首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The levels of the endogenous amino acid pools in conidia, germinating conidia, and mycelia of wild-type Neurospora crassa were measured. Three different chromatographic procedures employing the amino acid analyzer were used to identify and quantitatively measure 28 different ninhydrin-positive compounds. All of the common amino acids were detected in conidial extracts except proline, methionine, and cystine. The levels of these three amino acid pools were also very low in mycelia. During the first hour of germination in minimal medium, the levels of most of the free amino acid pools decreased. The pool of glutamic acid, the predominant free amino acid in conidia, decreased 70% during the first hour. Very little glutamic acid or any other amino acid was excreted into the medium. During the first 20 min of germination, the decrease in the glutamic acid pool was nearly equivalent to the increase in the aspartic acid pool. The aspartic acid and lambda-aminobutyric acid pools were the only amino acid pools that increased to maximum levels within the first 20 min of germination and then decreased. It is proposed that an important metabolic event that occurs during the early stages of conidial germination is the production of reduced pyridine nucleotides. The degradation of the large glutamic acid pool existing in the conidia (2.5% of the conidial dry weight) could produce these reduced coenzymes.  相似文献   

2.
3.
Germination of conidia of Entomophaga maimaiga, an important fungal pathogen of gypsy moth, Lymantria dispar, was investigated on water agar and larval cuticle at varying densities. Percent germination was positively associated with conidial density on water agar but not on larval cuticle. When conidia were showered onto water agar, the rate of germination was much slower than on the cuticle of L. dispar larvae. From the same conidial showers, the resulting conidial densities on water agar were much higher than those on larval cuticle in part because many conidia adhered to setae and did not reach the cuticle. A second factor influencing conidial densities on larval cuticle was the location conidia occurred on larvae. Few conidia were found on the flexible intersegmental membranes in comparison with the areas of more rigid cuticle, presumably because conidia were physically dislodged from intersegmental membranes when larvae moved. Conidia were also exposed to heightened CO(2) to evaluate whether this might influence germination. When conidia on water agar were exposed to heightened CO(2) levels, germinating conidia primarily formed germ tubes while most conidia exposed to ambient CO(2) rapidly formed secondary conidia.  相似文献   

4.
Conidia of four adenine auxotrophs (ad 9, ad 3B, ad 8 and ad 4) of Neurospora crassa differ in their ability to germinate on adenine-deficient medium. A large percentage of the ad 9 and ad 3B mutant conidia germinate while those of ad 8 and ad 4 mutant do not. No correlation was found between the size of the conidial purine reserves and the conidial ability to germinate. In all the strains the major fraction of the conidial purine reserve pools was inosine. The ad 8 and ad 4 mutants are blocked after IMP formation in the adenine biosynthetic pathway and therefore cannot use the stored inosine for germination. Pool-utilization studies indicated that in all strains investigated some of the purine reserves were lost from the conidia during incubation. In the most readily germinating strain, ad 9, only small amounts of the purine pool were lost from the conidia and a large portion of the reserve pool was used for nucleic acid synthesis. The nature of the purine reserves present in the conidia, and the ability of the strains to prevent loss of the stored purines from the conidia appear to be among the factors influencing the conidial germination of the adenine mutants of N. crassa.  相似文献   

5.
6.
Glutamic acid decarboxylase (GAD) activity was measured in homogenates of conidia and both submerged and aerial mycelia of Trichoderma viride. The GAD activity in conidia had a temperature optimum at 30 degrees C and a pH optimum at pH 4. GAD was stimulated by EDTA (2 mM) and was insensitive to treatment with calmodulin antagonists calmidazolium (10 microM) or phenothiazine neuroleptics (60 microM). Cyclosporin A (up to 300 microM) partially inhibited GAD in the homogenate, but not in the supernatant obtained after centrifuging the homogenate. Attempts to release GAD activity from the homogenate using high ionic strength, detergents, or urea failed. Freezing-thawing led to the partial increase of activity in the conidial homogenate. These results indicate that GAD is a membrane-bound enzyme. The highest specific activity of GAD was present in the mitochondrial/vacuolar organellar fraction. Germination of conidia in the submerged culture led to a temporary decrease in GAD activity. After prolonged cultivation, the activity displayed quasi-oscillatory changes. The stationary state was characterized by a high GAD activity. The presence of gamma-aminobutyric acid in the submerged mycelia was demonstrated. In surface culture in the dark, GAD activity increased in a monophasic manner until conidia formation. The illumination of dark-cultivated mycelia by a white-light pulse caused a dramatic increase in GAD activity. Light-induced changes were not observed in mutants with delayed onset of conidiation. In the dark or upon illumination by light pulse, the increase of GAD activity preceded the appearance of conidia. Thus, GAD activity in T. viride is closely associated with its developmental status and may represent a link between differentiation events and energy metabolism.  相似文献   

7.
Spores of Bacillus megaterium were examined for glutamic acid decarboxylase (GAD). Although dormant spores showed no GAD activity, spores given sonic treatment and heat-activated spores had high activities when assayed for this enzyme. Several parameters of GAD in heat-activated spores were examined. The effects of KCN, NaN(3), 2,4-dinitrophenol, and KF on GAD activity were examined. Only KCN was an effective inhibitor of GAD activity in heated spores and was also shown to be the only effective inhibitor of GAD activity in vegetative bacteria. Similar patterns of inhibition were obtained with GAD activity and with spore germination, KCN being the only effective inhibitor of both, although at different concentrations. Spore GAD activity in heat-activated spores showed a loss with storage at 4 C; on the other hand, storage at 25 C was not accompanied by a loss, but, to the contrary, showed an increase in GAD activity of about 30%. A comparison of GAD activity at different times during germination, growth, and sporulation showed it to be highest in freshly germinated spores. Although vegetative cells contained GAD activity, the level in log-phase cells was approximately one-half the level obtained with freshly germinated spores. Heat-activated mutant spores with a requirement of gamma-aminobutyric acid for germination gave no GAD activity. GAD activity appeared in mutant spores after germination and increased to levels comparable to parent spores after 9 min of germination.  相似文献   

8.
The antifungal activity of substances interfering with the function and biogenesis of mitochondria was studied. Strict anaerobiosis, cyanide, azide, oligomycin, bongkrekic acid and ethidium bromide were found to prevent spore germination ofAspergillus niger andPenicillium italicum in liquid germination medium. The effect of azide, oligomycin and ethidium bromide was fungicidal. Cyanide and azide completely inhibited the incorporation of14C-leucine and14C-uracil into germinating conidia ofA. niger. Oligomycin and ethidium bromide reduced the extent of incorporation of both precursors in the first few hours of conidial germination and at later stages stopped it completely. The inhibition of both spore germination and macromolecules synthesis during the germination ofA. niger conidia were in relation to the specific inhibitory effect of the agents on respiratory activity of dormant conidia and mycelial cells. The results indicate that both the function of mitochondrial genetic and protein synthesizing systems and the function of oxidative phosphorylation are essential for normal spore germination and fungal growth.  相似文献   

9.
The germination of conidiospores of wild-type Neurospora crassa was found to be dependent upon the function of the cytochrome-mediated electron transport pathway. The cyanide-insensitive alternate oxidase did not contribute significantly to the respiration of these germinating spores. The dormant spores contained all of the cytochrome components and a catalytically active cytochrome c oxidase required for the activity of the standard respiratory pathway, and these preserved components were responsible for the accelerating rates of oxygen uptake which began immediately upon suspension of the spores in an incubation medium. Mitochondria of the dormant spores contained all of the subunit peptides of the functional cytochrome c oxidase; nevertheless, de novo synthesis of these subunits began at low rates in the first stages of germination. Reactivation of the respiratory system of germinating N. crassa spores seems not to be dependent initially upon the function of either the mitochondrial or cytoplasmic protein-synthesizing systems. The respiratory activity of spores of three mutant cytochrome c oxidase-deficient strains of N. crassa also was found to depend upon the function of the cytochrome electron transport pathway; the dormant and germinating spores of these strains contained a catalytically active cytochrome c oxidase. Cytochrome c oxidase may be present in the dormant and germinating spores of these strains as the result of a developmental-phase-specific synthesis of and requirement for the enzyme.  相似文献   

10.
The composition of lipids and fatty acids was studied in the spores of exogenously dormant (spores 0) and germinating (spores G) spores in distilled water for sporangiospores of zygomycetous fungi Cunninghamella echinulata VKM F-663 and Umbelopsis ramanniana VKM F-582 and for conidia of ascomycetous fungi Aspergillus tamarii VKM F-64 and A. sydowii VKM F-441. Compared to spores 0, the lipids of spores G contained higher shares of unsaturated fatty acids, lower levels of massive phospholipids (phosphatidylcholine and phosphatidylethanolamine), and elevated levels of phosphatidylglycerol and phosphatidic acid. The level of cardiolipin, the main phospholipid of the mitochondrial membranes, increased when the spores of both zygomycetes exited from the dormant state. While a certain increase in the content of free and esterified sterols in the neutral lipids of the slowly germinating U. ramanniana G spores was observed, germination of sporangiospores and conidia of the studied fungi generally did not result in significant changes in the composition of the neutral lipid classes, which may be due to the fact that they are not the major reserve mobilized at the stage of exit from the dormant state.  相似文献   

11.
Changes in the concentrations of gamma-aminobutyric acid (GABA), soluble calcium ions, glutamic acid, and the activity of glutamate decarboxylase (GAD) were investigated in non-germinated vs. germinated brown rice. Brown rice was germinated for 72 h by applying each of the following solutions: (1) distilled water, (2) 5 mM lactic acid, (3) 50 ppm chitosan in 5 mM lactic acid, (4) 5 mM glutamic acid, and (5) 50 ppm chitosan in 5 mM glutamic acid. GABA concentrations were enhanced in all of the germinated brown rice when compared to the non-germinated brown rice. The GABA concentration was highest in the chitosan/glutamic acid that germinated brown rice at 2,011 nmol/g fresh weight, which was 13 times higher than the GABA concentration in the non-germinated brown rice at 154 nmol/g fresh weight. The concentrations of glutamic acid were significantly decreased in all of the germinated rice, regardless of the germination solution. Soluble calcium and GAD were higher in the germinated brown rice with the chitosan/glutamic acid solution when compared to the rice that was germinated in the other solutions. GAD that was partially purified from germinated brown rice was stimulated about 3.6-fold by the addition of calmodulin in the presence of calcium. These data show that the germination of brown rice in a chitosan/glutamic acid solution can significantly increase GABA synthesis activity and the concentration of GABA.  相似文献   

12.
Incubation of Neurospora crassa conidia with ribonuclease (RNase) A reduces transport of L-phenylalanine by those cells. Under similar conditions, oxidized RNase A, RNase T1, and RNase T2 do not have this effect. Incubation of conidia with active RNase covalently attached to polyacrylamide beads reduces L-phenylalanine transport. This indicates that the site of enzymatic action is at the cell surface. At the lower concentration of enzyme used in this study, incubation with RNase A reduces transport of L-phenylalanine by the general (G) amino acid permease. Increasing the enzyme concentration results in reduction of transport by the neutral aromatic (N)-specific permease. The increased transport activity that accompanies onset of conidial germination is also sensitive to incubation with RNase A. Application of the enzyme to actively transporting cells does not release amino acid transported prior to enzyme addition. Cells cultured on media supplemented with [2-14C] uridine release isotopic activity after RNase A incubation. Analogous treatments with Pronase, RNase T1, RNase T2, or deoxyribonuclease I do not release isotope activity. Pronase treatment does reduce L-phenylalanine transport. Incubation of conidia with RNase A also inhibits germination of those conidia.  相似文献   

13.
Regulation of the synthesis of several enzymes of sulfur metabolism in Neurospora is a function of both metabolic regulation and the genetic control exerted by the cys-3 and scon regulatory genes. Additional control mechanisms appear to regulate the synthesis of choline sulfatase and aryl sulfatase in different developmental stages of the life cycle. The metabolic regulation of enzyme synthesis in conidia differs from that which occurs in the mycelial stage. During conidial germination and mycelial outgrowth, the synthesis of these enzymes is not coordinate but begins at different times and occurs at different rates. A rapid and early synthesis of choline sulfatase was observed during conidial germination under derepressing conditions; furthermore, synthesis of the enzyme also occurred for a brief period in germinating conidia even in the presence of repressing levels of sulfate. The results of this study suggest that several enzymes of sulfur metabolism are independently controlled by a developmental system which is superimposed upon the cys-3 regulatory mechanism. It was also found that choline sulfatase undergoes rapid turnover while aryl sulfatase is a stable species.  相似文献   

14.
Microcyst Germination in Myxococcus xanthus   总被引:10,自引:9,他引:1       下载免费PDF全文
Germination of glycerol-prepared microcysts of Myxococcus xanthus was studied. The sequence of morphological events during germination resembled that of germinating fruiting body-microcysts. The turbidity drop of a culture of germinating microcysts could be described by McCormick's formula derived for germinating Bacillus spores. The rate of uptake of labeled glycine and acetate did not change during germination. Temperature, aeration, and pH optima for germination were the same as for vegetative cell growth. Germination was induced by protein hydrolysates and the individual amino acids glycine, alanine, valine, aspartic acid, and glutamic acid. A number of organic compounds, including sugars, alcohols, aldehydes, ketones, organic acids, and chelating agents, did not induce germination. The inorganic ions HPO(4) (2-), Mg(++), Ca(++), and NH(4) (+) induced germination, although ionic strength was not a factor. Microcysts incubated in distilled water at concentrations greater than about 10(9) cells/ml germinated; supernatant fluid from such suspensions (germination factor) induced germination of less concentrated suspensions. The activity of germination factor was resistant to boiling, but was lost on charring and dialysis. Germination of microcysts and growth of vegetative cells was equally sensitive to a variety of metabolic inhibitors, including penicillin and chloramphenicol. Germination was more resistant than vegetative growth to inhibition by antibiotics of the streptomycin family and by actinomycin D.  相似文献   

15.
Proteins extracted with 6 M guanidine at 90 degrees C from conidia (asexual spores) of Neurospora crassa contained ca. 25% more total protein thiol and a fivefold-higher content of disulfide bonds than proteins extracted from mycelia, as determined by labeling with iodo[14C]acetic acid. The total thiol content was 88 mumol/g of protein in conidia and 70 mumol/g of protein in mycelia. The level of protein disulfide was 18.5 mumol/g of protein in conidia and 3.5 mumol/g of protein in mycelia, by the iodo[14C]acetic acid labeling method. Confirmatory results were obtained with 5'5-dithio-bis-2-nitrobenzoic acid titration of protein thiol groups in 1% sodium dodecyl sulfate as well as by amino acid analysis of cysteic acid derivatives. Buffer-extracted proteins from conidia, but not mycelia, were found to contain enriched levels of protein thiols and disulfides per gram of protein as compared with guanidine hydrochloride extracts. It was demonstrated that the high disulfide content of crude conidial extracts was not due to measurable levels of mixed disulfides formed between protein sulfhydryl groups and cysteine. During germination of the conidia, the high disulfide levels of the conidial proteins remained constant. These data suggest that, unlike the disulfides of glutathione, the bulk of conidial protein disulfides were not reduced, excreted, or extensively degraded during germination.  相似文献   

16.
Trichophyton rubrum is a dominating superficial dermatophyte, whose conidial germination is correlated to pathopoiesis and a highly important developmental process. To investigate the changes of physiology, biochemistry and cytology during the germination, we selected 3364 function identified ESTs from T. rubrum cDNA library to construct cDNA microarrays, and compared the gene expression levels of conidia and germinating phase. Data analysis indicated that 335 genes were up-regulated during the germination, which mainly encoded translated, modified proteins and structural proteins.The constituents of cell wall and cell membrane were synthetized abundantly, suggesting that they are the foundation of cell morphogenesis. The ingredients of the two-component signal transduction system were up-regulated, presuming that they were important for the conidial germination. Genes of various metabolic pathways were expressed prosperously, especially the genes that participated in glycolysis and oxidative phosphorylation were up-regulated on the whole, demonstrating that in the environment with sufficient oxygen and glucose, conidia obtained energy through aerobic respiration.This paper provides important clues which are helpful to understanding the changes in gene expression, signal conduction and metabolism characteristics during T. rubrum conidial germination, and possess significant meaning to the study of other superficial dermatophytes.  相似文献   

17.
Transfer ribonucleic acid (tRNA) methylases were studied during the germination of spores in Neurospora crassa. The total methylase capacity and base specific tRNA methylase activities were determined in extracts from cells harvested at various stages of germination. Germinated conidia have a 65% higher methylase capacity than ungerminated conidia. Three predominant methylase activities were found in the extracts, and the relative amount of each activity was different at the various stages. Enzymes from vegetative cells catalyzed significant hypermethylation of tRNA from conidia, whereas conidial enzymes were much less active on tRNA from vegetative cells. The results indicate differences in the tRNA methylase content and tRNA species of conidia and vegetative cells.  相似文献   

18.
In an attempt to find clues for the significance of the gene ordering along the eukaryotic chromosome, a system consisting of germinating conida of Neurospora crassa was studied. Thirteen enzyme activities corresponding to genes widely distributed on five chromosomes were determined in dormant and in germinating conidia. Ten of these enzymes showed lower activities in the resting state, and the time patterns of their increase were determined during germination. The results obtained do not support a scheme of sequential expression of genes during the emergence from dormancy as a counterpart of the sequence of the corresponding genes along the chromosome. Two of the loci studied were analyzed both in the normal (wild-type) ordering and in a translocated position in which the two genes are located in an inverted order respective to the centromere and farther apart from it. The altered order of the genes did not influence significantly the time and pattern of increase in the activities of the corresponding enzymes.  相似文献   

19.
Colletotrichum acutatum may develop one or more secondary conidia after conidial germination and before mycelial growth. Secondary conidia formation and germination were influenced by conidia concentration. Concentrations greater than 1x105 conidia/mL were associated with germination decrease and with secondary conidia emergence. Secondary conidia can form either alone or simultaneously with germ tubes and appressoria. Confocal analysis showed numerous lipid bodies stored inside ungerminated conidia, which diminished during germ tube and appressoria formation, with or without secondary conidia formation. They were also reduced during secondary conidia formation alone. While there was a decrease inside germinated conidia, lipid bodies appeared inside secondary conidia since the initial stages. Intense vacuolization inside primary germinated conidia occurred at the same time as the decrease in lipid bodies, which were internalized and digested by vacuoles. During these events, small acidic vesicles inside secondary conidia were formed. Considering that the conidia were maintained in distilled water, with no exogenous nutrients, it is clear that ungerminated conidia contain enough stored lipids to form germ tubes, appressoria, and the additional secondary conidia replete with lipid reserves. These results suggested a very complex and well-balanced regulation that makes possible the catabolic and anabolic pathways of these lipid bodies.  相似文献   

20.
Abstract Mitochondrial H+ (Mg2+)-ATPase (EC 3.6.1.3) activity of Neurospora crassa has been studied during conidial germination in the presence and absence of 2,4-dinitrophenol and dicoumarol. The activity was optimal at pH 8.5–9.0 and was inhibited (80–90%) by oligomycin, N , N '-dicyclo-hexylcarbodiimide and azide.
The enzyme activity already present in mitochondria isolated from dry- and wet-harvested conidia did not change significantly during the 2.5 h pregermination at 25°C (20% outgrowth), but increased sharply up to 7.5 h corresponding to the end of germination period and remained steady until the end of log phase (15 h).
In uncoupler-treated conidia, the stimulation of germ tube outgrowth at 2.5 h was found to parallel the activation (40%) of mitochondrial ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号