首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neuronal differentiation is a complex process in which many different signalling pathways may be involved. An increase in the intracellular levels of cyclic AMP (cAMP) has been shown to induce neuronal differentiation and also to cooperate with NGF to induce PC12 neurite outgrowth in a Ras-dependent manner. However, the neuritogenic activities associated with cAMP are still not well understood. The purpose of this study was to investigate the potential neuritogenic activities mediated by cAMP. For this purpose, we used the human neuroblastoma cell line SH-SY5Y. These neuroblastoma cells respond to cAMP by forming neurite-like extensions. We tried to identify some essential pathways involved in the cAMP-induced neurite elongation of these cells. Our results indicated that PKA is transiently activated in this elongation model. When we blocked PKA activity, elongation did not take place. Similarly, PI3K also plays an essential role because when we blocked this kinase activity, there was no neurite elongation. Indeed, over-expression of the p110-catalytic subunit or an activating form of the p85-regulatory subunit (p65) is able to induce some degree of neurite extension. Moreover, our results showed that when elongation is initiated, PI3K is still essential for maintenance of the neuronal morphology, whereas PKA or MAPK (ERKs or p38) activation does not appear to be necessary during this process.  相似文献   

2.
The neural cell adhesion molecule, NCAM, is known to stimulate neurite outgrowth from primary neurones and PC12 cells presumably through signalling pathways involving the fibroblast growth factor receptor (FGFR), protein kinase A (PKA), protein kinase C (PKC), the Ras-mitogen activated protein kinase (MAPK) pathway and an increase in intracellular Ca2+ levels. Stimulation of neurones with the synthetic NCAM-ligand, C3, induces neurite outgrowth through signalling pathways similar to the pathways activated through physiological, homophilic NCAM-stimulation. We present here data indicating that phosphatidylinositol 3-kinase (PI3K) is required for NCAM-mediated neurite outgrowth from PC12-E2 cells and from cerebellar and dopaminergic neurones in primary culture, and that the thr/ser kinase Akt/protein kinase B (PKB) is phosphorylated downstream of PI3K after stimulation with C3. Moreover, we present data indicating a survival-promoting effect of NCAM-stimulation by C3 on cerebellar and dopaminergic neurones induced to undergo apoptosis. This protective effect of C3 included an inhibition of both DNA-fragmentation and caspase-3 activation. The survival-promoting effect of NCAM-stimulation was also shown to be dependent on PI3K.  相似文献   

3.
4.
Nerve growth factor (NGF) and insulin-like growth factor-1 (IGF-1) play an important role in promoting axonal growth from dorsal root ganglion (DRG) neurons. Adult DRG neurons exhibit neurotrophin-independent survival, providing an excellent system with which to study trophic factor effects on neurite growth in the absence of significant survival effects. Using young adult rat DRG neurons we have demonstrated a synergistic effect of NGF plus IGF (N + I), compared with either factor alone, in promoting neurite growth. Not only does the presence of NGF and IGF-1 enhance neurite initiation, it also significantly augments the extent of neurite branching and elongation. We have also examined potential mechanism(s) underlying this synergistic effect. Immunoblotting experiments of classical growth factor intermediary signalling pathways (PI 3-K-Akt-GSK-3 and Ras-Raf-MAPK) were performed using phospho-specific antibodies to assess activation state. We found that activation of Akt and MAPK correlated with neurite elongation and branching. However, using pharmacological inhibitors, we observed that a PI 3-K pathway involving both Akt and GSK-3 appeared to be more important for neurite extension and branching than MAPK-dependent signalling. In fact, inhibition of activation of MAPK with U0126 resulted in increased neuritic branching, possibly as a result of the concomitant increase observed in phospho-Akt. Furthermore, inhibition of GSK3 (which is negatively regulated by phosphorylation on S9/S21) also resulted in increased growth. Our data point to signalling convergence upon the PI 3-K-Akt-GSK-3 pathway that underlies the NGF plus IGF synergism. In addition, to our knowledge, this is the first report in primary neurons that inhibition of GSK3 results in an enhanced neurite growth.  相似文献   

5.
Neuritogenesis is a process through which neurons generate their widespread axon and dendrites. The microtubule cytoskeleton plays crucial roles throughout neuritogenesis. Our previous study indicated that the amount of type II protein kinase A (PKA) on microtubules significantly increased upon neuronal differentiation and neuritogenesis. While the overall pool of PKA has been shown to participate in various neuronal processes, the function of microtubule-associated PKA during neuritogenesis remains largely unknown. First, we showed that PKA localized to microtubule-based region in different neurons. Since PKA is essential for various cellular functions, globally inhibiting PKA activity will causes a wide variety of phenotypes in neurons. To examine the function of microtubule-associated PKA without changing the total PKA level, we utilized the neuron-specific PKA anchoring protein MAP2. Overexpressing the dominant negative MAP2 construct that binds to type II PKA but cannot bind to the microtubule cytoskeleton in dissociated hippocampal neurons removed PKA from microtubules and resulted in compromised neurite elongation. In addition, we demonstrated that the association of PKA with microtubules can also enhance cell protrusion using the non-neuronal P19 cells. Overexpressing a MAP2 deletion construct which does not target PKA to the microtubule cytoskeleton caused non-neuronal cells to generate shorter cell protrusions than control cells overexpressing wild-type MAP2 that anchors PKA to microtubules. Finally, we demonstrated that the ability of microtubule-associated PKA to promote protrusion elongation was independent of MAP2 phosphorylation. This suggests other proteins in close proximity to the microtubule cytoskeleton are involved in this process.  相似文献   

6.
The cAMP‐dependent protein kinase (PKA), protein kinase C (PKC) and phosphatidylinositol 3‐kinase (PI3K) pathways control most relevant functions in male germ cells including motility. Recently we demonstrated that phosphorylation state of glycogen synthase kinase‐3α (GSK3A) is also a key event in the control of boar spermatozoa motility. However, the upstream regulators of GSK3A serine phosphorylation (inhibition) in male germ cells remain largely unknown. This work investigates the involvement of PKA, PKC and PI3K pathways in GSK3A phosphorylation in boar spermatozoa. A capacitating medium (TCM) or the phosphodiesterase‐resistant cell permeable cAMP analogue 8Br‐cAMP cause a significant increase in Ser21 GSK3A phosphorylation associated with a simultaneous significant increase in boar spermatozoa motility. These effects are blocked after preincubation of spermatozoa with PKA inhibitor H89 or PKC inhibitor Ro‐32‐0432. The PI3K inhibitor LY294002 increases both spermatozoa motility parameters and the basal GSK3A phosphorylation, but does not affect either TCM‐ or 8Br‐cAMP‐stimulated GSK3A phosphorylation. PI3K inhibition effects are mediated by an increase in intracellular cAMP levels in boar spermatozoa and are suppressed by PKA inhibitor H89. In summary, we demonstrate that PKA, PKC and PI3K pathways crosstalk in porcine male germ cells to crucially regulate GSK3A phosphorylation which subsequently controls cell motility. In addition, our results suggest that PI3K is upstream of PKA which lies upstream of PKC in this regulatory cascade(s). Our findings contribute to elucidate the molecular mechanisms underlying the regulation of one of the most relevant male germ cell functions, motility. J. Cell. Biochem. 109: 65–73, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Inhibitors of neuronal regeneration: mediators and signaling mechanisms   总被引:14,自引:0,他引:14  
Neuritogenesis and its inhibition are opposite and balancing processes during development as well as pathological states of adult neuron. In particular, the inability of adult central nervous system (CNS) neurons to regenerate upon injury has been attributed to both a lack of neuritogenic ability and the presence of neuronal growth inhibitors in the CNS environment. I review here recent progress in our understanding of neuritogenic inhibitors, with particular emphasis on those with a role in the inhibition of neuronal regeneration in the CNS, their signaling cascades and signal mediators. Neurotrophines acting through the tropomyosin-related kinase (Trk) family and p75 receptors promote neuritogenesis, which appears to require sustained activation of the mitogen activated protein (MAP) kinase pathway, and/or the activation of phosphotidylinositol 3-kinase (PI3 kinase). During development, a plethora of guidance factors and their receptors navigate the growing axon. However, much remained to be learned about the signaling receptors and pathways that mediate the activity of inhibitors of CNS regeneration. There is growing evidence that neuronal guidance molecules, particularly semaphorins, may also have a role as inhibitors of CNS regeneration. Although direct links have not yet been established in many cases, signals from these agents may ultimately converge upon the modulators and effectors of the Rho-family GTPases. Rho-family GTPases and their effectors modulate the activities of actin modifying molecules such as cofilin and profilin, resulting in cytoskeletal changes associated with growth cone extension or retraction.  相似文献   

8.
The Neural Cell Adhesion Molecule (NCAM) plays a crucial role in development of the central nervous system regulating cell migration, differentiation and synaptogenesis. NCAM mediates cell-cell adhesion through homophilic NCAM binding, subsequently resulting in activation of the fibroblast growth factor receptor (FGFR). NCAM-mediated adhesion leads to activation of various intracellular signal transduction pathways, including the Ras-mitogen activated protein kinase (MAPK) and the phosphatidylinositol-3-kinase (PI3K)-Akt pathways. A synthetic peptide derived from the second fibronectin type III module of NCAM, the FGL peptide, binds to and induces phosphorylation of FGFR without prior homophilic NCAM binding. We here present evidence that this peptide is able to mimic NCAM heterophilic binding to the FGFR by inducing neuronal differentiation as reflected by neurite outgrowth through a direct interaction with FGFR in primary cultures of three different neuronal cell types all expressing FGFR subtype 1: dopaminergic, hippocampal and cerebellar granule neurons. Moreover, we show that the FGL peptide promotes neuronal survival upon induction of cell death in the same three cell types. The effects of the FGL peptide are shown to depend on activation of FGFR and the MAPK and PI3K intracellular signalling pathways, all three kinases being necessary for the effects of FGL on neurite outgrowth and neuronal survival.  相似文献   

9.
Neurotrophin-3 (NT-3) is well known to play an important role in facilitating neuronal survival and differentiation during development. However, the mechanisms by which neurotrophin-3 promotes prolonged Akt/MAPK signaling at an early stage are not well understood. Here, we report that NT-3 works at an early stage of neuronal differentiation in mouse neural stem cells (NSCs). After treatment with NT-3 for 12h, more NSCs differentiated into neurons than did untreated cells. These findings demonstrated that stimulation with NT-3 causes NSCs to differentiate into neurons through a phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway and the phosphorylated extracellular signal-regulated kinase (ERK) pathway. In addition, treatment with NT-3 induced neurite outgrowth by specific phosphorylation of p38 MAPK, which was accompanied by neuronal differentiation. Taken together, these results suggest that NT-3, along with the Trk C receptors in NSCs, might lead to the survival and neuronal differentiation of NSCs via two distinct downstream signaling pathways at an early stage of neuronal differentiation.  相似文献   

10.
Rapid neurite remodeling is fundamental to nervous system development and plasticity. It involves neurite extension that is regulated by NGF through PI3K/AKT, p44/42 MAPK and p38 MAPK. It also involves neurite retraction that is regulated by the serine protease, thrombin. However, the intracellular signaling pathway by which thrombin causes neurite retraction is unknown. Using the PC12 neuronal cell model, we demonstrate that thrombin utilizes the PI3K/AKT pathway for neurite retraction in NGF-differentiated cells. Interestingly, however, we found that thrombin enhances NGF-induced neurite extension in differentiating cells. This is achieved through increased and sustained activation of p44/42 MAPK and p38 MAPK. Thus, thrombin elicits opposing effects in differentiated and differentiating cells through activation of distinct signaling pathways: neurite retraction in differentiated cells via PI3K/AKT, and neurite extension in differentiating cells via p44/42 MAPK and p38 MAPK. These findings, which also point to a novel cooperative role between thrombin and NGF, have significant implications in the development of the nervous system and the disease processes that afflicts it as well as in the potential of combined thrombin and NGF therapy for impaired learning and memory, and spinal cord injury which all require neurite extension and remodeling.  相似文献   

11.
Prominent neurite outgrowth induced by genipin, a plant-derived iridoid, was substantially inhibited by addition of NG-nitro-L-arginine methyl ester (L-NAME), a nitric oxide (NO) synthase (NOS) inhibitor, and carboxy-PTIO, an NO scavenger, in PC12h cells. Increases of the NADPH-diaphorase activity and neuronal and inducible NOS proteins in cells preceded the neurite outgrowth after addition of genipin to medium. NO donors could induce the neurite outgrowth dose-dependently in the cells. On the other hand, an inhibitor of soluble guanylate cyclase (SGC), which is known to be a stimulatory target of NO, abolished greatly the genipin-induced neurite outgrowth. Addition of extracellular signal-regulated kinase (ERK) kinase inhibitors could almost completely abolish the neurite induction. L-NAME remarkably depressed genipin-stimulated phosphorylation of ERK-1 and -2. A neuritogenic effect of nerve growth factor (NGF) in PC12h cells was also remarkably inhibited by the NOS inhibitor, NO scavenger and SGC inhibitor. These findings suggest that induced NO production followed by cyclic GMP-mediated stimulation of the mitogen-activated protein kinase (MAPK) cascade is implicated in the neuritogenesis by genipin and NGF in PC12h cells.  相似文献   

12.
Adenosine A1 receptors (A1Rs) and adenosine A(2A) receptors (A(2A)Rs) are the major mediators of the neuromodulatory actions of adenosine in the brain. In the striatum A1Rs and A(2A)Rs are mainly co-localized in the GABAergic striatopallidal neurons. In this paper we show that agonist-induced stimulation of A1Rs and A(2A)Rs induces neurite outgrowth processes in the human neuroblastoma cell line SH-SY5Y and also in primary cultures of striatal neuronal precursor cells. The kinetics of adenosine-mediated neuritogenesis was faster than that triggered by retinoic acid. The triggering of the expression of TrkB neurotrophin receptor and the increase of cell number in the G1 phase by the activation of adenosine receptors suggest that adenosine may participate in early steps of neuronal differentiation. Furthermore, protein kinase C (PKC) and extracellular regulated kinase-1/2 (ERK-1/2) are involved in the A1R- and A(2A)R-mediated effects. Inhibition of protein kinase A (PKA) activity results in a total inhibition of neurite outgrowth induced by A(2A)R agonists but not by A1R agonists. PKA activation is therefore necessary for A(2A)R-mediated neuritogenesis. Co-stimulation does not lead to synergistic effects thus indicating that the neuritogenic effects of adenosine are mediated by either A1 or A(2A) receptors depending upon the concentration of the nucleoside. These results are relevant to understand the mechanisms by which adenosine receptors modulate neuronal differentiation and open new perspectives for considering the use of adenosine agonists as therapeutic agents in diseases requiring neuronal repair.  相似文献   

13.
Activation of phosphatidylinositol 3-kinase (PI3-K) is considered to be a key event upon stimulation of cells with growth factors. Akt is known to be a downstream target of PI3-K when it is activated by nerve growth factor (NGF). NGF induces cell differentiation of PC12 cells as indicated by neurite outgrowth. In order to investigate the role of PI3-K/Akt in NGF-induced differentiation of PC12 cells, we generated cells ectopically expressing constitutively activated (CA), wild type (WT) and dominant negative (DN) forms of Akt. NGF-induced neurite outgrowth was greatly accelerated in the cells expressing CA-Akt, and dramatically inhibited in those expressing DN-Akt. Pre-treatment with an Akt inhibitor, ML-9 [1-(5-chloronaphthalene-1-sulfonyl)-1H- hexahydro-1,4-diazepine], inhibited NGF-induced Akt phosphorylation as well as neurite outgrowth but did not markedly affect the activities of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK). The PI3-K inhibitors wortmannin and LY294002 blocked NGF-induced Akt phosphorylation as well as neurite outgrowth. These results indicate that PI3-K/Akt is a positive regulator of NGF-induced neuronal differentiation in PC12 cells.  相似文献   

14.
LF Lin  SP Chiu  MJ Wu  PY Chen  JH Yen 《PloS one》2012,7(8):e43304
Luteolin (3',4',5,7-tetrahydroxyflavone), a food-derived flavonoid, has been reported to exert neurotrophic properties that are associated with its capacity to promote neuronal survival and neurite outgrowth. In this study, we report for the first time that luteolin induces the persistent expression of microRNA-132 (miR-132) in PC12 cells. The correlation between miR-132 knockdown and a decrease in luteolin-mediated neurite outgrowth may indicate a mechanistic link by which miR-132 functions as a mediator for neuritogenesis. Furthermore, we find that luteolin led to the phosphorylation and activation of cAMP response element binding protein (CREB), which is associated with the up-regulation of miR-132 and neurite outgrowth. Moreover, luteolin-induced CREB activation, miR-132 expression and neurite outgrowth were inhibited by adenylate cyclase, protein kinase A (PKA) and MAPK/ERK kinase 1/2 (MEK1/2) inhibitors but not by protein kinase C (PKC) or calcium/calmodulin-dependent protein kinase II (CaMK II) inhibitors. Consistently, we find that luteolin treatment increases ERK phosphorylation and PKA activity in PC12 cells. These results show that luteolin induces the up-regulation of miR-132, which serves as an important regulator for neurotrophic actions, mainly acting through the activation of cAMP/PKA- and ERK-dependent CREB signaling pathways in PC12 cells.  相似文献   

15.
Downstream A3 receptor signalling plays an important role in the regulation of cell death and proliferation. Therefore, it is important to determine the molecular pathways involved through A3 receptor stimulation. The phosphatidylinositide-3-OH kinase (PI3K)/Akt and the Raf/mitogen-activated protein kinase (MAPK/ERK) kinase (MEK)/mitogen-activated protein kinase (MAPK) pathways have central roles in the regulation of cell survival and proliferation. The crosstalk between these two pathways has also been investigated. The focus of this review centres on downstream mediators of A3 adenosine receptor signalling.  相似文献   

16.
Brain development and spinal cord regeneration require neurite sprouting and growth cone navigation in response to extension and collapsing factors present in the extracellular environment. These external guidance cues control neurite growth cone extension and retraction processes through intracellular protein phosphorylation of numerous cytoskeletal, adhesion, and polarity complex signaling proteins. However, the complex kinase/substrate signaling networks that mediate neuritogenesis have not been investigated. Here, we compare the neurite phosphoproteome under growth and retraction conditions using neurite purification methodology combined with mass spectrometry. More than 4000 non-redundant phosphorylation sites from 1883 proteins have been annotated and mapped to signaling pathways that control kinase/phosphatase networks, cytoskeleton remodeling, and axon/dendrite specification. Comprehensive informatics and functional studies revealed a compartmentalized ERK activation/deactivation cytoskeletal switch that governs neurite growth and retraction, respectively. Our findings provide the first system-wide analysis of the phosphoprotein signaling networks that enable neurite growth and retraction and reveal an important molecular switch that governs neuritogenesis.  相似文献   

17.
We have previously shown that N(6)-methyldeoxyadenosine (MDA) is an inducer of differentiation in several tumor cells. Here we show that in addition to its ability to induce neurite-outgrowth in PC12 cells, MDA also significantly enhances the nerve-growth factor-mediated neurite outgrowth of these cells. Thus, MDA acts synergistically with NGF to repress cdc2 and cdk2 synthesis and to enhance tyrosine hydroxylase synthesis. To further elucidate the mechanisms of action of MDA, we investigated the effect of this drug on various signaling pathways. The neuritogenesis observed in PC12 following MDA treatment is mediated through activation of adenylyl cyclase in a PKA independent process and through the recruitment of the p44/p42 MAPK pathway. Furthermore, the adenosine A(2a) receptor antagonist ZM 241385 prevents the MDA-induced neuritogenesis, suggesting that MDA mediates its effect via this adenylyl cyclase-coupled A(2a) receptor. Collectively, these findings suggest that, in PC12 cells, the MDA-induced neuritogenesis requires the recruitment of adenosine A(2a) receptor, the stimulation of adenylate cyclase, and the activation of the p44/42MAP kinase cascade.  相似文献   

18.
The neuritogenic effect of exogenous ganglioside has been documented with a variety of neuronal and neuroblastoma systems, but the mechanism is not understood. Involvement of Ca2+ is suggested by this study which demonstrates that treatment of Neuro-2A cells with bovine brain gangliosides (BBG) in Ca2(+)-depleted medium failed to produce neurite outgrowth. This was in contrast to treatment with retinoic acid or dibutyryl cyclic AMP which induced differentiation under the same conditions. Addition of BBG to Neuro-2A cells caused small, but significant, increases in both influx and efflux of Ca2+. It thus appears that although neuritogenesis can proceed by more than one mechanism, that induced by BBG requires exogenous Ca2+ and involves stimulation of Ca2+ flux.  相似文献   

19.
The Gab1-docking protein has been shown to regulate phosphatidylinositol 3-kinase PI3K activity and potentiate nerve growth factor (NGF)-induced survival in PC12 cells. Here, we investigated the potential of Gab1 to induce neurite outgrowth and DNA synthesis, two other important aspects of NGF-induced neuronal differentiation of PC12 cells and NGF-independent survival. We generated a recombinant adenovirus encoding hemagglutinin (HA)-epitope-tagged Gab1 and expressed this protein in PC12 cells. HA-Gab1 was constitutively tyrosine-phosphorylated in PC12 cells and induced the phosphorylation of Akt/protein kinase B and p44/42 mitogen-activated protein kinase. HA-Gab1-stimulated a 10-fold increase in neurite outgrowth in the absence of NGF and a 5-fold increase in NGF-induced neurite outgrowth. HA-Gab1 also stimulated DNA synthesis and caused NGF-independent survival in PC12 cells. Finally, we found that HA-Gab1-induced neuritogenesis was completely suppressed by pharmacological inhibition of mitogen-activated protein kinase kinase (MEK) activity and 50% suppressed by inhibition of PI3K activity. In contrast, HA-Gab1-stimulated cell survival was efficiently suppressed only by inhibition of both PI3K and MEK activities. These results indicate that Gab1 is capable of mediating differentiation, DNA synthesis, and cell survival and uses both PI3K and MEK signaling pathways to achieve its effects.  相似文献   

20.
The c-fes protooncogene encodes a non-receptor protein-tyrosine kinase (Fes) that has been implicated in the differentiation of myeloid haematopoietic cells. Fes is also expressed in several neuronal cell types and the vascular endothelium, suggestive of a more general function in development. To examine the role of Fes in neuronal differentiation, we investigated the effect of Fes expression on process outgrowth in PC12 cells following stimulation with nerve growth factor (NGF). PC12 cells expressing wild-type and activated mutants of Fes extended processes faster and of greater length than control cells. In contrast, expression of kinase-inactive Fes was without effect, indicating that cooperation with NGF requires Fes kinase activity. Short-term treatment of PC12-Fes cells with NGF enhanced tyrosine phosphorylation of Fes, suggesting upstream regulation by the NGF receptor. Fes-mediated acceleration of neurite outgrowth was blocked by wortmannin and LY294002, implicating phosphatidylinositol 3-kinase (PI3K) activation in the Fes-induced response. In contrast, the MEK inhibitor PD98059 was without effect, suggesting that the Ras-Erk pathway is not involved. These data provide the first evidence that Fes may contribute to morphological differentiation of neuronal cells by enhancing NGF signalling through the PI3K pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号