotides have no detectable effect on the rate of template hydrolysis, and (b) complementary oligonucleotides lose their inhibitory potential at temperatures where the H-bonded primer-template complex is expected to be unstable. From our data, it appears that the inhibition of template hydrolysis in the presence of primer molecules is due to the preferential binding of the enzyme at the 3′-OH terminus of the primer in the primer-template complex.  相似文献   

5.
Homogeneous gene 5 protein of bacteriophage T7, a subunit of T7 DNA polymerase, catalyzes the stepwise hydrolysis of single-stranded DNA in a 3' leads to 5' direction to yield nucleoside 5'-monophosphates. The gene 5 protein itself does not hydrolyze duplex DNA. However, in the presence of Escherichia coli thioredoxin, the host-specified subunit of T7 DNA polymerase, duplex DNA is hydrolyzed in a 3' leads to 5' direction to yield nucleoside 5'-monophosphates. The apparent Km for thioredoxin in the reaction is 4.8 x 10(-8) M, a value similar to that for the apparent Km of thioredoxin in the complementation assay with gene 5 protein to restore T7 DNA polymerase activity. Both exonuclease activities require Mg2+ and a sulfhydryl reagent for optimal activity, and both activities are sensitive to salt concentration. Deoxyribonucleoside 5'-triphosphates inhibit hydrolysis by both exonuclease activities; hydrolysis of single-stranded DNA by the gene 5 protein is inhibited even in the absence of thioredoxin where there is less than 2% active T7 DNA polymerase. E. coli DNA binding protein (helix destabilizing protein) stimulates the hydrolysis of duplex DNA up to 9-fold under conditions where the hydrolysis of the single-stranded DNA is inhibited 4-fold.  相似文献   

6.
Porcine liver DNA polymerase gamma was shown previously to copurify with an associated 3' to 5' exonuclease activity (Kunkel, T. A., and Mosbaugh, D. W. (1989) Biochemistry 28, 988-995). The 3' to 5' exonuclease has now been characterized, and like the DNA polymerase activity, it has an absolute requirement for a divalent metal cation (Mg2+ or Mn2+), a relatively high NaCl and KCl optimum (150-200 mM), and an alkaline pH optimum between 7 and 10. The exonuclease has a 7.5-fold preference for single-stranded over double-stranded DNA, but it cannot excise 3'-terminal dideoxy-NMP residues from either substrate. Excision of 3'-terminally mismatched nucleotides was preferred approximately 5-fold over matched 3' termini, and the hydrolysis product from both was a deoxyribonucleoside 5'-monophosphate. The kinetics of 3'-terminal excision were measured at a single site on M13mp2 DNA for each of the 16 possible matched and mismatched primer.template combinations. As defined by the substrate specificity constant (Vmax/Km), each of the 12 mismatched substrates was preferred over the four matched substrates (A.T, T.A, C.G, G.C). Furthermore, the exonuclease could efficiently excise internally mismatched nucleotides up to 4 residues from the 3' end. DNA polymerase gamma was not found to possess detectable DNA primase, endonuclease, 5' to 3' exonuclease, RNase, or RNase H activities. The DNA polymerase and exonuclease activities exhibited dissimilar rates of heat inactivation and sensitivity to N-ethylmaleimide. After nondenaturing activity gel electrophoresis, the DNA polymerase and 3' to 5' exonuclease activities were partially resolved and detected in situ as separate species. A similar analysis on a denaturing activity gel identified catalytic polypeptides with molecular weights of 127,000, 60,000, and 32,000 which possessed only DNA polymerase gamma activity. Collectively, these results suggest that the polymerase and exonuclease activities reside in separate polypeptides, which could be derived from separate gene products or from proteolysis of a single gene product.  相似文献   

7.
The 3′→5′ exonuclease activity of highly purified large form of human DNA polymerase epsilon was studied. The activity removes mononucleotides from the 3′ end of an oligonucleotide with a non-processive mechanism and leaves 5′-terminal trinucleotide non-hydrolyzed. This is the case both with single-stranded oligonucleotides and with oligonucleotides annealed to complementary regions of M13DNA. However, the reaction rates with single-stranded oligonucleotides are at least ten-fold when compared to those with completely base-paired oligonucleotides. Conceivably, mismatched 3′ end of an oligonucleotide annealed to M13DNA is rapidly removed and the hydrolysis is slown down when double-stranded region is reached. The preferential removal of a non-complementary 3′ end and the non-processive mechanism are consistent with anticipated proofreading function. In addition to the 3′→5′ exonuclease activity, an 5′→3′ exonuclease activity is often present even in relatively highly purified DNA polymerase epsilon preparates suggesting that such an activity may be an essential com-ponent for the action of this enzymein vivo. Contrary to the 3′→5′ exonuclease activity, the 5′→3′ exonuclease is separable from the polymerase activity.  相似文献   

8.
Two enzyme activities which release nucleotides preferentially from the 5' termini of DNA were found in T4-infected Escherichia coli. Since no corresponding activities were found in uninfected cells, the activities appeared to be induced by T4. Both activities are capable of excising pyrimidine dimers from ultraviolet-irradiated DNA which has been treated with T4 endonuclease V. One of the activities , referred to as T4 exonuclease B, was purified 400-fold from an extract of T4v 1- infected cells. The enzyme initiates hydrolysis of DNA specifically at the 5' termini to yield products which are mainly oligonucleotides of varying length. The hydrolysis reaction proceeds in a limited manner. The enzyme shows optimal activity at pH 7.0 and absolutely requires Mg2+. The molecular weight of the enzyme , as estimated by gel filtration, is approximately 35,000. Another activity, referred to as T4 exonuclease C, was purified 240-fold from the extract. This activity also excises pyrimidine dimers from ultraviolet-irradiated, incised DNA and releases nucleotides at 5' termini. It has a pH optimum at 7.5 and requires Mg2+. The molecular weight of the enzyme is approximately 20,000.  相似文献   

9.
The 3' to 5' exonuclease of calf thymus DNA polymerase delta has properties expected of a proofreading nuclease. It digests either single-stranded DNA or the single-stranded nucleotides of a mismatched primer on a DNA template by a nonprocessive mechanism. The distribution of oligonucleotide products suggests that a significant portion of the enzyme dissociates after the removal of one nucleotide. This mechanism is expected if the substrate in vivo is an incorrect nucleotide added by the polymerase. Digestion of single-stranded DNA does not proceed to completion, producing final products six to seven nucleotides long. Digestion of a long mismatched terminus accelerates when the mismatched region is reduced to less than six nucleotides. At the point of complementation, the digestion rate is greatly reduced. These results suggest that short mismatched regions are a preferred substrate. The use of a mismatched primer-template analogue, lacking the template single strand, greatly lowers digestion efficiency at the single-stranded 3'-terminus, suggesting that the template strand is important for substrate recognition. When oligonucleotides were examined for effectiveness as exonuclease inhibitors, (dG)8 was found to be the most potent inhibitor of single-stranded DNA digestion. (dG)8 was less effective at inhibiting digestion of mismatched primer termini, again suggesting that this DNA is a preferred substrate. Overall, these results indicate that the exonuclease of DNA polymerase delta efficiently removes short mismatched DNA, a structure formed from misincorporation during DNA synthesis.  相似文献   

10.
11.
Ape1 is the major human abasic endonuclease, initiating repair of this common DNA lesion by incising the phosphodiester backbone 5' to the damage site. This enzyme also functions in specific contexts to excise 3'-blocking termini, e.g. phosphate and phosphoglycolate residues, from DNA. Recently, the comparatively "minor" 3' to 5' exonuclease activity of Ape1 was found to contribute to the excision of certain 3'-mismatched nucleotides. In this study, I characterize more thoroughly the 3'-nuclease properties of Ape1 and define the effects of specific DNA determinants on this function. Data within shows that Ape1 is a non- or poorly processive exonuclease, which degrades one nucleotide gap, 3'-recessed, and nicked DNAs, but exhibits no detectable activity on blunt end or single-stranded DNA. A 5'-phosphate, compared to a 5'-hydroxyl group, reduced Ape1 degradation activity roughly tenfold, suggesting that the biological impact of certain DNA single strand breaks may be influenced by the terminal chemistry. In the context of a base excision repair-like DNA intermediate, a 5'-abasic residue exerted an about tenfold attenuation on the 3' to 5' exonuclease efficiency of Ape1. A 3'-phosphate group had little impact on Ape1 exonuclease activity, and oligonucleotides harboring these blocking termini were activated by Ape1 for DNA polymerase beta extension. Ape1 was also found to remove 3'-tyrosyl residues from 3'-recessed and nicked DNAs, suggesting a potential role in processing covalent topoisomerase I-DNA intermediates formed during chromosome relaxation. While exhibiting preferential excision of thymine in a T:G mismatch context, Ape1 was unable to degrade a triple 3'-thymine mispair. However, Ape1 was able to excise double nucleotide mispairs, apparently through a novel 3'-flap-type endonuclease activity, again activating these substrates for polymerase beta extension.  相似文献   

12.
The role of exonuclease activity in trans-lesion DNA replication with Escherichia coli DNA polymerase III holoenzyme was investigated. RecA protein inhibited the 3'----5' exonuclease activity of the polymerase 2-fold when assayed in the absence of replication and had no effect on turnover of dNTPs into dNMPs. In contrast, single-stranded DNA-binding protein, which had no effect on the exonuclease activity in the absence of replication, showed a pronounced 7-fold suppression of the 3'----5' exonuclease activity during replication. The excision of incorporated dNMP alpha S residues from DNA by the 3'----5' exonuclease activity of DNA polymerase III holoenzyme was inhibited 10-20-fold; still no increase in bypass of pyrimidine photodimers was observed. Thus, in agreement with our previous results in which the exonuclease activity was inhibited at the protein level (Livneh, Z. (1986) J. Biol. Chem. 261, 9526-9533), inhibition at the DNA level also did not increase bypass of photodimers. Fractionation of the replication mixture after termination of DNA synthesis on a Bio-Gel A-5m column under conditions which favor polymerase-DNA binding yielded a termination complex which could perform turnover of dNTPs into dNMPs. Adding challenge-primed single-stranded DNA to the complex yielded a burst of DNA synthesis which was promoted most likely by DNA polymerase III holoenzyme molecules transferred from the termination complex to the challenge DNA thus demonstrating the instability of the polymerase-DNA association. Addition of a fresh sample of DNA polymerase III holoenzyme to purified termination products, which consist primarily of partially replicated molecules with nascent chains terminated at UV lesions, did not result in any net DNA synthesis as expected. However, reactivation of lesion-terminated primers was achieved by pretreatment with a 3'----5' exonuclease which excised 200 nucleotides or more, generating new 3'-OH termini located away from the UV lesions. When these exonuclease-treated products were subjected to a second round of replication, an increased level of DNA synthesis was observed including additional bypass of photodimers. These results suggest the possibility that 3'----5' exonuclease processing might be required at least transiently during one of the stages of trans-lesion DNA replication, which is believed to be the mechanism of SOS-targeted mutagenesis.  相似文献   

13.
The gene D5 product (gpD5) of bacteriophage T5 is a DNA-binding protein that binds preferentially to double-stranded DNA and is essential for T5 DNA replication, yet it inhibits DNA synthesis in vitro. Mechanisms of inhibition were studied by using nicked DNA and primed single-stranded DNA as a primer-template. Inhibition of T5 DNA polymerase activity by gpD5 occurred when double-stranded regions of DNA were saturated with gpD5. The 3' leads to 5' exonuclease associated with T5 DNA polymerase was not very active with nicked DNA, but inhibition of hydrolysis of substituents at 3'-hydroxyl termini by gpD5 could be observed. T5 DNA polymerase appears to be capable of binding to the 3' termini even when double-stranded regions are saturated with gpD5. The interaction of gpD5 with the polymerases at the primer terminus is apparently the primary cause of inhibition of polymerization.  相似文献   

14.
The 3′→5′ exonuclease activity of highly purified large form of human DNA polymerase epsilon was studied. The activity removes mononucleotides from the 3′ end of an oligonucleotide with a non-processive mechanism and leaves 5′-terminal trinucleotide non-hydrolyzed. This is the case both with single-stranded oligonucleotides and with oligonucleotides annealed to complementary regions of M13DNA. However, the reaction rates with single-stranded oligonucleotides are at least ten-fold when compared to those with completely base-paired oligonucleotides. Conceivably, mismatched 3′ end of an oligonucleotide annealed to M13DNA is rapidly removed and the hydrolysis is slown down when double-stranded region is reached. The preferential removal of a non-complementary 3′ end and the non-processive mechanism are consistent with anticipated proofreading function. In addition to the 3′→5′ exonuclease activity, an 5′→3′ exonuclease activity is often present even in relatively highly purified DNA polymerase epsilon preparates suggesting that such an activity may be an essential com-ponent for the action of this enzymein vivo. Contrary to the 3′→5′ exonuclease activity, the 5′→3′ exonuclease is separable from the polymerase activity.  相似文献   

15.
Yeast cells from a wild type or protease-deficient strain were lysed in the absence or presence of protease inhibitors and the extracts analyzed by analytical high pressure liquid chromatography on diethylaminoethyl silica gel. Conditions that inhibited protease action caused elution of a novel DNA polymerase activity at a position in the gradient distinct from the elution positions of both DNA polymerase I and II. In large scale purifications, this DNA polymerase, called DNA polymerase III, copurified with a single-stranded DNA dependent 3'-5' exonuclease activity, exonuclease III, to near homogeneity. Glycerol gradient centrifugation partially dissociated the complex to yield two peaks of exonuclease III activity, one at 7.7 S together with the DNA polymerase, and one at 4.0 S without polymerase activity. Gel filtration indicated that the complex has a molecular mass greater than 400 kDa. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate indicated that the complex consists of several subunits: 140, 62, 55, and 53 kilodaltons, some of which may be proteolysis products. The exonuclease component of the complex can excise single nucleotide mismatches providing a base-paired primer-template which can be elongated by the DNA polymerase. Under replication conditions, the complex exhibits a measurable turnover rate of dTTP to dTMP and it contains no primase activity. The enzymatic activities of the 3'-5' exonuclease are consistent with a proofreading function during in vivo DNA replication. A second exonuclease activity, exonuclease IV, separated from the complex late in the purification scheme. It degrades both single-stranded and double-stranded DNA in the 5'----3' direction.  相似文献   

16.
An Mg2(+)-dependent endonuclease endogenous to rat-liver nuclei had an exonuclease activity for single-stranded DNA, but not for duplex DNA. The activity was about twice as high in the 3'----5' direction as in the 5'----3' direction. The products by 3'----5' activity were mononucleotides alone. The 5'----3' activity released mononucleotides as main products and small amounts of di-, tri-, tetra- and oligonucleotides. Another major endonuclease endogenous to the nuclei, a Ca2+/Mg2(+)-dependent endonuclease, did not have such exonuclease activities.  相似文献   

17.
A homogeneous preparation of venom phosphodiesterase from Crotalus adamanteus possesses an intrinsic endonuclease activity, specific for superhelical (form I) and single-stranded DNA. The phosphodiesterase degrades single-stranded T7 DNA by endonucleolytic cleavages. Duplex T7 DNA is hydrolyzed by the liberation of acid-soluble products simultaneously from the 3' and 5' termini but without demonstrable internal scissions in duplex regions. Since venom phosphodiesterase is known to hydrolyze oligonucleotides stepwise from the 3' termini, the cleavage at the 5' end of duplex T7 DNA is ascribed to an endonuclease activity. Form I PM2 DNA is nicked to yield first relaxed circles and then linear DNA which is subsequently hydrolyzed only from the chain termini. The linear duplex DNA intermediates consist of a discrete series of fragments (11 are usually resolved on agarose gels) with initial molecular weights ranging from 6.3 x 10(6) (the intact PM2 DNA size) to approximately 1 x 10(6). The cleavage of the form I molecule must, therefore, occur at a limited number of unique sites. The enzyme also cleaves nonsuperhelical, covalently closed circular PM2 DNA but at a 10(4) times slower rate. Both the endonuclease activity on form I DNA and the known exonuclease activity co-migrate on polyacrtkanude gels, are optimally active at pH 9, are stimulated by small concentrations of Mg2+, and are similarly inactivated by heat, reducing agents, and EDTA.  相似文献   

18.
The vaccinia virus-induced DNA polymerase has been purified about 500-fold from a cytoplasmic extract of vaccinia-infected HeLa cells. Analysis of the purified fraction by sodium dodecyl sulfate-polyacrylamide gel electrophoresis reveals a single polypeptide of 110,000 daltons, which is greater than 95% pure. This polypeptide co-sediments with polymerase activity through a glycerol gradient. The sedimentation coefficient of the enzyme is 6.3 S, and its Stokes radius is 4.6 nm. The molecular weight of the native enzyme derived from these values is 115,000. Vaccinia polymerase is therefore a single large polypeptide of 110,000 to 115,000 daltons. The purified fraction has no significant endonuclease activity, but a strong exonuclease activity co-purifies with polymerase activity through every step in the isolation. The polymerase and exonuclease activities are inactivated at 45 degrees C at the same rate. It is likely, therefore, that both activities are catalyzed by the same polypeptide. The exonuclease hydrolyzes DNA predominantly in the 3' leads to 5' direction, to produce 5' mononucleotides. The exonuclease degrades single-stranded DNA more rapidly than duplex DNA, and the rate of digestion of both single-stranded and double-stranded DNA increases as the size of the substrate decreases. Single-stranded circular DNA is a potent inhibitor of the exonuclease activity, but duplex circular DNA has no significant effect on its activity.  相似文献   

19.
Enzyme action at 3' termini of ionizing radiation-induced DNA strand breaks   总被引:13,自引:0,他引:13  
gamma-Irradiation of DNA in vitro produces two types of single strand breaks. Both types of strand breaks contain 5'-phosphate DNA termini. Some strand breaks contain 3'-phosphate termini, some contain 3'-phosphoglycolate termini (Henner, W.D., Rodriguez, L.O., Hecht, S. M., and Haseltine, W. A. (1983) J. Biol. Chem. 258, 711-713). We have studied the ability of prokaryotic enzymes of DNA metabolism to act at each of these types of gamma-ray-induced 3' termini in DNA. Neither strand breaks that terminate with 3'-phosphate nor 3'-phosphoglycolate are substrates for direct ligation by T4 DNA ligase. Neither type of gamma-ray-induced 3' terminus can be used as a primer for DNA synthesis by either Escherichia coli DNA polymerase or T4 DNA polymerase. The 3'-phosphatase activity of T4 polynucleotide kinase can convert gamma-ray-induced 3'-phosphate but not 3'-phosphoglycolate termini to 3'-hydroxyl termini that can then serve as primers for DNA polymerase. E. coli alkaline phosphatase is also unable to hydrolyze 3'-phosphoglycolate groups. The 3'-5' exonuclease actions of E. coli DNA polymerase I and T4 DNA polymerase do not degrade DNA strands that have either type of gamma-ray-induced 3' terminus. E. coli exonuclease III can hydrolyze DNA with gamma-ray-induced 3'-phosphate or 3'-phosphoglycolate termini or with DNase I-induced 3'-hydroxyl termini. The initial action of exonuclease III at 3' termini of ionizing radiation-induced DNA fragments is to remove the 3' terminal phosphate or phosphoglycolate to yield a fragment of the same nucleotide length that has a 3'-hydroxyl terminus. These results suggest that repair of ionizing radiation-induced strand breaks may proceed via the sequential action of exonuclease, DNA polymerase, and DNA ligase. The possible role of exonuclease III in repair of gamma-radiation-induced strand breaks is discussed.  相似文献   

20.
The rate of production of acid-soluble material during degradation of duplex DNA by Hemophilus influenzae ATP-dependent DNAse (Hind exonuclease V) has been shown to be directly dependent upon the Mg2+ concentration in the reaction mixture. At high concentrations of Mg2+ (5 to 20 mM), DNA degradation to acid-soluble products is rapid and the rate of ATP hydrolysis is slightly depressed. At low concentrations of Mg2+ (0.1 to 0.5 mM), the enzyme rapidly hydrolyzes ATP and converts up to 35% of linear duplex DNA to single-stranded material while degrading less than 0.2% of the DNA to acid-soluble products. We refer to this enzymatic production of single-stranded DNA as the "melting" activity. Under the conditions of our assay, the initial melting reaction is processive, lasting about 70s on phage T7 DNA. Using DNAs with several different lengths, we have established that the duration of the initial reaction is dependent upon DNA length, requiring approximately 1 s per 0.18 mum. The products of the initial reaction on phage T7 DNA are somewhat heterogeneous, consisting of short duplex fragments approximately 0.5 mum long, purely single-stranded products up to 7 mum long, and longer duplex fragments 3 to 11 mum in length, some of which have single-stranded tails. Nearly half of the single-stranded material remains linked to a duplex segment of DNA after the inital processive reaction. We propose that Hind exo V initiates attack at the DNA termini and then acts in a processive manner, migrating along the DNA molecule, converting some regions to single-stranded material by the combined action of the melting activity and limited phosphodiester cleavage, while leaving other regions double-stranded. At the completion of its processive movement through a single DNA molecule, it is released and then recycles onto either intact molecules or the partially degraded products, continuing in this manner until the DNA is finally reduced to oligonucleotides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号