首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The accumulation of oxidatively modified proteins has been shown to be a characteristic feature of many neurodegenerative disorders and its regulation requires efficient proteolytic processing. One component of the mitochondrial proteolytic system is Lon, an ATP-dependent protease that has been shown to degrade oxidatively modified aconitase in vitro and may thus play a role in defending against the accumulation of oxidized matrix proteins in mitochondria. Using an assay system that allowed us to distinguish between basal and ATP-stimulated Lon protease activity, we have shown in isolated non-synaptic rat brain mitochondria that Lon protease is highly susceptible to oxidative inactivation by peroxynitrite (ONOO(-)). This susceptibility was more pronounced with regard to ATP-stimulated activity, which was inhibited by 75% in the presence of a bolus addition of 1mM ONOO(-), whereas basal unstimulated activity was inhibited by 45%. Treatment of mitochondria with a range of peroxynitrite concentrations (10-1000muM) revealed that a decline in Lon protease activity preceded electron transport chain (ETC) dysfunction (complex I, II-III and IV) and that ATP-stimulated activity was approximately fivefold more sensitive than basal Lon protease activity. Furthermore, supplementation of mitochondrial matrix extracts with reduced glutathione, following ONOO(-) exposure, resulted in partial restoration of basal and ATP-stimulated activity, thus suggesting possible redox regulation of this enzyme complex. Taken together these findings suggest that Lon protease may be particularly vulnerable to inactivation in conditions associated with GSH depletion and elevated oxidative stress.  相似文献   

2.
Glycyrrhetinic acid (GE), the aglycone of glycyrrhizic acid, a triterpene glycoside which represents one of the main constituents of licorice root, induces an oxidative stress in liver mitochondria responsible for the induction of membrane permeability transition. In fact, GE, by interacting with the mitochondrial respiratory chain, generates hydrogen peroxide which in turn oxidizes critical thiol groups and endogenous pyridine nucleotides leading to the opening of the transition pore. Most likely the reactive group of GE is the carbonyl oxygen in C-11 which, by interacting mainly with a Fe/S centre of mitochondrial complex I, generates an oxygen-centered radical responsible for the pro-oxidant action.  相似文献   

3.
4.
Reperfusion of ischemic myocardial tissue results in an increase in mitochondrial free radical production and declines in respiratory activity. The effects of ischemia and reperfusion on the activities of Krebs cycle enzymes, as well as enzymes involved in electron transport, were evaluated to provide insight into whether free radical events are likely to affect enzymatic and mitochondrial function(s). An in vivo rat model was utilized in which ischemia is induced by ligating the left anterior descending coronary artery. Reperfusion, initiated by release of the ligature, resulted in a significant decline in NADH-linked ADP-dependent mitochondrial respiration as assessed in isolated cardiac mitochondria. Assays of respiratory chain complexes revealed reduction in the activities of complex I and, to a lesser extent, complex IV exclusively during reperfusion, with no alterations in the activities of complexes II and III. Moreover, Krebs cycle enzymes alpha-ketoglutarate dehydrogenase and aconitase were susceptible to reperfusion-induced inactivation with no decline in the activities of other Krebs cycle enzymes. The decline in alpha-ketoglutarate dehydrogenase activity during reperfusion was associated with a loss in native lipoic acid on the E2 subunit, suggesting oxidative inactivation. Inhibition of complex I in vitro promotes free radical generation. alpha-Ketoglutarate dehydrogenase and aconitase are uniquely susceptible to in vitro oxidative inactivation. Thus, our results suggest a scenario in which inhibition of complex I promotes free radical production leading to oxidative inactivation of alpha-ketoglutarate dehydrogenase and aconitase.  相似文献   

5.
Long bouts of ischemia are associated with electron transport chain deficits and increases in free radical production. In contrast, little is known regarding the effect of brief ischemia on mitochondrial function and free radical production. This study was undertaken to examine the relationship between the duration of ischemia, effects upon electron transport chain activities, and the mitochondrial production of free radicals. Rat hearts were subjected to increasing ischemic durations, mitochondria were isolated, and superoxide production and electron transport chain activities were measured. Results indicate that even brief ischemic durations induced a significant increase in superoxide production. This rate was maintained with ischemic durations less than 15 min, and then increased further with longer ischemic times. Mechanistically, brief ischemia was accompanied by an increase in NADH oxidase activity, reflected by a specific increase in complex IV activity. In contrast, longer ischemic durations were accompanied by a decrease in NADH oxidase activity, reflected by deficits in complexes I and IV activities.  相似文献   

6.
The inability of cells and microorganisms to reduce the colourless electron acceptor triphenyltetrazolium chloride (TTC) to a red formazan precipitate is commonly used as a means of screening for cells that have a dysfunctional respiratory chain. The site of reduction of TTC is often stated to be at the level of cytochrome c oxidase where it is assumed to compete with oxygen for reducing equivalents. However, we show here that TTC is reduced not by cytochrome c oxidase but instead by dehydrogenases, particularly complex I, probably by accepting electrons directly from low potential cofactors. The reduction rate is fastest in coupled membranes because of accumulation in the matrix of the positively charged TTC+ cation. However, the initial product of TTC reduction is rapidly reoxidised by molecular oxygen, so that generation of the stable red formazan product from this intermediate occurs only under strictly anaerobic conditions. Colonies of mutants defective in cytochrome oxidase do not generate sufficiently anaerobic conditions to allow the intermediate to form the stable red formazan. This revision of the mode of interaction of TTC with respiratory chains has implications for the types of respiratory-defective mutants that might be detected by TTC screening.  相似文献   

7.
Interstitial cells of Cajal (ICC-MY) are pacemakers that generate and propagate electrical slow waves in gastrointestinal (GI) muscles. Slow waves appear to be generated by the release of Ca2+ from intracellular stores and activation of Ca2+-activated Cl channels (Ano1). Conduction of slow waves to smooth muscle cells coordinates rhythmic contractions. Mitochondrial Ca2+ handling is currently thought to be critical for ICC pacemaking. Protonophores, inhibitors of the electron transport chain (FCCP, CCCP or antimycin) or mitochondrial Na+/Ca2+ exchange blockers inhibited slow waves in several GI muscles. Here we utilized Ca2+ imaging of ICC in small intestinal muscles in situ to determine the effects of mitochondrial drugs on Ca2+ transients in ICC. Muscles were obtained from mice expressing a genetically encoded Ca2+ indicator (GCaMP3) in ICC. FCCP, CCCP, antimycin, a uniporter blocker, Ru360, and a mitochondrial Na+/Ca2+ exchange inhibitor, CGP-37157 inhibited Ca2+ transients in ICC-MY. Effects were not due to depletion of ATP, as oligomycin did not affect Ca2+ transients. Patch-clamp experiments were performed to test the effects of the mitochondrial drugs on key pacemaker conductances, Ano1 and T-type Ca2+ (CaV3.2), in HEK293 cells. Antimycin blocked Ano1 and reduced CaV3.2 currents. CCCP blocked CaV3.2 current but did not affect Ano1 current. Ano1 and Cav3.2 currents were inhibited by CGP-37157. Inhibitory effects of mitochondrial drugs on slow waves and Ca2+ signalling in ICC can be explained by direct antagonism of key pacemaker conductances in ICC that generate and propagate slow waves. A direct obligatory role for mitochondria in pacemaker activity is therefore questionable.  相似文献   

8.
《Process Biochemistry》2014,49(5):745-750
The present study was designed to investigate the effect of bromopropylate on its own transport rate, glycolysis and tricarboxylic acid cycle metabolite levels, adenine nucleotides, and membrane lipid peroxidation (LPO) as well as the activities of mitochondrial electron transport chain (ETC) enzymes in eukaryotic Trichoderma harzianum. The transport rate of bromopropylate reached a maximum level within the first 24 h of incubation for all studied concentrations. The succinate dehydrogenase (SDH) and cytochrome c oxidase (CCO) activities reached their maxima at 72 h for 2.5 and 10 mg/L of bromopropylate, respectively. In addition, the intracellular pyruvate levels increased for bromopropylate concentrations up to 2.5 mg/L. The maximum intracellular α-ketoglutarate level was determined at 5 mg/L, while the intracellular fumarate and citrate levels reached their maximums at 7.5 mg/L of bromopropylate. The variations in the adenine nucleotide levels showed a positive correlation with both α-ketoglutarate and fumarate levels. Nevertheless, the LPO levels increased with increasing bromopropylate concentrations. These results may indicate that the membrane becomes more damaged from an impaired respiratory chain, which may then cause an increase in electron leakage.  相似文献   

9.
In situ remediation employing organohalide-respiring bacteria represents a promising solution for cleanup of persistent organohalide pollutants. The organohalide-respiring bacteria conserve energy by utilizing H2 or organic compounds as electron donors and organohalides as electron acceptors. Reductive dehalogenase (RDase), a terminal reductase of the electron transport chain in organohalide-respiring bacteria, is the key enzyme that catalyzes halogen removal. Accumulating experimental evidence thus far suggests that there are distinct models for respiratory electron transfer in organohalide-respirers of different lineages, e.g., Dehalococcoides, Dehalobacter, Desulfitobacterium and Sulfurospirillum. In this review, to connect the knowledge in organohalide-respiratory electron transport chains to bioremediation applications, we first comprehensively review molecular components and their organization, together with energetics of the organohalide-respiratory electron transport chains, as well as recent elucidation of intramolecular electron shuttling and halogen elimination mechanisms of RDases. We then highlight the implications of organohalide-respiratory electron transport chains in stimulated bioremediation. In addition, major challenges and further developments toward understanding the organohalide-respiratory electron transport chains and their bioremediation applications are identified and discussed.  相似文献   

10.
Ilka Wittig 《BBA》2009,1787(6):672-680
Mitochondrial ATP synthase is mostly isolated in monomeric form, but in the inner mitochondrial membrane it seems to dimerize and to form higher oligomeric structures from dimeric building blocks. Following a period of electron microscopic single particle analyses that revealed an angular orientation of the membrane parts of monomeric ATP synthases in the dimeric structures, and after extensive studies of the monomer-monomer interface, the focus now shifts to the potentially dynamic state of the oligomeric structures, their potential involvement in metabolic regulation of mitochondria and cells, and to newly identified interactions like physical associations of complexes IV and V. Similarly, larger structures like respiratory strings that have been postulated to form from individual respiratory complexes and their supercomplexes, the respirasomes, come into the focus. Progress by structural investigations is paralleled by insights into the functional roles of respirasomes including substrate channelling and stabilization of individual complexes. Cardiolipin was found to be important for the structural stability of respirasomes which in turn is required to maintain cells and tissues in a healthy state. Defects in cardiolipin remodeling cause devastating diseases like Barth syndrome. Novel species-specific roles of respirasomes for the stability of respiratory complexes have been identified, and potential additional roles may be deduced from newly observed interactions of respirasomes with components of the protein import machinery and with the ADP/ATP translocator.  相似文献   

11.
The physiological role of mitochondrial aldehyde dehydrogenase (ALD5) was investigated by analysis of the ald5 mutant (AKD321) in Saccharomyces cerevisiae. K(+)-activated ALDH activity of the ald5 mutant was about 80% of the wild-type in the mitochondrial fraction, while the respiratory activity of the ald5 mutant was greatly reduced. Cytochrome content was also reduced in the ald5 mutant. Enzymatic analysis revealed that the alcohol dehydrogenase activity of the ald5 mutant was higher than that of the wild-type, while glycerol 3-phosphate dehydrogenase activity was the same in the two strains. Ethanol as a carbon source or addition of 1 M NaCl with glucose as the carbon source in the growth medium increased beta-galactosidase activity from an ALD5-lacZ fusion. Overexpression of another mitochondrial ALDH gene (ALD7) had no effect on increasing respiratory function of the ald5 mutant, but showed improved growth on ethanol. These observations show that mitochondrial ALD5 plays a role in regulation or biosynthesis of electron transport chain components.  相似文献   

12.
Abstract: The effect of chronic subcutaneous infusion of sodium azide on the activity of mitochondrial respiratory chain enzymes was investigated in Sprague-Dawley rats. Treatment with ∼1 mg/kg/h sodium azide induced chronic, partial inhibition of cytochrome c oxidase, whereas the activities of respiratory complexes I and III were not significantly affected. The inhibition of cytochrome c oxidase was evident by 7 days after infusion began, and the effect was stable for at least 3 weeks. The selectivity of azide for cytochrome c oxidase is discussed in the context of other findings of azide effects on enzymes. The results of the present study indicate that the sodium azide infusion paradigm described here provides a useful tool for the evaluation of selective and stable cytochrome oxidase inhibition in vivo.  相似文献   

13.
Age-Dependent Impairment of Mitochondrial Function in Primate Brain   总被引:9,自引:2,他引:9  
Abstract: It has been hypothesized that some of the functional impairments associated with aging are the result of increasing oxidative damage to mitochondrial DNA that produces defects in oxidative phosphorylation. To test this hypothesis, we examined the enzymes that catalyze oxidative phosphorylation in crude mitochondrial preparations from frontoparietal cortex of 20 rhesus monkeys (5-34 years old). Samples were assayed for complex I, complex II-III, complex IV, complex V, and citrate synthase activities. When enzyme activities were corrected for citrate synthase activities (to account for variable degrees of mitochondrial enrichment), linear regression analysis demonstrated a significant negative correlation of the activities of complex I (p < 0.002) and complex IV (p < 0.03) with age but no significant change in complex II-III or complex V activities. Relative to animals 6.9 ± 0.9 years old (n = 7), the citrate synthase-corrected activity of complex I was reduced by 17% in animals 22.5 ± 0.9 years old (n = 6) (p < 0.05) and by 22% in animals 30.7 ± 0.9 years old (n = 7) (p < 0.01). Similar age-related reductions in the activities of complexes I and IV were obtained when enzyme activities were corrected for complex II-III activity. These findings show an age-associated progressive impairment of mitochondrial complex I and complex IV activities in cerebral cortices of primates.  相似文献   

14.
Respiratory chain complex I (NADH:ubiquinone oxidoreductase) deficiency is one of the most frequent causes of mitochondrial disease in humans. The activity of this complex can be confidently measured in most tissue samples, but not in cultured skin fibroblasts or circulating lymphocytes. Highly contaminating non-mitochondrial NADH-quinone oxidoreductase activity in fibroblasts and the limited access of substrates to complex I in lymphocytes hinder its measurement in permeabilized cells. Complex I assay in these cells requires the isolation of mitochondria, which in turn necessitates large quantities of cells and is not feasible when studying circulating lymphocytes. Here we report a simple method to measure complex I activity in a minute amount of either cell type. The procedure strongly reduces contaminating NADH:quinone oxidoreductase activity and permits measuring high rates of rotenone-sensitive complex I activity thanks to effective cell permeabilization.  相似文献   

15.

Background

Mitochondrial respiratory chain disorders (MRCDs) are some of the most common metabolic disorders presenting in childhood, however because of it clinical heterogeneity, diagnosis is often challenging. Being a multisystemic disorder with variable and non-specific presentations, definitive diagnosis requires a combination of investigative approaches, and is often a laborious process.

Scope of review

In this review we provide a broad overview of the clinical presentations of MRCDs in childhood, evaluating the different diagnostic approaches and treatment options, and highlighting the recent research advances in this area.

Major conclusions

Extensive research over the years has significantly increased the frequency with which accurate diagnosis is being made, including the identification of new biomarkers and next generation sequencing (NGS) technologies. NGS has provided a breakthrough in unravelling the genetic basis of MRCDs, especially considering the complexity of mitochondrial genetics with its dual genetic contributions.

General significance

With an increased understanding of the pathophysiology of this group of disorders, clinical trials are now being established using a number of different therapeutic approaches, with the hope of changing the focus of treatment from being largely supportive to potentially having a positive effect on the natural history of the disorder.This article is part of a Special Issue entitled: Special Issue: Frontiers of Mitochondria IG000218.  相似文献   

16.
Summary Parsimony trees relating DNA sequences coding for lysozymesc and -lactalbumins suggest that the gene duplication that allowed lactalbumin to evolve from lysozyme preceded the divergence of mammals and birds. Comparisons of the amino acid sequences of additional lysozymes and lactalbumins are consistent with this view. When all base positions are considered, the probability that the duplication leading to the lactalbumin gene occurred after the start to mammalian evolution is estimated to be 0.05–0.10. Elimination of the phylogenetic noise generated by fast evolution and compositional bias at third positions of codons reduced this probability to 0.002–0.03. Thus the gene duplication may have long preceded the acquisition of lactalbumin function.  相似文献   

17.
Depressive disorders, including major depression, are serious and disabling. However, the exact pathophysiology of depression is not clearly understood. Life stressors contribute in some fashion to depression and are an extension of what occurs normally. In this context, chronic stress has been used as an animal model of depression. Based on the hypothesis that metabolism impairment might be involved in the pathophysiology of depression, in the present work we evaluated the activities of mitochondrial respiratory chain complexes and creatine kinase in brain of rats subjected to chronic stress. After 40 days of mild stress, a reduction in sweet food ingestion was observed, as well as increased adrenal gland weight, when compared to control group. We also verified that control group gained weight after 40 days, but stressed group did not. Moreover, our findings showed that complex I, III and IV were inhibited in stress group only in cerebral cortex and cerebellum. On the other hand, complex II and creatine kinase were not affected in stressed group. Although it is difficult to extrapolate our findings to the human condition, the inhibition of mitochondrial respiratory chain by chronic stress may be one mechanism in the pathophysiology of depressive disorders.  相似文献   

18.
The rate of CO2- and p-benzoquione-dependent photosynthetic O2 evolution by Anabaena variabilis cells remained unaltered and the rate of O2 uptake observed after switching off the light (endogenous respiration) was enhanced by a factor of 6–8 when the O2 concentration was increased from 200 to 400 M. Photosystem-I-linked O2 uptake and respiration of the cells incubated with ascorbate and N,N,NN-tetramethyl-p-phenylenediamine was not appreciable influenced by the O2 concentration. 2-Iodo-6-isopropyl-3-methyl-2,4,4-trinitrodiphenyl ether, blocking electron transfer at the plastoquinone level, suppressed O2 evolution and had no influence on endogenous respiration. 2-n-Heptyl-4-hydroxyquinoline-N-oxide, an inhibitor of electron transfer between photosystems II and I, as well as the cytochrome-oxidase inhibitors N 3 - , CN- and NH2OH, caused a 35–50% retardation of endogenous respiration and blocked photosynthetic O2 evolution. The molar ratio of cytochromes b6, f, c-553, aa3 and photosystem-I reaction centers in the isolated membranes equalled approx. 2:1:2:0.7:2. It is inferred that endogenous respiration of A. variabilis cells is inhibited by the light-induced electron flow through both photosystems at the level of the plastoquinone-plastocyanin-oxidoreductase complex.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DNP-INT 2-iodo-6-isopropyl-3-methyl-2,4,4-trinitrodiphenyl ether - Hepes 4-(2-hydroxyethyl)-1-piperazine ethansulfonic acid - TMPD N,N,NN-tetramethyl-p-phenylenediamine  相似文献   

19.
Disturbances in substrate oxidations in muscle mitochondria from patients with a suspicion of a mitochondrial myopathy may arise from a deficiency of one or more of the complexes of the respiratory chain or of the pyruvate dehydrogenase complex. However, we found no clear-cut defect in a substantial part of such patients. In this report we discuss some of the other possibilities which could account for the disturbed substrate oxidation rates. Special attention will be paid to defects which are localized outside the respiratory chain, such as defects in post-respiratory chain enzymes, defects in transport mechanisms of the mitochondrial inner or outer membrane, deficiency of cofactors and deficiency of heat-shock protein. (Mol Cell Biochem 174: 243–247, 1997)  相似文献   

20.
Hypoxia-inducible factor 1 (HIF-1) mediates adaptive responses to reduced oxygen availability by regulating gene expression. A critical cell-autonomous adaptive response to chronic hypoxia controlled by HIF-1 is reduced mitochondrial mass and/or metabolism. Exposure of HIF-1-deficient fibroblasts to chronic hypoxia results in cell death due to excessive levels of reactive oxygen species (ROS). HIF-1 reduces ROS production under hypoxic conditions by multiple mechanisms including: a subunit switch in cytochrome c oxidase from the COX4-1 to COX4-2 regulatory subunit that increases the efficiency of complex IV; induction of pyruvate dehydrogenase kinase 1, which shunts pyruvate away from the mitochondria; induction of BNIP3, which triggers mitochondrial selective autophagy; and induction of microRNA-210, which blocks assembly of Fe/S clusters that are required for oxidative phosphorylation. HIF-1 is also required for ischemic preconditioning and this effect may be due in part to its induction of CD73, the enzyme that produces adenosine. HIF-1-dependent regulation of mitochondrial metabolism may also contribute to the protective effects of ischemic preconditioning. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号