首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 1H–13C HMQC signals of the 13CH3 moieties of Ile, Leu, and Val residues, in an otherwise deuterated background, exhibit narrow line-widths, and thus are useful for investigating the structures and dynamics of larger proteins. This approach, named methyl TROSY, is economical as compared to laborious methods using chemically synthesized site- and stereo-specifically isotope-labeled amino acids, such as stereo-array isotope labeling amino acids, since moderately priced, commercially available isotope-labeled α-keto acid precursors can be used to prepare the necessary protein samples. The Ile δ1-methyls can be selectively labeled, using isotope-labeled α-ketobutyrates as precursors. However, it is still difficult to prepare a residue-selectively Leu and Val labeled protein, since these residues share a common biosynthetic intermediate, α-ketoisovalerate. Another hindering drawback in using the α-ketoisovalerate precursor is the lack of stereo-selectivity for Leu and Val methyls. Here we present a differential labeling method for Leu and Val residues, using four kinds of stereo-specifically 13CH3-labeled [U–2H;15N]-leucine and -valine, which can be efficiently incorporated into a protein using Escherichia coli cellular expression. The method allows the differential labeling of Leu and Val residues with any combination of stereo-specifically isotope-labeled prochiral methyls. Since relatively small amounts of labeled leucine and valine are required to prepare the NMR samples; i.e., 2 and 10 mg/100 mL of culture for leucine and valine, respectively, with sufficient isotope incorporation efficiency, this approach will be a good alternative to the precursor methods. The feasibility of the method is demonstrated for 82 kDa malate synthase G.  相似文献   

2.
A set of sensitive methyl-detected ‘out-and-back’ NMR experiments for simultaneous assignments of Alaβ and Ileγ2 methyl positions in large proteins is described. The developed methodology is applied to an 82-kDa enzyme Malate Synthase G. Complete alanine β and isoleucine γ2 1H–13C methyl chemical shift assignments could be obtained from the set of new methyl-detected ‘out-and-back’ 3D experiments. The described methodology for methyl assignments should be applicable to protein molecules within approximately 100-kDa molecular weight range irrespective of the labeling strategy chosen to produce selectively protonated Alaβ and Ileγ2 13CH3 sites on a deuterated background.  相似文献   

3.
Aromatic proton resonances of proteins are notoriously difficult to assign. Through-bond correlation experiments are preferable over experiments that rely on through-space interactions because they permit aromatic chemical shift assignments to be established independently of the structure determination process. Known experimental schemes involving a magnetization transfer across the Cβ–Cγ bond in aromatic side chains either suffer from low efficiency for the relay beyond the Cδ position, use sophisticated 13C mixing schemes, require probe heads suitable for application of high 13C radio-frequency fields or rely on specialized isotopic labelling patterns. Novel methods are proposed that result in sequential assignment of all aromatic protons in uniformly 13C/15N labelled proteins using standard spectrometer hardware. Pulse sequences consist of routinely used building blocks and are therefore reasonably simple to implement. Ring protons may be correlated with β-carbons and, alternatively, with amide protons (and nitrogens) or carbonyls in order to take advantage of the superior dispersion of backbone resonances. It is possible to record spectra in a non-selective manner, yielding signals of all aromatic residues, or as amino-acid type selective versions to further reduce ambiguities. The new experiments are demonstrated with four different proteins with molecular weights ranging from 11 kDa to 23 kDa. Their performance is compared with that of (Hβ)Cβ(CγCδ)Hδ and (Hβ)Cβ(CγCδCɛ)Hɛ pulse sequences [Yamazaki et al. (1993) J Am Chem Soc 115:11054–11055]. Electronic Supplementary Material The online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

4.
Chemical Exchange Saturation Transfer (CEST) is an MRI approach that can indirectly detect exchange broadened protons that are invisible in traditional NMR spectra. We modified the CEST pulse sequence for use on high-resolution spectrometers and developed a quantitative approach for measuring exchange rates based upon CEST spectra. This new methodology was applied to the rapidly exchanging Hδ1 and Hε2 protons of His57 in the catalytic triad of bovine chymotrypsinogen-A (bCT-A). CEST enabled observation of Hε2 at neutral pH values, and also allowed measurement of solvent exchange rates for His57-Hδ1 and His57-Hε2 across a wide pH range (3–10). Hδ1 exchange was only dependent upon the charge state of the His57 (k ex,Im+ = 470 s−1, k ex,Im = 50 s−1), while Hε2 exchange was found to be catalyzed by hydroxide ion and phosphate base ( k\textOH - k_{{{\text{OH}}^{ - } }}  = 1.7 × 1010 M−1 s−1, k\textHPO42 - k_{{{\text{HPO}}_{4}^{2 - } }}  = 1.7 × 106 M−1 s−1), reflecting its greater exposure to solute catalysts. Concomitant with the disappearance of the Hε2 signal as the pH was increased above its pK a, was the appearance of a novel signal (δ = 12 ppm), which we assigned to Hγ of the nearby Ser195 nucleophile, that is hydrogen bonded to Nε2 of neutral His57. The chemical shift of Hγ is about 7 ppm downfield from a typical hydroxyl proton, suggesting a highly polarized O–Hγ bond. The significant alkoxide character of Oγ indicates that Ser195 is preactivated for nucleophilic attack before substrate binding. CEST should be generally useful for mechanistic investigations of many enzymes with labile protons involved in active site chemistry.  相似文献   

5.
A hypothesis describing the mechanism of photoactive protochlorophyllide (P) photoreduction in vivo, relating mainly to the molecular nature of the intermediates, is proposed. The hypothesis is compatible with currently published experimental data. After illumination of etiolated barley leaves at 143 to 153 K, the absorption of P remains essentially unchanged, but a new absorption band at 690 nm is observed. Appearance of this new intermediate enables to distinguish between light and dark stages of the photoconversion reaction. When returned to the higher temperature in the dark, the treated leaves begin accumulating chlorophyllide (Chlide), concomitant with the disappearance of the 690-nm band. The decay time of the excited P (P*) is estimated at 300 ps, which approximates the time constant of photoinduced electron transfer (ET). It is suggested that the charge-transfer complex (CTC) in its ground state (GS) (ground state of CTC formed by the partial (δ) electron transfer), i.e. (Pδ−•••H–Dδ+), between P and NADPH – the electron and proton donor (H–D) – accumulates in the following sequence: P* + H–D → (P*•••H–D)→[(P*•••H–D)←(P•••H–D+)] → 1(P•••H–D+)] → 3(P•••H–D+) → (Pδ−•••H–D δ+), where an equilibrium state (ES) – [(P*•••H–D)←(P•••H–D+)] – with a lifetime of about 1 to 2 ns, exists between the local excited (LE) and ET states. The existence of a triplet ET state – 3(P•••H–D+) – is proposed because the time interval between recording of the ES and appearance of the CTC GS (35–250 ns) does not fit the lifetime of the singlet excited complex (exciplex). It is feasible that apart from NADPH, other intermediate proton carriers are contemporaneously involved in the dark reaction (Pδ−•••H–Dδ+) → Chlide, because proton binding to the C7–C8 bond in vivo takes place in the trans-configuration. The hydride ion may approach the C7–C8 bond from one side by heterolytic fission and an additional proton, donated by the protein group, may be simultaneously added to this bond from the opposite side of the porphyrin nucleus surface. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
Selective methyl labeling combined with HMQC spectroscopy that exploits a TROSY effect in 13CH3 spin systems has significantly extended the utility of solution NMR spectroscopy in studies of high molecular weight particles. Herein we compare the utility of 13CH3- versus 13CHD2-labeling of Ile, Leu, Val probes in supra-molecular systems through quantification of relative signal-to-noise ratios in optimized spectra of highly deuterated, 13CH3- and 13CHD2-labeled samples of the half proteasome (α7α7, 360 kDa). It is shown that the sensitivity of spectra recorded on Ile, Leu, Val 13CH3-labeled samples is between 1.5 and 2 fold higher than the corresponding data sets obtained on α7α7 with 13CHD2 probes. Thus, labeling of supra-molecules with 13CH3 isotopomers remains the method of choice, but in applications where 13CHD2 moieties are required, sensitivity will in general not be limiting.  相似文献   

7.
Summary A biosynthetic strategy has recently been developed for the production of 15N, 13C, 2H-labeled proteins using 1H3C-pyruvate as the sole carbon source and D2O as the solvent. The methyl groups of Ala, Val, Leu and Ile (2 only) remain highly protonated, while the remaining positions in the molecule are largely deuterated. An (H)C(CO)NH-TOCSY experiment is presented for the sequential assignment of the protonated methyl groups. A high-sensitivity spectrum is recorded on a 15N, 13C, 2H, 1H3C-labeled SH2 domain at 3°C (correlation time 18.8 ns), demonstrating the utility of the method for proteins in the 30–40 kDa molecular weight range.  相似文献   

8.
A pair of HN-methyl NOESY experiments that are based on simultaneous TROSY-type detection of amide and methyl groups is described. The preservation of cross-peak symmetry in the simultaneous 1H–15N/13CH3 NOE spectra enables straightforward assignments of HN-methyl NOE cross-peaks in large and complex protein structures. The pulse schemes are designed to preserve the slowly decaying components of both 1H–15N and methyl 13CH3 spin-systems in the course of indirect evolution (t 2) and acquisition period (t 3) of 3D NOESY experiments. The methodology has been tested on {U-[15N,2H]; Ileδ1-[13CH3]; Leu,Val-[13CH3,12CD3]}-labeled 82-kDa enzyme Malate Synthase G (MSG). A straightforward procedure that utilizes the symmetry of NOE cross-peaks in the time-shared 3D NOE data sets allows unambiguous assignments of more than 300 HN-methyl interactions in MSG from a single 3D data set providing important structural restraints for derivation of the backbone global fold.  相似文献   

9.
We present two time-shared experiments that enable the characterization of all nOes in 1H–13C-ILV methyl-labelled proteins that are otherwise uniformly deuterated and 15N enriched and possibly selectively protonated for distinct residue types. A 3D experiment simultaneously provides the spectra of a 3D NOESY-HN-TROSY and of a 3D NOESY-HC-PEP-HSQC. Thus, nOes from any protons to methyl or amide protons are dispersed with respect to 15N and 13C chemical shifts, respectively. The single 4D experiment presented here yields simultaneously the four 4D experiments HC-HSQC-NOESY-HC-PEP-HSQC, HC-HSQC-NOESY-HN-TROSY, HN-HSQC-NOESY-HN-TROSY and HN-HSQC-NOESY-HC-PEP-HSQC. This allows for the unambiguous determination of all nOes involving amide and methyl protons. The method was applied to a (1H,13C)-ILV−(1H)-FY-(U−2H,15N) sample of a 37 kDa di-domain of the E. coli enterobactin synthetase module EntF.  相似文献   

10.
In the present work we investigated the in vitro effect of the branched-chain amino acids (BCAA) accumulating in maple syrup urine disease (MSUD) on some parameters of energy metabolism in cerebral cortex of rats. 14CO2 production from [1-14C]acetate, [1-5-14C]citrate and [U-14C]glucose, as well as glucose uptake by the brain were evaluated by incubating cortical prisms from 30-day-old rats in the absence (controls) or presence of leucine (Leu), valine (Val) or isoleucine (Ile). All amino acids significantly reduced 14CO2 production by around 20–55%, in contrast to glucose utilization, which was significantly increased by up to 90%. Furthermore, Leu significantly inhibited the activity of the respiratory chain complex IV, whereas Val and Ile markedly inhibited complexes II–III, III and IV by up to 40%. We also observed that trolox (α-tocopherol) and creatine totally prevented the inhibitory effects provoked by the BCAA on the respiratory chain complex activities, suggesting that free radicals were involved in these effects. The results indicate that the major metabolites accumulating in MSUD disturb brain aerobic metabolism by compromising the citric acid cycle and the electron flow through the respiratory chain. We presume that these findings may be of relevance to the understanding of the pathophysiology of the neurological dysfunction of MSUD patients.  相似文献   

11.
In NMR studies of large molecular structures, the number of conformational constraints based on NOE measurements is typically limited due to the need for partial deuteration. As a consequence, when using selective protonation of peripheral methyl groups on a perdeuterated background, stereospecific assignments of the diastereotopic methyl groups of Val and Leu can have a particularly large impact on the quality of the NMR structure determination. For example, 3D 15N- and 13C-resolved [1H,1H]-NOESY spectra of the E. Coli membrane protein OmpX in mixed micelles with DHPC, which have an overall molecular weight of about 60 kDa, showed that about 50% of all obtainable NOEs involve the diastereotopic methyl groups of Val and Leu. In this paper, we used biosynthetically-directed fractional 13C labeling of OmpX and [13C,1H]-HSQC spectroscopy to obtain stereospecific methyl assignments of Val and Leu in OmpX/DHPC. For practical purposes it is of interest that this data could be obtained without use of a deuterated background, and that combinations of NMR experiments have been found for obtaining the desired information either at a 1H frequency of 500 MHz, or with significantly reduced measuring time on a high-frequency instrument.  相似文献   

12.
A comparison of three labeling strategies for studies involving side chain methyl groups in high molecular weight proteins, using 13CH3,13CH2D, and 13CHD2 methyl isotopomers, is presented. For each labeling scheme, 1H–13C pulse sequences that give optimal resolution and sensitivity are identified. Three highly deuterated samples of a 723 residue enzyme, malate synthase G, with 13CH3,13CH2D, and 13CHD2 labeling in Ile δ1 positions, are used to test the pulse sequences experimentally, and a rationalization of each sequence’s performance based on a product operator formalism that focuses on individual transitions is presented. The HMQC pulse sequence has previously been identified as a transverse relaxation optimized experiment for 13CH3-labeled methyl groups attached to macromolecules, and a zero-quantum correlation pulse scheme (13CH3 HZQC) has been developed to further improve resolution in the indirectly detected dimension. We present a modified version of the 13CH3 HZQC sequence that provides improved sensitivity by using the steady-state magnetization of both 13C and 1H spins. The HSQC and HMQC spectra of 13CH2D-labeled methyl groups in malate synthase G are very poorly resolved, but we present a new pulse sequence, 13CH2D TROSY, that exploits cross-correlation effects to record 1H–13C correlation maps with dramatically reduced linewidths in both dimensions. Well-resolved spectra of 13CHD2-labeled methyl groups can be recorded with HSQC or HMQC; a new 13CHD2 HZQC sequence is described that provides improved resolution with no loss in sensitivity in the applications considered here. When spectra recorded on samples prepared with the three isotopomers are compared, it is clear that the 13CH3 labeling strategy is the most beneficial from the perspective of sensitivity (gains ≥2.4 relative to either 13CH2D or 13CHD2 labeling), although excellent resolution can be obtained with any of the isotopomers using the pulse sequences presented here.  相似文献   

13.
Perdeuteration, selective deuteration, and stereo array isotope labeling (SAIL) are valuable strategies for NMR studies of larger proteins and membrane proteins. To minimize scrambling of the label, it is best to use cell-free methods to prepare selectively labeled proteins. However, when proteins are prepared from deuterated amino acids by cell-free translation in H2O, exchange reactions can lead to contamination of 2H sites by 1H from the solvent. Examination of a sample of SAIL-chlorella ubiquitin prepared by Escherichia coli cell-free synthesis revealed that exchange had occurred at several residues (mainly at Gly, Ala, Asp, Asn, Glu, and Gln). We present results from a study aimed at identifying the exchanging sites and level of exchange and at testing a strategy for minimizing 1H contamination during wheat germ cell-free translation of proteins produced from deuterated amino acids by adding known inhibitors of transaminases (1 mM aminooxyacetic acid) and glutamate synthetase (0.1 mM l-methionine sulfoximine). By using a wheat germ cell-free expression system, we produced [U–2H, 15N]-chlorella ubiquitin without and with added inhibitors, and [U–15N]-chlorella ubiquitin as a reference to determine the extent of deuterium incorporation. We also prepared a sample of [U–13C, 15N]-chlorella ubiquitin, for use in assigning the sites of exchange. The added inhibitors did not reduce the protein yield and were successful in blocking hydrogen exchange at Cα sites, with the exception of Gly, and at Cβ sites of Ala. We discovered, in addition, that partial exchange occurred with or without the inhibitors at certain side-chain methyl and methylene groups: Asn–Hβ, Asp–Hβ, Gln–Hγ, Glu–Hγ, and Lys–Hε. The side-chain labeling pattern, in particular the mixed chiral labeling resulting from partial exchange at certain sites, should be of interest in studies of large proteins, protein complexes, and membrane proteins.  相似文献   

14.
Lipase r27RCL is a 296-residue, 33 kDa monomeric enzyme with high ester hydrolysis activity, which has significant applications in the baking, paper and leather industries. The lipase gene proRCL from Rhizopus microsporus var. chinensis (also Rhizopus chinensis) CCTCC M201021 was cloned as a fusion construct C-terminal to a maltose-binding protein (MBP) tag, and expressed as MBP-proRCL in an Escherichia coli BL21 trxB (DE3) expression system with uniform 2H,13C,15N-enrichment and Ile-δ1, Leu, and Val 13CH3 methyl labeling. The fusion protein was hydrolyzed by Kex2 protease at the recognition site Lys-Arg between residues ?29 and ?28 of the prosequence, producing the enzyme form called r27RCL. Here we report extensive backbone 1H, 15N, and 13C, as well as Ile-δ1, Leu, and Val side chain methyl, NMR resonance assignments for r27RCL.  相似文献   

15.
Genes of human mitochondrial tRNALeu(UUR) (mtRNALeu(UUR)) and its mutant (mtRNALeu(M)) were synthesized and inserted into the plasmid pGEM-9Zf(-) respectively.E.coli JM 109 was transformed by the recombinant plasmids containing the target genes. The mtRNALeu(UUR) and mtRNALeu(M) were expressed up to 19.10% and 17.76% of total small RNA respectively. They were purified to 54% homogeneity by DEAE-sepharose-CL4B column chromatography and finally repurified by 15% PAGE/urea. Their kinetic parameters forE.coli LeuRS were measured. The results showed that the value of kcal/ Km of mtRNALeu(M) was about one fifth of that of mtRNALeu(UUR) and indicated the leucine acceptability of mtRNALeu(M) was much lower than that of mtRNALeu(UUR).  相似文献   

16.
Liao  M. T.  Hedley  M. J.  Woolley  D. J.  Brooks  R. R  Nichols  M. A. 《Plant and Soil》2000,223(1-2):245-254
The effect of rooting media Cu concentration (0.05–20 mg Cu L-1) on amino acid concentrations and copper speciation in the xylem sap of chicory and tomato plants was measured using 6 week old plants grown in a nutrient film technique system (NFT). Irrespective of the Cu concentration in the nutrient solutions, more than 99.68% and 99.74% of total Cu in tomato and chicory xylem sap was in a bound form. When exposed to high Cu concentrations in the rooting media, amino acid concentrations in the sap increased. Relative to other amino acids, the concentrations of glutamine (Gln), histidine (His), asparagine (Asn), valine (Val), nicotianamine (NA) and proline (Pro) in tomato xylem saps, and His, γ-aminobutyric acid (Gaba), glutamic acid (Glu), leucine (Leu), NA and phenylalanine (Phe) in chicory xylem saps showed the greatest increases. The data indicate that induced synthesis of some free amino acids as a specific and proportional response to Cu treatment. For a single complexation amino acid, the solution Cu2+concentration vs pH titration curve for NA at 0.06–0.07 mM was most similar, closely followed by His at 0.5–0.6 mM, to the solution Cu2+concentration behaviour in both tomato and chicory xylem sap. It is concluded that increased Cu concentrations in the rooting media induced selective synthesis of certain amino acid which include NA, His, Asn and Gln which have high stability constants with Cu. NA and His have the highest binding constants for Cu and the concentrations of NA and His in chicory and tomato xylem saps can account for all the bound Cu carried in the sap. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
The biological environment in which a protein performs its function is a crowded milieu containing millions of molecules that can potentially lead to a great many transient, non-specific interactions. NMR spectroscopy is especially well suited to study these weak molecular contacts. Here, non-specific interactions between the Ca2+-bound form of calmodulin (CaM) and non-cognate proteins in Escherichia coli lysate are explored using Ile, Leu, Val and Met methyl probes. Changes in CaM methyl chemical shifts as a function of added E. coli lysate are measured to determine a minimum ‘average’ dissociation constant for interactions between Ca2+-CaM and E. coli lysate proteins. 2H R 2 and 13C R 1 spin relaxation rates report on the binding reaction as well. Our results further highlight the power of methyl containing side-chains for characterizing biomolecular interactions, even in complex in-cell like environments.  相似文献   

18.
Imino 1H–15N residual dipolar couplings (RDCs) provide additional structural information that complements standard 1H–1H NOEs leading to improvements in both the local and global structure of RNAs. Here, we report measurement of imino 1H–1H RDCs for the Iron Responsive Element (IRE) RNA and native E. coli tRNAVal using a BEST-Jcomp-HMQC2 experiment. 1H–1H RDCs are observed between the imino protons in G–U wobble base pairs and between imino protons on neighboring base pairs in both RNAs. These imino 1H–1H RDCs complement standard 1H–15N RDCs because the 1H–1H vectors generally point along the helical axis, roughly perpendicular to 1H–15N RDCs. The use of longitudinal relaxation enhancement increased the signal-to-noise of the spectra by ~3.5-fold over the standard experiment. The ability to measure imino 1H–1H RDCs offers a new restraint, which can be used in NMR domain orientation and structural studies of RNAs. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Due to practical limitations in available 15N rf field strength, imperfections in 15N 180° pulses arising from off-resonance effects can result in significant sensitivity loss, even if the chemical shift offset is relatively small. Indeed, in multi-dimensional NMR experiments optimized for protein backbone amide groups, cross-peaks arising from the Arg guanidino 15Nε (~85 ppm) are highly attenuated by the presence of multiple INEPT transfer steps. To improve the sensitivity for correlations involving Arg Nε–Hε groups, we have incorporated 15N broadband 180° pulses into 3D 15N-separated NOE-HSQC and HNCACB experiments. Two 15N-WURST pulses incorporated at the INEPT transfer steps of the 3D 15N-separated NOE-HSQC pulse sequence resulted in a ~1.5-fold increase in sensitivity for the Arg Nε–Hε signals at 800 MHz. For the 3D HNCACB experiment, five 15N Abramovich-Vega pulses were incorporated for broadband inversion and refocusing, and the sensitivity of Arg1Hε-15Nε-13Cγ/13Cδ correlation peaks was enhanced by a factor of ~1.7 at 500 MHz. These experiments eliminate the necessity for additional experiments to assign Arg 1Hε and 15Nε resonances. In addition, the increased sensitivity afforded for the detection of NOE cross-peaks involving correlations with the 15Nε/1Hε of Arg in 3D 15N-separated NOE experiments should prove to be very useful for structural analysis of interactions involving Arg side-chains.  相似文献   

20.
A simple spectroscopic filtering technique is presented that may aid the assignment of 13C and 15N resonances of methyl-containing amino-acids in solid-state magic-angle spinning (MAS) NMR. A filtering block that selects methyl resonances is introduced in two-dimensional (2D) 13C-homonuclear and 15N–13C heteronuclear correlation experiments. The 2D 13C–13C correlation spectra are recorded with the methyl filter implemented prior to a 13C–13C mixing step. It is shown that these methyl-filtered 13C-homonuclear correlation spectra are instrumental in the assignment of Cδ resonances of leucines by suppression of Cγ–Cδ cross peaks. Further, a methyl filter is implemented prior to a 15N–13C transferred-echo double resonance (TEDOR) exchange scheme to obtain 2D 15N–13C heteronuclear correlation spectra. These experiments provide correlations between methyl groups and backbone amides. Some of the observed sequential 15N–13C correlations form the basis for initial sequence-specific assignments of backbone signals of the outer-membrane protein G.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号