共查询到20条相似文献,搜索用时 156 毫秒
1.
The accumulation of oxidatively modified proteins has been shown to be a characteristic feature of many neurodegenerative disorders and its regulation requires efficient proteolytic processing. One component of the mitochondrial proteolytic system is Lon, an ATP-dependent protease that has been shown to degrade oxidatively modified aconitase in vitro and may thus play a role in defending against the accumulation of oxidized matrix proteins in mitochondria. Using an assay system that allowed us to distinguish between basal and ATP-stimulated Lon protease activity, we have shown in isolated non-synaptic rat brain mitochondria that Lon protease is highly susceptible to oxidative inactivation by peroxynitrite (ONOO(-)). This susceptibility was more pronounced with regard to ATP-stimulated activity, which was inhibited by 75% in the presence of a bolus addition of 1mM ONOO(-), whereas basal unstimulated activity was inhibited by 45%. Treatment of mitochondria with a range of peroxynitrite concentrations (10-1000muM) revealed that a decline in Lon protease activity preceded electron transport chain (ETC) dysfunction (complex I, II-III and IV) and that ATP-stimulated activity was approximately fivefold more sensitive than basal Lon protease activity. Furthermore, supplementation of mitochondrial matrix extracts with reduced glutathione, following ONOO(-) exposure, resulted in partial restoration of basal and ATP-stimulated activity, thus suggesting possible redox regulation of this enzyme complex. Taken together these findings suggest that Lon protease may be particularly vulnerable to inactivation in conditions associated with GSH depletion and elevated oxidative stress. 相似文献
2.
Glycyrrhetinic acid (GE), the aglycone of glycyrrhizic acid, a triterpene glycoside which represents one of the main constituents of licorice root, induces an oxidative stress in liver mitochondria responsible for the induction of membrane permeability transition. In fact, GE, by interacting with the mitochondrial respiratory chain, generates hydrogen peroxide which in turn oxidizes critical thiol groups and endogenous pyridine nucleotides leading to the opening of the transition pore. Most likely the reactive group of GE is the carbonyl oxygen in C-11 which, by interacting mainly with a Fe/S centre of mitochondrial complex I, generates an oxygen-centered radical responsible for the pro-oxidant action. 相似文献
3.
4.
Mitochondrial superoxide production and respiratory activity: Biphasic response to ischemic duration
Satoshi Matsuzaki 《Archives of biochemistry and biophysics》2009,484(1):87-10803
Long bouts of ischemia are associated with electron transport chain deficits and increases in free radical production. In contrast, little is known regarding the effect of brief ischemia on mitochondrial function and free radical production. This study was undertaken to examine the relationship between the duration of ischemia, effects upon electron transport chain activities, and the mitochondrial production of free radicals. Rat hearts were subjected to increasing ischemic durations, mitochondria were isolated, and superoxide production and electron transport chain activities were measured. Results indicate that even brief ischemic durations induced a significant increase in superoxide production. This rate was maintained with ischemic durations less than 15 min, and then increased further with longer ischemic times. Mechanistically, brief ischemia was accompanied by an increase in NADH oxidase activity, reflected by a specific increase in complex IV activity. In contrast, longer ischemic durations were accompanied by a decrease in NADH oxidase activity, reflected by deficits in complexes I and IV activities. 相似文献
5.
Sadek HA Humphries KM Szweda PA Szweda LI 《Archives of biochemistry and biophysics》2002,406(2):222-228
Reperfusion of ischemic myocardial tissue results in an increase in mitochondrial free radical production and declines in respiratory activity. The effects of ischemia and reperfusion on the activities of Krebs cycle enzymes, as well as enzymes involved in electron transport, were evaluated to provide insight into whether free radical events are likely to affect enzymatic and mitochondrial function(s). An in vivo rat model was utilized in which ischemia is induced by ligating the left anterior descending coronary artery. Reperfusion, initiated by release of the ligature, resulted in a significant decline in NADH-linked ADP-dependent mitochondrial respiration as assessed in isolated cardiac mitochondria. Assays of respiratory chain complexes revealed reduction in the activities of complex I and, to a lesser extent, complex IV exclusively during reperfusion, with no alterations in the activities of complexes II and III. Moreover, Krebs cycle enzymes alpha-ketoglutarate dehydrogenase and aconitase were susceptible to reperfusion-induced inactivation with no decline in the activities of other Krebs cycle enzymes. The decline in alpha-ketoglutarate dehydrogenase activity during reperfusion was associated with a loss in native lipoic acid on the E2 subunit, suggesting oxidative inactivation. Inhibition of complex I in vitro promotes free radical generation. alpha-Ketoglutarate dehydrogenase and aconitase are uniquely susceptible to in vitro oxidative inactivation. Thus, our results suggest a scenario in which inhibition of complex I promotes free radical production leading to oxidative inactivation of alpha-ketoglutarate dehydrogenase and aconitase. 相似文献
6.
Shanquan Wang Lan Qiu Xiaowei Liu Guofang Xu Michael Siegert Qihong Lu Philippe Juneau Ling Yu Dawei Liang Zhili He Rongliang Qiu 《Biotechnology advances》2018,36(4):1194-1206
In situ remediation employing organohalide-respiring bacteria represents a promising solution for cleanup of persistent organohalide pollutants. The organohalide-respiring bacteria conserve energy by utilizing H2 or organic compounds as electron donors and organohalides as electron acceptors. Reductive dehalogenase (RDase), a terminal reductase of the electron transport chain in organohalide-respiring bacteria, is the key enzyme that catalyzes halogen removal. Accumulating experimental evidence thus far suggests that there are distinct models for respiratory electron transfer in organohalide-respirers of different lineages, e.g., Dehalococcoides, Dehalobacter, Desulfitobacterium and Sulfurospirillum. In this review, to connect the knowledge in organohalide-respiratory electron transport chains to bioremediation applications, we first comprehensively review molecular components and their organization, together with energetics of the organohalide-respiratory electron transport chains, as well as recent elucidation of intramolecular electron shuttling and halogen elimination mechanisms of RDases. We then highlight the implications of organohalide-respiratory electron transport chains in stimulated bioremediation. In addition, major challenges and further developments toward understanding the organohalide-respiratory electron transport chains and their bioremediation applications are identified and discussed. 相似文献
7.
Ilka Wittig 《BBA》2009,1787(6):672-680
Mitochondrial ATP synthase is mostly isolated in monomeric form, but in the inner mitochondrial membrane it seems to dimerize and to form higher oligomeric structures from dimeric building blocks. Following a period of electron microscopic single particle analyses that revealed an angular orientation of the membrane parts of monomeric ATP synthases in the dimeric structures, and after extensive studies of the monomer-monomer interface, the focus now shifts to the potentially dynamic state of the oligomeric structures, their potential involvement in metabolic regulation of mitochondria and cells, and to newly identified interactions like physical associations of complexes IV and V. Similarly, larger structures like respiratory strings that have been postulated to form from individual respiratory complexes and their supercomplexes, the respirasomes, come into the focus. Progress by structural investigations is paralleled by insights into the functional roles of respirasomes including substrate channelling and stabilization of individual complexes. Cardiolipin was found to be important for the structural stability of respirasomes which in turn is required to maintain cells and tissues in a healthy state. Defects in cardiolipin remodeling cause devastating diseases like Barth syndrome. Novel species-specific roles of respirasomes for the stability of respiratory complexes have been identified, and potential additional roles may be deduced from newly observed interactions of respirasomes with components of the protein import machinery and with the ADP/ATP translocator. 相似文献
8.
Chronic In Vivo Sodium Azide Infusion Induces Selective and Stable Inhibition of Cytochrome c Oxidase 总被引:1,自引:1,他引:1
M. Catherine Bennett Gary W. Mlady Young-Hwa Kwon †‡ Gregory M. Rose 《Journal of neurochemistry》1996,66(6):2606-2611
Abstract: The effect of chronic subcutaneous infusion of sodium azide on the activity of mitochondrial respiratory chain enzymes was investigated in Sprague-Dawley rats. Treatment with ∼1 mg/kg/h sodium azide induced chronic, partial inhibition of cytochrome c oxidase, whereas the activities of respiratory complexes I and III were not significantly affected. The inhibition of cytochrome c oxidase was evident by 7 days after infusion began, and the effect was stable for at least 3 weeks. The selectivity of azide for cytochrome c oxidase is discussed in the context of other findings of azide effects on enzymes. The results of the present study indicate that the sodium azide infusion paradigm described here provides a useful tool for the evaluation of selective and stable cytochrome oxidase inhibition in vivo. 相似文献
9.
Allen C. Bowling Elizabeth M. Mutisya Lary C. Walker† Donald L. Price†‡§ Linda C. Cork† M. Hint Beal 《Journal of neurochemistry》1993,60(5):1964-1967
Abstract: It has been hypothesized that some of the functional impairments associated with aging are the result of increasing oxidative damage to mitochondrial DNA that produces defects in oxidative phosphorylation. To test this hypothesis, we examined the enzymes that catalyze oxidative phosphorylation in crude mitochondrial preparations from frontoparietal cortex of 20 rhesus monkeys (5-34 years old). Samples were assayed for complex I, complex II-III, complex IV, complex V, and citrate synthase activities. When enzyme activities were corrected for citrate synthase activities (to account for variable degrees of mitochondrial enrichment), linear regression analysis demonstrated a significant negative correlation of the activities of complex I (p < 0.002) and complex IV (p < 0.03) with age but no significant change in complex II-III or complex V activities. Relative to animals 6.9 ± 0.9 years old (n = 7), the citrate synthase-corrected activity of complex I was reduced by 17% in animals 22.5 ± 0.9 years old (n = 6) (p < 0.05) and by 22% in animals 30.7 ± 0.9 years old (n = 7) (p < 0.01). Similar age-related reductions in the activities of complexes I and IV were obtained when enzyme activities were corrected for complex II-III activity. These findings show an age-associated progressive impairment of mitochondrial complex I and complex IV activities in cerebral cortices of primates. 相似文献
10.
Chretien D Bénit P Chol M Lebon S Rötig A Munnich A Rustin P 《Biochemical and biophysical research communications》2003,301(1):222-224
Respiratory chain complex I (NADH:ubiquinone oxidoreductase) deficiency is one of the most frequent causes of mitochondrial disease in humans. The activity of this complex can be confidently measured in most tissue samples, but not in cultured skin fibroblasts or circulating lymphocytes. Highly contaminating non-mitochondrial NADH-quinone oxidoreductase activity in fibroblasts and the limited access of substrates to complex I in lymphocytes hinder its measurement in permeabilized cells. Complex I assay in these cells requires the isolation of mitochondria, which in turn necessitates large quantities of cells and is not feasible when studying circulating lymphocytes. Here we report a simple method to measure complex I activity in a minute amount of either cell type. The procedure strongly reduces contaminating NADH:quinone oxidoreductase activity and permits measuring high rates of rotenone-sensitive complex I activity thanks to effective cell permeabilization. 相似文献
11.
Summary Parsimony trees relating DNA sequences coding for lysozymesc and -lactalbumins suggest that the gene duplication that allowed lactalbumin to evolve from lysozyme preceded the divergence of mammals and birds. Comparisons of the amino acid sequences of additional lysozymes and lactalbumins are consistent with this view. When all base positions are considered, the probability that the duplication leading to the lactalbumin gene occurred after the start to mammalian evolution is estimated to be 0.05–0.10. Elimination of the phylogenetic noise generated by fast evolution and compositional bias at third positions of codons reduced this probability to 0.002–0.03. Thus the gene duplication may have long preceded the acquisition of lactalbumin function. 相似文献
12.
Inhibition of mitochondrial respiratory chain in brain of rats subjected to an experimental model of depression 总被引:1,自引:0,他引:1
Rezin GT Cardoso MR Gonçalves CL Scaini G Fraga DB Riegel RE Comim CM Quevedo J Streck EL 《Neurochemistry international》2008,53(6-8):395-400
Depressive disorders, including major depression, are serious and disabling. However, the exact pathophysiology of depression is not clearly understood. Life stressors contribute in some fashion to depression and are an extension of what occurs normally. In this context, chronic stress has been used as an animal model of depression. Based on the hypothesis that metabolism impairment might be involved in the pathophysiology of depression, in the present work we evaluated the activities of mitochondrial respiratory chain complexes and creatine kinase in brain of rats subjected to chronic stress. After 40 days of mild stress, a reduction in sweet food ingestion was observed, as well as increased adrenal gland weight, when compared to control group. We also verified that control group gained weight after 40 days, but stressed group did not. Moreover, our findings showed that complex I, III and IV were inhibited in stress group only in cerebral cortex and cerebellum. On the other hand, complex II and creatine kinase were not affected in stressed group. Although it is difficult to extrapolate our findings to the human condition, the inhibition of mitochondrial respiratory chain by chronic stress may be one mechanism in the pathophysiology of depressive disorders. 相似文献
13.
The rate of CO2- and p-benzoquione-dependent photosynthetic O2 evolution by Anabaena variabilis cells remained unaltered and the rate of O2 uptake observed after switching off the light (endogenous respiration) was enhanced by a factor of 6–8 when the O2 concentration was increased from 200 to 400 M. Photosystem-I-linked O2 uptake and respiration of the cells incubated with ascorbate and N,N,NN-tetramethyl-p-phenylenediamine was not appreciable influenced by the O2 concentration. 2-Iodo-6-isopropyl-3-methyl-2,4,4-trinitrodiphenyl ether, blocking electron transfer at the plastoquinone level, suppressed O2 evolution and had no influence on endogenous respiration. 2-n-Heptyl-4-hydroxyquinoline-N-oxide, an inhibitor of electron transfer between photosystems II and I, as well as the cytochrome-oxidase inhibitors N
3
-
, CN- and NH2OH, caused a 35–50% retardation of endogenous respiration and blocked photosynthetic O2 evolution. The molar ratio of cytochromes b6, f, c-553, aa3 and photosystem-I reaction centers in the isolated membranes equalled approx. 2:1:2:0.7:2. It is inferred that endogenous respiration of A. variabilis cells is inhibited by the light-induced electron flow through both photosystems at the level of the plastoquinone-plastocyanin-oxidoreductase complex.Abbreviations DCMU
3-(3,4-dichlorophenyl)-1,1-dimethylurea
- DNP-INT
2-iodo-6-isopropyl-3-methyl-2,4,4-trinitrodiphenyl ether
- Hepes
4-(2-hydroxyethyl)-1-piperazine ethansulfonic acid
- TMPD
N,N,NN-tetramethyl-p-phenylenediamine 相似文献
14.
Gregg L. Semenza 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2011,1813(7):1263-1268
Hypoxia-inducible factor 1 (HIF-1) mediates adaptive responses to reduced oxygen availability by regulating gene expression. A critical cell-autonomous adaptive response to chronic hypoxia controlled by HIF-1 is reduced mitochondrial mass and/or metabolism. Exposure of HIF-1-deficient fibroblasts to chronic hypoxia results in cell death due to excessive levels of reactive oxygen species (ROS). HIF-1 reduces ROS production under hypoxic conditions by multiple mechanisms including: a subunit switch in cytochrome c oxidase from the COX4-1 to COX4-2 regulatory subunit that increases the efficiency of complex IV; induction of pyruvate dehydrogenase kinase 1, which shunts pyruvate away from the mitochondria; induction of BNIP3, which triggers mitochondrial selective autophagy; and induction of microRNA-210, which blocks assembly of Fe/S clusters that are required for oxidative phosphorylation. HIF-1 is also required for ischemic preconditioning and this effect may be due in part to its induction of CD73, the enzyme that produces adenosine. HIF-1-dependent regulation of mitochondrial metabolism may also contribute to the protective effects of ischemic preconditioning. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection. 相似文献
15.
The proton pumps of the mitochondrial electron transport chain (ETC) convert redox energy into the proton motive force (ΔP), which is subsequently used by the ATP synthase to regenerate ATP. The limited available redox free energy requires the proton pumps to operate close to equilibrium in order to maintain a high ΔP, which in turn is needed to maintain a high phosphorylation potential. Current biochemical assays measure complex activities far from equilibrium and so shed little light on their function under physiological conditions. Here we combine absorption spectroscopy of the ETC hemes, NADH fluorescence spectroscopy and oxygen consumption to simultaneously measure the redox potential of the intermediate redox pools, the components of ΔP and the electron flux in RAW 264.7 mouse macrophages. We confirm that complex I and III operate near equilibrium and quantify the linear relationship between flux and disequilibrium as a metric of their function under physiological conditions. In addition, we quantify the dependence of complex IV turnover on ΔP and the redox potential of cytochrome c to determine the complex IV driving force and find that the turnover is proportional to this driving force. This form of quantification is a more relevant metric of ETC function than standard biochemical assays and can be used to study the effect of mutations in either mitochondrial or nuclear genome affecting mitochondrial function, post-translation changes, different subunit isoforms, as well as the effect of pharmaceuticals on ETC function. 相似文献
16.
Acetylsalicylic acid and acetaminophen protect against MPP+-induced mitochondrial damage and superoxide anion generation 总被引:1,自引:0,他引:1
The effects of 1-methyl-4-phenylpyridinium (MPP+) has been extensively researched due to its selective toxicity to dopaminergic neurons. Mitochondrial dysfunction which is common in the etiology of Parkinson's disease (PD), has been widely implicated in MPP+-induced toxicity. MPP+-induced mitochondrial dysfunction is believed to result in the generation of free radicals. This study was therefore performed to assess the effect of MPP+ on mitochondrial function and the ability of MPP+ to generate superoxide free radicals. Furthermore, we assessed the ability of the non-narcotic analgesics, acetaminophen and acetylsalicylic acid to prevent any diliterious effects of the potent neurotoxin, MPP+, on mitochondrial function and superoxide anion generation, in vivo. Acetylsalicylic acid and acetaminophen prevented the MPP+-induced inhibition of the electron transport chain and complex I activity. In addition, acetylsalicylic acid and acetaminophen significantly attenuated the MPP+-induced superoxide anion generation. Furthermore the results provide novel data explaining the ability of these agents to prevent MPP+-induced mitochondrial dysfunction and subsequent reactive oxygen species generation. While these findings suggest the usefulness of non-narcotic analgesics in neuroprotective therapy in neurodegenerative diseases, acetylsalicylic acid appears to be a potential candidate in prophylactic as well as in adjuvant therapy in Parkinson's disease. 相似文献
17.
Escherichia coli grown anaerobically with trimethylamine N-oxide (TMAO) as a terminal electron acceptor develops a new cytochrome pathway in addition to the aerobic respiratory pathways which are still formed. Formate, NADH, and possibly other substrates derived from glucose, supply electrons to this pathway. Cytochromes with α-absorption peaks at about 548, 552, 554 and 557 nm are rapidly reoxidized by TMAO in a reaction which is not inhibited by 2-n-heptyl-4-hydroxyquinoneN-oxide. CuSO4 inhibits the reoxidation by TMAO of the first two of these cytochromes. This suggests that the pathway of electron transfer leading to the reduction of TMAO is: substrates → cytochromes 548,552 → cytochromes 554,557 → trimethylamine-N-oxide reductase → TMAO. These cytochromes, but not those of the aerobic respiratory pathways, are reoxidized by the membrane-impermeant oxidant ammonium persulfate in intact cells. This suggests that the cytochromes of the TMAO reduction pathway and / or trimethylamine-N-oxide reductase are situated at the periplasmic surface of the cytoplasmic membrane of E. coli. 相似文献
18.
Christian Cortés-Rojo Elizabeth Calderón-Cortés Mónica Clemente-Guerrero Mirella Estrada-Villagómez Salvador Manzo-Avalos Ricardo Mejía-Zepeda Istvan Boldogh Alfredo Saavedra-Molina 《Journal of bioenergetics and biomembranes》2009,41(1):15-28
Lipoperoxidative damage to the respiratory chain proteins may account for disruption in mitochondrial electron transport chain
(ETC) function and could lead to an augment in the production of reactive oxygen species (ROS). To test this hypothesis, we
investigated the effects of lipoperoxidation on ETC function and cytochromes spectra of Saccharomyces cerevisiae mitochondria. We compared the effects of Fe2+ treatment on mitochondria isolated from yeast with native (lipoperoxidation-resistant) and modified (lipoperoxidation-sensitive)
fatty acid composition. Augmented sensitivity to oxidative stress was observed in the complex III-complex IV segment of the
ETC. Lipoperoxidation did not alter the cytochromes content. Under lipoperoxidative conditions, cytochrome c reduction by succinate was almost totally eliminated by superoxide dismutase and stigmatellin. Our results suggest that lipoperoxidation
impairs electron transfer mainly at cytochrome b in complex III, which leads to increased resistance to antimycin A and ROS generation due to an electron leak at the level
of the QO site of complex III. 相似文献
19.
Thomas Ross Karol Szczepanek Elizabeth Bowler Ying Hu Andrew Larner Edward J. Lesnefsky Qun Chen 《Biochimica et Biophysica Acta (BBA)/General Subjects》2013
Background
The reverse electron flow-induced ROS generation (RFIR) is decreased in ischemia-damaged mitochondria. Cardiac ischemia leads to decreased complex I activity and depolarized inner mitochondrial membrane potential (ΔΨ) that are two key factors to affect the RFIR in isolated mitochondria. We asked if a partial inhibition of complex I activity without alteration of the ΔΨ is able to decrease the RFIR.Methods
Cardiac mitochondria were isolated from mouse heart (C57BL/6) with and without ischemia. The rate of H2O2 production from mitochondria was determined using amplex red coupled with horseradish peroxidase. Mitochondria were isolated from the mitochondrial-targeted STAT3 overexpressing mouse (MLS-STAT3E) to clarify the role of partial complex I inhibition in RFIR production.Results
The RFIR was decreased in ischemia-damaged mouse heart mitochondria with decreased complex I activity and depolarized ΔΨ. However, the RFIR was not altered in the MLS-STAT3E heart mitochondria with complex I defect but without depolarization of the ΔΨ. A slight depolarization of the ΔΨ in wild type mitochondria completely eliminated the RFIR.Conclusions
The mild uncoupling but not the partially decreased complex I activity contributes to the observed decrease in RFIR in ischemia-damaged mitochondria.General significance
The RFIR is less likely to be a key source of cardiac injury during reperfusion. 相似文献20.
Defects in mitochondrial energy metabolism have been implicated in several neurodegenerative disorders. Defective complex I (NADH:ubiquinone oxidoreductase) activity plays a key role in Leber's hereditary optic neuropathy and, possibly, Parkinson's disease, but there is no way to assess this enzyme in the living brain. We previously described an in vitro quantitative autoradiographic assay using [(3)H]dihydrorotenone ([(3)H]DHR) binding to complex I. We have now developed an in vivo autoradiographic assay for complex I using [(3)H]DHR binding after intravenous administration. In vivo [(3)H]DHR binding was regionally heterogeneous, and brain uptake was rapid. Binding was enriched in neurons compared with glia, and white matter had the lowest levels of binding. In vivo [(3)H]DHR binding was markedly reduced by local and systemic infusion of rotenone and was enhanced by local NADH administration. There was an excellent correlation between regional levels of in vivo [(3)H]DHR binding and the in vitro activities of complex II (succinate dehydrogenase) and complex IV (cytochrome oxidase), suggesting that the stoichiometry of these components of the electron transport chain is relatively constant across brain regions. The ability to assay complex I in vivo should provide a valuable tool to investigate the status of this mitochondrial enzyme in the living brain and suggests potential imaging techniques for complex I in humans. 相似文献