首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ramakrishnan B  Boeggeman E  Qasba PK 《Biochemistry》2004,43(39):12513-12522
Beta-1,4-galactosyltransferase (beta4Gal-T1) in the presence of manganese ion transfers galactose from UDP-galactose (UDP-Gal) to N-acetylglucosamine (GlcNAc) that is either free or linked to an oligosaccharide. Crystallographic studies on bovine beta4Gal-T1 have shown that the primary metal binding site is located in the hinge region of a long flexible loop, which upon Mn(2+) and UDP-Gal binding changes from an open to a closed conformation. This conformational change creates an oligosaccharide binding site in the enzyme. Neither UDP nor UDP analogues efficiently induce these conformational changes in the wild-type enzyme, thereby restricting the structural analysis of the acceptor binding site. The binding of Mn(2+) involves an uncommon coordination to the Sdelta atom of Met344; when it is mutated to His, the mutant M344H, in the presence of Mn(2+) and UDP-hexanolamine, readily changes to a closed conformation, facilitating the structural analysis of the enzyme bound with an oligosaccharide acceptor. Although the mutant M344H loses 98% of its Mn(2+)-dependent activity, it exhibits 25% of its activity in the presence of Mg(2+). The crystal structures of M344H-Gal-T1 in complex with either UDP-Gal.Mn(2+) or UDP-Gal.Mg(2+), determined at 2.3 A resolution, show that the mutant enzyme in these complexes is in a closed conformation, and the coordination stereochemistry of Mg(2+) is quite similar to that of Mn(2+). Although either Mn(2+) or Mg(2+), together with UDP-Gal, binds and changes the conformation of the M344H mutant to the closed one, it is the Mg(2+) complex that engages efficiently in catalyses. Thus, this property enabled us to crystallize the M344H mutant for the first time with the acceptor substrate chitobiose in the presence of UDP-hexanolamine and Mn(2+). The crystal structure determined at 2.3 A resolution reveals that the GlcNAc residue at the nonreducing end of chitobiose makes extensive hydrophobic interactions with the highly conserved Tyr286 residue.  相似文献   

2.
Homologous glycosyltransferases α-(1→3)-N-acetylgalactosaminyltransferase (GTA) and α-(1→3)-galactosyltransferase (GTB) catalyze the final step in ABO(H) blood group A and B antigen synthesis through sugar transfer from activated donor to the H antigen acceptor. These enzymes have a GT-A fold type with characteristic mobile polypeptide loops that cover the active site upon substrate binding and, despite intense investigation, many aspects of substrate specificity and catalysis remain unclear. The structures of GTA, GTB, and their chimeras have been determined to between 1.55 and 1.39 Å resolution in complex with natural donors UDP-Gal, UDP-Glc and, in an attempt to overcome one of the common problems associated with three-dimensional studies, the non-hydrolyzable donor analog UDP-phosphono-galactose (UDP-C-Gal). Whereas the uracil moieties of the donors are observed to maintain a constant location, the sugar moieties lie in four distinct conformations, varying from extended to the “tucked under” conformation associated with catalysis, each stabilized by different hydrogen bonding partners with the enzyme. Further, several structures show clear evidence that the donor sugar is disordered over two of the observed conformations and so provide evidence for stepwise insertion into the active site. Although the natural donors can both assume the tucked under conformation in complex with enzyme, UDP-C-Gal cannot. Whereas UDP-C-Gal was designed to be “isosteric” with natural donor, the small differences in structure imposed by changing the epimeric oxygen atom to carbon appear to render the enzyme incapable of binding the analog in the active conformation and so preclude its use as a substrate mimic in GTA and GTB.  相似文献   

3.
Glycosyltransferases A and B utilize the donor substrates UDP-GalNAc and UDP-Gal, respectively, in the biosynthesis of the human blood group A and B trisaccharide antigens from the O(H)-acceptor substrates. These enzymes were cloned as synthetic genes and expressed in Escherichia coli, thereby generating large quantities of enzyme for donor specificity evaluations. The amino acid sequence of glycosyltransferase A only differs from glycosyltransferase B by four amino acids, and alteration of these four amino acid residues (Arg-176-->Gly, Gly-235-->Ser, Leu-266-->Met and Gly-268-->Ala) can change the donor substrate specificity from UDP-GalNAc to UDP-Gal. Crossovers in donor substrate specificity have been observed, i.e., the A transferase can utilize UDP-Gal and B transferase can utilize UDP-GalNAc donor substrates. We now report a unique donor specificity for each enzyme type. Only A transferase can utilize UDP-GlcNAc donor substrates synthesizing the blood group A trisaccharide analog alpha-D-Glcp-NAc-(1-->3)-[alpha-L-Fucp-(1-->2)]-beta-D-Galp-O-(CH2 )7CH3 (4). Recombinant blood group B was shown to use UDP-Glc donor substrates synthesizing blood group B trisaccharide analog alpha-D-Glcp-(1-->3)-[alpha-L-Fucp-(1-->2)]-beta-D-Galp-O-(CH2) 7CH3 (5). In addition, a true hybrid enzyme was constructed (Gly-235-->Ser, Leu-266-->Met) that could utilize both UDP-GlcNAc and UDP-Glc. Although the rate of transfer with UDP-GlcNAc by the A enzyme was 0.4% that of UDP-GalNAc and the rate of transfer with UDP-Glc by the B enzyme was 0.01% that of UDP-Gal, these cloned enzymes could be used for the enzymatic synthesis of blood group A and B trisaccharide analogs 4 and 5.  相似文献   

4.
On the basis of the kinetic effects of substrate, activator, and inhibitors on (1–3) glucan synthase activity ofNeurospora crassa, we propose the following reaction sequence for glucan synthesis. First, enzyme binds laminaribiose (activator), forming an enzyme-laminaribiose complex. Substrate (UDP-Glc) binding follows. UDP-Glc is hydrolyzed, releasing UDP, while the glucose residue remains associated with glucan synthase. The resulting enzyme-activator-glucose complex binds another UDP-Glc. It is likely that linear competitive inhibitors act at this step. Initial polymerization occurs, forming a disaccharide (which remains bound to glucan synthase) and UDP, which is released. The resulting enzyme-activator-disaccharide binds another UDP-Glc, and Glc is covalently added; further polymerization occurs by addition of Glc (from UDP-Glc) to the growing glucan chain, which remains associated with glucan synthase. Uncompetitive inhibitors are likely to affect enzyme activity at this step.  相似文献   

5.
R Cecchelli  R Cacan  A Verbert 《FEBS letters》1986,208(2):407-412
The mechanism of translocation of UDP-GlcNAc, UDP-Gal and UDP-Glc into intracellular vesicles has been studied using thymocytes whose plasma membranes have been permeabilized with isotonic ammonium chloride. It has been previously shown that the intracellular vesicles have specific carriers for UDP-GlcNAc and UDP-Gal. We now report that the translocation of these two sugar nucleotides occurs via UDP-GlcNAc/UDP and UDP-Gal/UDP antiports. The entry of UDP-GlcNAc or UDP-Gal into vesicles was specifically dependent on the exit of UDP from these vesicles. In contrast, no antiport mechanism has been recovered with UDP-Glc for which no transport and accumulation into intracellular vesicles were observed.  相似文献   

6.
A common feature in the structures of GT-A-fold-type glycosyltransferases is a mobile polypeptide loop that has been observed to participate in substrate recognition and enclose the active site upon substrate binding. This is the case for the human ABO(H) blood group B glycosyltransferase GTB, where amino acid residues 177-195 display significantly higher levels of disorder in the unliganded state than in the fully liganded state. Structural studies of mutant enzymes GTB/C80S/C196S and GTB/C80S/C196S/C209S at resolutions ranging from 1.93 to 1.40 Å display the opposite trend, where the unliganded structures show nearly complete ordering of the mobile loop residues that is lost upon substrate binding. In the liganded states of the mutant structures, while the UDP moiety of the donor molecule is observed to bind in the expected location, the galactose moiety is observed to bind in a conformation significantly different from that observed for the wild-type chimeric structures. Although this would be expected to impede catalytic turnover, the kinetics of the transfer reaction are largely unaffected. These structures demonstrate that the enzymes bind the donor in a conformation more similar to the dominant solution rotamer and facilitate its gyration into the catalytically competent form. Further, by preventing active-site closure, these structures provide a basis for recently observed cooperativity in substrate binding. Finally, the mutation of C80S introduces a fully occupied UDP binding site at the enzyme dimer interface that is observed to be dependent on the binding of H antigen acceptor analog.  相似文献   

7.
Affinities of the human blood group glycosyltransferases, alpha-(1-->3)-N-acetylgalactosaminyltransferase (GTA) and alpha-(1-->3)-galactosyltransferase (GTB) for their common acceptor substrate alpha-l-Fucp-(1-->2)-beta-d-Galp-O(CH2)(7)CH3 (1), in the absence and presence of bound uridine 5'-diphosphate (UDP) and Mn2+ were determined using temperature-controlled electrospray ionization mass spectrometry. The presence of bound UDP and Mn(2+) in the donor binding site has a marked influence on the thermodynamic parameters for the association of 1 with GTA and GTB. Both the enthalpy and entropy of association (DeltaH(a), DeltaS(a)) decrease significantly. However, the free energy of association (DeltaG(a)) is unchanged at physiological temperature. The differences in the DeltaH(a) and DeltaS(a) values determined in the presence and absence of bound UDP are attributed to structural changes in the glycosyltransferases induced by the simultaneous binding of 1 and UDP.  相似文献   

8.
UDP-Galactopyranose mutase (UGM) is a flavoenzyme that catalyzes interconversion of UDP-galactopyranose (UDP-Galp) and UDP-galactofuranose (UDP-Galf); its activity depends on FAD redox state. The enzyme is vital to many pathogens, not native to mammals, and is an important drug target. We have probed binding of substrate, UDP-Galp, and UDP to wild type and W160A UGM from K. pneumoniae, and propose that substrate directs recognition loop dynamics by bridging distal FAD and W160 sites; W160 interacts with uracil of the substrate and is functionally essential. Enhanced Trp fluorescence upon substrate binding to UGM indicates conformational changes remote from the binding site because the fluorescence is unchanged upon binding to W70F/W290F UGM where W160 is the sole Trp. MD simulations map these changes to recognition loop closure to coordinate substrate. This requires galactose-FAD interactions as Trp fluorescence is unchanged upon substrate binding to oxidized UGM, or binding of UDP to either form of the enzyme, and MD show heightened recognition loop mobility in complexes with UDP. Consistent with substrate-directed loop closure, UDP binds 10-fold more tightly to oxidized UGM, yet substrate binds tighter to reduced UGM. This requires the W160-U interaction because redox-switched binding affinity of substrate reverses in the W160A mutant where it only binds when oxidized. Without the anchoring W160-U interaction, an alternative binding mode for UDP is detected, and STD-NMR experiments show simultaneous binding of UDP-Galp and UDP to different subsites in oxidized W160A UGM: Substrate no longer directs recognition loop dynamics to coordinate tight binding to the reduced enzyme.  相似文献   

9.
Human blood group A and B antigens are produced by two closely related glycosyltransferase enzymes. An N-acetylgalactosaminyltransferase (GTA) utilizes UDP-GalNAc to extend H antigen acceptors (Fuc alpha(1-2)Gal beta-OR) producing A antigens, whereas a galactosyltransferase (GTB) utilizes UDP-Gal as a donor to extend H structures producing B antigens. GTA and GTB have a characteristic (211)DVD(213) motif that coordinates to a Mn(2+) ion shown to be critical in donor binding and catalysis. Three GTB mutants, M214V, M214T, and M214R, with alterations adjacent to the (211)DVD(213) motif have been identified in blood banking laboratories. From serological phenotyping, individuals with the M214R mutation show the B(el) variant expressing very low levels of B antigens, whereas those with M214T and M214V mutations give rise to A(weak)B phenotypes. Kinetic analysis of recombinant mutant GTB enzymes revealed that M214R has a 1200-fold decrease in k(cat) compared with wild type GTB. The crystal structure of M214R showed that DVD motif coordination to Mn(2+) was disrupted by Arg-214 causing displacement of the metal by a water molecule. Kinetic characterizations of the M214T and M214V mutants revealed they both had GTA and GTB activity consistent with the serology. The crystal structure of the M214T mutant showed no change in DVD coordination to Mn(2+). Instead a critical residue, Met-266, which is responsible for determining donor specificity, had adopted alternate conformations. The conformation with the highest occupancy opens up the active site to accommodate the larger A-specific donor, UDP-GalNAc, accounting for the dual specificity.  相似文献   

10.
Protein engineering using directed evolution or saturation mutagenesis at hot spots is often used to improve enzyme properties such as their substrate selectivity or stability. This requires access to robust high-throughput assays to facilitate the analysis of enzyme libraries. However, relatively few studies on directed evolution or saturation mutagenesis of glycosyltransferases have been reported in part due to a lack of suitable screening methods. In the present study we report a general screening assay for glycosyltransferases that has been developed using the blood group α-(1→3)-galactosyltransferase (GTB) as a model. GTB utilizes UDP-Gal as a donor substrate and α-L-Fucp-(1→2)-β-D-Galp-O-R (H antigen) as an acceptor substrate and synthesizes the blood group B antigen α-D-Galp-(1→3)-[α-L-Fucp-(1→2)]-β-D-Galp-O-R. A closely related α-(1→3)-N-acetylgalactosaminyltransferase (GTA) uses UDP-GalNAc as a donor with the same H acceptor, yielding the A antigen α-D-Galp-NAc-(1→3)-[α-L-Fuc(1→2)]-β-D-Gal-O-R. GTA and GTB are highly homologous enzymes differing in only 4 of 354 amino acids, Arg/Gly-176, Gly/Ser-235, Leu/Met-266, and Gly/Ala-268. The screening assay is based on the color change of the pH indicator bromothymol blue when a proton is released during the transfer of Gal/GalNAc from UDP-Gal/UDP-GalNAc to the acceptor substrate. Saturation mutagenesis of GTB enzyme at M214, a hot spot adjacent to the 211DVD213 metal binding motif, was performed and the resulting library was screened for increases in UDP-GalNAc transfer activity. Two novel mutants, M214G and M214S, identified by pH indicator screening, were purified and kinetically characterized. M214S and M214G both exhibited two-fold higher kcat and specific activity than wild-type GTB for UDP-GalNAc. The results confirm the importance of residue M214 for donor enzyme specificity.  相似文献   

11.
Blood group A and B antigens are carbohydrate structures that are synthesized by glycosyltransferase enzymes. The final step in B antigen synthesis is carried out by an alpha1-3 galactosyltransferase (GTB) that transfers galactose from UDP-Gal to type 1 or type 2, alphaFuc1-->2betaGal-R (H)-terminating acceptors. Similarly the A antigen is produced by an alpha1-3 N-acetylgalactosaminyltransferase that transfers N-acetylgalactosamine from UDP-GalNAc to H-acceptors. Human alpha1-3 N-acetylgalactosaminyltransferase and GTB are highly homologous enzymes differing in only four of 354 amino acids (R176G, G235S, L266M, and G268A). Single crystal x-ray diffraction studies have shown that the latter two of these amino acids are responsible for the difference in donor specificity, while the other residues have roles in acceptor binding and turnover. Recently a novel cis-AB allele was discovered that produced A and B cell surface structures. It had codons corresponding to GTB with a single point mutation that replaced the conserved amino acid proline 234 with serine. Active enzyme expressed from a synthetic gene corresponding to GTB with a P234S mutation shows a dramatic and complete reversal of donor specificity. Although this enzyme contains all four "critical" amino acids associated with the production of blood group B antigen, it preferentially utilizes the blood group A donor UDP-GalNAc and shows only marginal transfer of UDP-Gal. The crystal structure of the mutant reveals the basis for the shift in donor specificity.  相似文献   

12.
Human ABO(H) blood group glycosyltransferases GTA and GTB catalyze the final monosaccharide addition in the biosynthesis of the human A and B blood group antigens. GTA and GTB utilize a common acceptor, the H antigen disaccharide alpha-l-Fucp-(1-->2)-beta-d-Galp-OR, but different donors, where GTA transfers GalNAc from UDP-GalNAc and GTB transfers Gal from UDP-Gal. GTA and GTB are two of the most homologous enzymes known to transfer different donors and differ in only 4 amino acid residues, but one in particular (Leu/Met-266) has been shown to dominate the selection between donor sugars. The structures of the A and B glycosyltransferases have been determined to high resolution in complex with two inhibitory acceptor analogs alpha-l-Fucp(1-->2)-beta-d-(3-deoxy)-Galp-OR and alpha-l-Fucp-(1-->2)-beta-d-(3-amino)-Galp-OR, in which the 3-hydroxyl moiety of the Gal ring has been replaced by hydrogen or an amino group, respectively. Remarkably, although the 3-deoxy inhibitor occupies the same conformation and position observed for the native H antigen in GTA and GTB, the 3-amino analog is recognized differently by the two enzymes. The 3-amino substitution introduces a novel intramolecular hydrogen bond between O2' on Fuc and N3' on Gal, which alters the minimum-energy conformation of the inhibitor. In the absence of UDP, the 3-amino analog can be accommodated by either GTA or GTB with the l-Fuc residue partially occupying the vacant UDP binding site. However, in the presence of UDP, the analog is forced to abandon the intramolecular hydrogen bond, and the l-Fuc residue is shifted to a less ordered conformation. Further, the residue Leu/Met-266 that was thought important only in distinguishing between donor substrates is observed to interact differently with the 3-amino acceptor analog in GTA and GTB. These observations explain why the 3-deoxy analog acts as a competitive inhibitor of the glycosyltransferase reaction, whereas the 3-amino analog displays complex modes of inhibition.  相似文献   

13.
Galactinol, 1-O-(alpha-D-galactopyranosyl)-myo-inositol, was produced from sucrose as a starting material. UDP-Glc was prepared with sucrose and UDP using sucrose synthase partially purified from sweet potato roots. Then, the UDP-Glc was converted to UDP-Gal using yeast UDP-Gal 4-epimerase from a commercial source. Finally, galactinol was produced from the UDP-Gal and myo-inositol using galactinol synthase partially purified from cucumber leaves. The product was identified as galactinol by the retention times of HPLC, alpha-galactosidase digestion, and NMR spectrometry.  相似文献   

14.
The retaining glycosyltransferase, alpha-1,3-galactosyltransferase (alpha3GT), is mutationally inactivated in humans, leading to the presence of circulating antibodies against its product, the alpha-Gal epitope. alpha3GT catalyzes galactose transfer from UDP-Gal to beta-linked galactosides, such as lactose, and in the absence of an acceptor substrate, to water at a lower rate. We have used site-directed mutagenesis to investigate the roles in catalysis and specificity of residues in alpha3GT that form H-bonds as well as other interactions with substrates. Mutation of the conserved Glu(317) to Gln weakens lactose binding and reduces the k(cat) for galactosyltransfer to lactose and water by 2400 and 120, respectively. The structure is not perturbed by this substitution, but the orientation of the bound lactose molecule is changed. The magnitude of these changes does not support a previous proposal that Glu(317) is the catalytic nucleophile in a double displacement mechanism and suggests it acts in acceptor substrate binding and in stabilizing a cationic transition state for cleavage of the bond between UDP and C1 of the galactose. Cleavage of this bond also linked to a conformational change in the C-terminal region of alpha3GT that is coupled with UDP binding. Mutagenesis indicates that His(280), which is projected to interact with the 2-OH of the galactose moiety of UDP-Gal, is a key residue in the stringent donor substrate specificity through its role in stabilizing the bound UDP-Gal in a suitable conformation for catalysis. Mutation of Gln(247), which forms multiple interactions with acceptor substrates, to Glu reduces the catalytic rate of galactose transfer to lactose but not to water. This mutation is predicted to perturb the orientation or environment of the bound acceptor substrate. The results highlight the importance of H-bonds between enzyme and substrates in this glycosyltransferase, in arranging substrates in appropriate conformations and orientation for efficient catalysis. These factors are manifested in increases in catalytic rate rather than substrate affinity.  相似文献   

15.
The β-1,4-galactosyltransferase 7 (β4GalT7) enzyme is involved in proteoglycan synthesis. In the presence of a manganese ion, it transfers galactose from UDP-galactose to xylose on a proteoglycan acceptor substrate. We present here the crystal structures of human β4GalT7 in open and closed conformations. A comparison of these crystal structures shows that, upon manganese and UDP or UDP-Gal binding, the enzyme undergoes conformational changes involving a small and a long loop. We also present the crystal structures of Drosophila wild-type β4GalT7 and D211N β4GalT7 mutant enzymes in the closed conformation in the presence of the acceptor substrate xylobiose and the donor substrate UDP-Gal, respectively. To understand the catalytic mechanism, we have crystallized the ternary complex of D211N β4GalT7 mutant enzyme in the presence of manganese with the donor and the acceptor substrates together in the same crystal structure. The galactose moiety of the bound UDP-Gal molecule forms seven hydrogen bonds with the protein molecule. The nonreducing end of the xylose moiety of xylobiose binds to the hydrophobic acceptor sugar binding pocket created by the conformational changes, whereas its extended xylose moiety forms hydrophobic interactions with a Tyr residue. In the ternary complex crystal structure, the nucleophile O4 oxygen atom of the xylose molecule is found in close proximity to the C1 and O5 atoms of the galactose moiety. This is the first time that a Michaelis complex of a glycosyltransferase has been described, and it clearly suggests an SN2 type catalytic mechanism for the β4GalT7 enzyme.  相似文献   

16.
The gene sus1 from Solanum tuberosum L. encoding for sucrose synthase 1 was cloned into the plasmid pDR195 under the control of the PMA1 promotor. After transformation of Saccharomyces cerevisiae strain 22574d sus1 was constitutively expressed giving a specific activity of 0.3Umg(-1) protein in the crude extract. A one-step purification by Q-Sepharose resulted in an 14-fold purified enzyme preparation in 74% yield. SuSy1 was subsequently purified by immobilized metal ion affinity chromatography and characterized for its utilization in synthesizing different nucleotide sugars and sucrose analogues. The kinetic constants for the cleavage and synthesis reaction were determined: K(m) (UDP) 4microM; K(iS) (UDP) 0.11mM; K(m) (sucrose) 91.6mM; K(m) (UDP-Glc) 0.5mM; K(iS) (UDP-Glc) 2.3mM; K(m) (D-fructose) 2.1mM; K(iS) (D-fructose) 35.9mM. Different nucleoside diphosphates as well as different donor substrate were accepted as follows: UDP>dTDP>ADP>CDP>GDP in the cleavage reaction and UDP-Glc>dTDP-Glc>ADP-Glc>CDP-Glc in the synthesis reaction. SuSy1 shows also a broad acceptance of D- and L-ketoses and D- and L-aldoses. The acceptance of aldoses was deduced from the binding of the inhibitor 5-deoxy-D-fructose (K(i) 0.3mM), an analogue of the natural substrate D-fructopyranoside. The broad substrate spectrum renders SuSy1 from potato a versatile biocatalyst for carbohydrate engineering.  相似文献   

17.
The final step in the enzymatic synthesis of the ABO(H) blood group A and B antigens is catalyzed by two closely related glycosyltransferases, an alpha-(1-->3)-N-acetylgalactosaminyltransferase (GTA) and an alpha-(1-->3)-galactosyltransferase (GTB). Of their 354 amino acid residues, GTA and GTB differ by only four "critical" residues. High resolution structures for GTB and the GTA/GTB chimeric enzymes GTB/G176R and GTB/G176R/G235S bound to a panel of donor and acceptor analog substrates reveal "open," "semi-closed," and "closed" conformations as the enzymes go from the unliganded to the liganded states. In the open form the internal polypeptide loop (amino acid residues 177-195) adjacent to the active site in the unliganded or H antigen-bound enzymes is composed of two alpha-helices spanning Arg(180)-Met(186) and Arg(188)-Asp(194), respectively. The semi-closed and closed forms of the enzymes are generated by binding of UDP or of UDP and H antigen analogs, respectively, and show that these helices merge to form a single distorted helical structure with alternating alpha-3(10)-alpha character that partially occludes the active site. The closed form is distinguished from the semi-closed form by the ordering of the final nine C-terminal residues through the formation of hydrogen bonds to both UDP and H antigen analogs. The semi-closed forms for various mutants generally show significantly more disorder than the open forms, whereas the closed forms display little or no disorder depending strongly on the identity of residue 176. Finally, the use of synthetic analogs reveals how H antigen acceptor binding can be critical in stabilizing the closed conformation. These structures demonstrate a delicately balanced substrate recognition mechanism and give insight on critical aspects of donor and acceptor specificity, on the order of substrate binding, and on the requirements for catalysis.  相似文献   

18.
An enzyme having both UDP-glucose (UDP-Glc) and UDP-galactose (UDP-Gal) pyrophosphorylase activities was purified to homogeneity from Bifidobacterium bifidum. The molecular weight of the enzyme was about 200,000 and it appeared to be composed of four identical subunits. The purified enzyme showed almost the same reactivity towards UDP-Glc and UDP-Gal, and showed about 10% of this activity towards UDP-xylose at 8 mM. The enzyme required magnesium ions for maximum activity. The apparent equilibrium constants were about 2.5 for UDP-Glc pyrophosphorolysis and 1.1 for UDP-Gal pyrophosphorolysis. The enzyme activities were inhibited by various nucleotides (product or substrate analogs). Some sugar phosphates, such as fructose 6-P, erythrose 4-P, and 3-phosphoglycerate, stimulated the activities. These properties are discussed in relation to the significance of the enzyme in galactose metabolism of B. bifidum.  相似文献   

19.
A substantial body of work has been devoted to the design and synthesis of glycosyltransferase inhibitors. A major obstacle has always been the demanding chemistry. Therefore, only few potent and selective inhibitors are known to date. Glycosyltransferases possess two distinct binding sites, one for the donor substrate, and one for the acceptor substrate. In many cases binding to the donor site is well defined but data for acceptor binding is sparse. In particular, acceptor binding sites are often shallow, and in many cases the dimensions of the binding pocket are not well defined. One approach to glycosyltransferase inhibitors is to chemically link donor site and acceptor site ligands to generate high affinity binders. Here, we describe a novel approach to identify acceptor site ligands from a fragment library. We have chosen human blood group B galactosyltransferase (GTB) as a biologically important model target. The approach utilizes a combination of STD NMR, spin-lock filtered NMR experiments and surface plasmon resonance measurements. Following this route we have identified molecular fragments from a fragment library that bind to the acceptor site of GTB with affinities of the order of a natural acceptor substrate. Unlike natural substrates these fragments allow for straightforward chemical modifications and, therefore will serve as scaffolds for potent GTB inhibitors. In general, the approach described is applicable to any glycosyltransferase and may assist in the development of novel glycosyltransferase inhibitors.  相似文献   

20.
The human ABO(H) blood group antigens are carbohydrate structures generated by glycosyltransferase enzymes. Glycosyltransferase A (GTA) uses UDP-GalNAc as a donor to transfer a monosaccharide residue to Fuc alpha1-2Gal beta-R (H)-terminating acceptors. Similarly, glycosyltransferase B (GTB) catalyzes the transfer of a monosaccharide residue from UDP-Gal to the same acceptors. These are highly homologous enzymes differing in only four of 354 amino acids, Arg/Gly-176, Gly/Ser-235, Leu/Met-266, and Gly/Ala-268. Blood group O usually stems from the expression of truncated inactive forms of GTA or GTB. Recently, an O(2) enzyme was discovered that was a full-length form of GTA with three mutations, P74S, R176G, and G268R. We showed previously that the R176G mutation increased catalytic activity with minor effects on substrate binding. Enzyme kinetics and high resolution structural studies of mutant enzymes based on the O(2) blood group transferase reveal that whereas the P74S mutation in the stem region of the protein does not appear to play a role in enzyme inactivation, the G268R mutation completely blocks the donor GalNAc-binding site leaving the acceptor binding site unaffected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号