首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of peptide inhibitors (bestatin and amastatin) and divalent cations (Ca2+ and Co2+) on the velocity of Asp1 liberation from angiotensin II (A-II) by human placental membrane fractions and binding of 125I A-II to human placental membranes were tested at 22 degrees C and 4 degrees C. Asp1 liberation was measured by high performance liquid chromatography. As expected, the degradation and binding of A-II were temperature sensitive, with both being at 4 degrees C than at 22 degrees C. While amastatin (10(-4) M) and bestatin 10(-6) M) significantly reduced the velocity of Asp1 liberation from A-II to about 45%, amastatin (10(-4) M) and bestatin (10(-4) M) increased 125I A-II binding to 125% and 130%, respectively. Ca2+ (10 mM) and Co2+ (10 mM) activated the velocity of Asp1 liberation from A-II to 140% and 120%, respectively at 22 degrees C. Ca2+ (10(-1) M) and Co2+ (10 mM) also enhanced 125I A-II binding about 130%. Previously we showed that the A-II degrading activity found in human placental membrane fractions is mainly due to aminopeptidases A and M. Since amastatin and bestatin are the specific inhibitors for aminopeptidases A and M, and since Ca2+ and Co2+ are the activators for aminopeptidase A and aminopeptidase M, respectively, it is conceivable that the enzymes regulate the levels of A-II and, therefore, that they may play an important role in the binding of A-II to human placental membrane fractions.  相似文献   

2.
Y Doi  F Kim  S Kido 《Biochemistry》1990,29(6):1392-1397
Calcium binding of swine plasma gelsolin was examined. When applied to ion-exchange chromatography, its elution volume was drastically altered depending on the free Ca2+ concentration of the medium. The presence of two classes of Ca2+ binding sites, high-affinity sites (Kd = 7 microM) and low-affinity sites (Kd = 1 mM), was suggested from the concentration dependence of the elution volume. The tight binding sites were specific for Ca2+. The weakly bound Ca2+ could be replaced by Mg2+ once the tight binding sites were occupied with Ca2+. The binding of metal ions was totally reversible. Circular dichroism measurement of plasma gelsolin indicated that most change in secondary structure was associated with Ca2+ binding to the high-affinity sites. Binding of Mg2+ to the low-affinity sites caused a secondary structural change different from that caused by Ca2+ bound to the high-affinity sites. Gel permeation chromatography exhibited a small change in Stokes radius with and without Ca2+. Microheterogeneity revealed by isoelectric focusing did not relate to the presence of two classes of Ca2+ binding sites. These results indicated that plasma gelsolin drastically altered its surface charge property due to binding of Ca2+ or Ca2+, Mg2+ with a concomitant conformational change.  相似文献   

3.
We have used the osmotic pressure technique of Rand, Parsegian and co-workers (Nature 259 (1976) 601–603) to investigate the effect of anion species on the binding of M2+ to dipalmitoylphosphatidylcholine bilayers. Calcium and magnesium salts show a complex behavior which is consistent with both anion binding and screening. We observe virtually no change, within the accuracy of our experiment, in the decay of repulsive pressure with inter-bilayer separation for the acetate and nitrate salts of magnesium and calcium; however, the chloride salt does show a different pressure decay. At any given bilayer separation, , with calcium and magnesium salts present, the anions produce a decrease in the repulsive pressure in the order acetate > Cl > NO3.  相似文献   

4.
功能性低分子量岩藻多糖的研究进展   总被引:5,自引:0,他引:5  
低分子量岩藻多糖来源于褐藻,是一类含有硫酸基团的多糖,具有多种生物学功能,如抗凝血、抗病毒、抗血栓、抗肿瘤等功能,因此可被广泛地应用于医药、食品等领域。着重介绍了低分子量岩藻多糖的制备及其生物学功能的研究进展。  相似文献   

5.
Conformational changes induced by binding of divalent cations to calregulin   总被引:3,自引:0,他引:3  
Scatchard analysis of equilibrium dialysis studies have revealed that in the presence of 3.0 mM MgCl2 and 150 mM KCl, calregulin has a single binding site for Ca2+ with an apparent dissociation constant (apparent Kd) of 0.05 microM and 14 binding sites for Zn2+ with apparent Kd(Zn2+) of 310 microM. Ca2+ binding to calregulin induces a 5% increase in the intensity of intrinsic fluorescence and a 2-3-nm blue shift in emission maximum. Zn2+ binding to calregulin causes a dose-dependent increase of about 250% in its intrinsic fluorescence intensity and a red shift in the emission maximum of about 11 nm. Half-maximal wavelength shift occurs at 0.4 mol of Zn2+/mol of calregulin, and 100% of the wavelength shift is complete at 2 mol of Zn2+/mol of calregulin. In the presence of Zn2+ and calregulin the fluorescence intensity of the hydrophobic fluorescent probe 8-anilino-1-napthalenesulfonate (ANS) was enhanced 300-400% with a shift in emission maximum from 500 to 480 nm. Half-maximal Zn2+-induced shift in ANS emission maximum occurred at 1.2 mol of Zn2+/mol of calregulin, and 100% of this shift occurred at 6 mol of Zn2+/mol of calregulin. Of 12 cations tested, only Zn2+ and Ca2+ produced changes in calregulin intrinsic fluorescence, and none of these metal ions could inhibit the Zn2+-induced red shift in intrinsic fluorescence emission maximum. Furthermore, none of these cations could inhibit or mimic the Zn2+-induced blue shift in ANS emission maximum. These results suggest that calregulin contains distinct and specific ligand-binding sites for Ca2+ and Zn2+. While Ca2+ binding results in the movement of tryptophan away from the solvent, Zn2+ causes a movement of tryptophan into the solvent and the exposure of a domain with considerable hydrophobic character.  相似文献   

6.
Potential toxicity of transition metals like Hg, Cu and Cd are well known and their affinity toward proteins is of great concern. This work explores the selective nature of interactions of Cu2+, Hg2+ and Cd2+ with the heme proteins leghemoglobin, myoglobin and cytochrome C. The binding profiles were analyzed using absorbance spectrum and steady-state fluorescence spectroscopy. Thermodynamic parameters like enthalpy, entropy and free energy changes were derived by isothermal calorimetry and consequent binding parameters were compared for these heme proteins. Free energy (DG) values revealed Cu2+ binding toward myoglobin and leghemoglobin to be specific and facile in contrast to weak binding for Hg2+ or Cd2+. Time correlated single photon counting indicated significant alteration in excited state lifetimes for metal complexed myoglobin and leghemoglobin suggesting bimolecular collisions to be involved. Interestingly, none of these cations showed significant affinity for cytochrome c pointing that, presence of conserved sequences or heme group is not the only criteria for cation binding toward heme proteins, but the microenvironment of the residues or a specific folding pattern may be responsible for these differential conjugation profile. Binding of these cations may modulate the conformation and functions of these biologically important proteins.  相似文献   

7.
Fibrinogen binding to platelet plasma membranes, which is a prerequisite for platelet aggregation, was determined by incubating 125I-labeled fibrinogen with isolated membranes and measuring the amount of radioactivity sedimenting with the membranes through 15% sucrose. Fibrinogen binding was optimal at 10(-3) M Ca2+. Scatchard analyses of the fibrinogen binding showed that the membrane capacity for fibrinogen was 1.6 X 10(-12) mol/mg of membrane protein, with a dissociation constant (Kd) = 1.2 X 10(-8) M. When Ca2+ levels were manipulated by the addition of varying amounts of EGTA at a fixed Mg2+ concentration of 3 X 10(-3) M, specific binding of fibrinogen to platelet membranes occurred only at Ca2+ concentrations greater than or equal to 10(-6) M. Membranes isolated from platelets of an individual with Glanzmann's thrombasthenia bound only 12% as much fibrinogen as control platelets. The data in the present study suggest that there are two divalent cation binding sites that must be occupied for fibrinogen to bind: one site is specific for calcium and is saturated at 10(-6) M Ca2+; the other site is less specific and is saturated at a 10(-3) M concentration of either Ca2+ or Mg2+. Fibrinogen binding to intact platelets and, consequently, platelet aggregation only required 10(-3) M extracellular divalent cation and was not specific for Ca2+. These data indicate that the cytoplasm is a potential source for the requirement of 10(-6) M Ca2+, and that changes in the intracellular concentration of Ca2+ may cause the expression of fibrinogen receptors during ADP-induced platelet activation.  相似文献   

8.
Binding of heparin to human high molecular weight kininogen   总被引:1,自引:0,他引:1  
The binding of heparin to high molecular weight kininogen (H-kininogen) was analyzed by the effect of kininogen in decreasing the heparin-induced enhancement of the rate of inactivation of thrombin by antithrombin. The conditions were arranged so that the heparin-catalyzed antithrombin-thrombin reaction, monitored in the presence of the reversible thrombin inhibitor p-aminobenzamidine, followed pseudo-first-order kinetics and the observed rate constant (kappa obsd) varied linearly with the heparin concentration. In the absence of metal ions, H-kininogen minimally affected kappa obsd, measured at a constant concentration of heparin with high affinity for antithrombin (30 nM), at I = 0.15, pH 7.4 and 25 degrees C. However, at a saturating concentration of Zn2+ (10 microM), kappa obsd was reduced to 50% at approximately 20 nM H-kininogen and to that of the uncatalyzed reaction at greater than or equal to approximately 0.2 microM H-kininogen. Conversely, at a saturating concentration of H-kininogen (0.5 microM), kappa obsd was decreased to 50% at approximately 0.6 microM Zn2+ and to the kappa obsd of the uncatalyzed reaction at greater than or equal to 10 microM Zn2+. Other metal ions were effective in the order Zn2+ approximately Ni2+ greater than Cu2+ approximately Co2+ approximately Cd2+. The single-chain and two-chain forms of H-kininogen and the H-kininogen light chain reduced the heparin enhancement in the presence of Zn2+ to the same extent, whereas low molecular weight kininogen had no influence.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Plasma kallikrein kinin system (KKS) activation along with its cellular receptors expression are increased after injury and in patients with septic shock, hypotensive bacteremia and rhesus monkey infected with Salmonella typhimurium. KKS signaling cascade is activated by activated factor XII (FXIIa, Hageman factor)- and prolylcarboxypeptidase (PRCP)-dependent pathways on endothelial cells. Among the many entities that comprise the KKS, high molecular weight kininogen (HK), a bradykinin precursor, is critical in the assembly and activation of this system. HK is primarily expressed in the liver and secreted into the bloodstream. The activation of the KKS influences the permeability of the endothelium by liberating bradykinin (BK) from HK. BK is a potent inflammatory peptide which stimulates constitutive bradykinin B2 and inducible B1 receptors to release nitric oxide and prostacyclin. Regardless of the triggers, PK can only be activated on HK bound to the artificial negatively charged or to cell membrane surfaces. Since LPS has a negatively charged moiety and the ability to induce inflammatory responses in human, we determined the interaction between LPS and HK. HKH19 (HK cell binding site) and heparin inhibited LPS binding to HK with IC50s of 15 nM and 20 μg/ml, respectively. C1-inhibitor and N-acetylglucosamine glycan inhibited LPS binding to HK with IC50s of about 10 μg/ml and 10 mM, respectively. This novel study underscores the implication of HK in infection. We propose that HKH19, heparin, and C1-inhibitor present therapeutic potential for the treatment of sepsis and hypotensive bacteremia.  相似文献   

10.
11.
K Grizzuti  G E Perlmann 《Biochemistry》1975,14(10):2171-2175
Dialysis equilibrium measurements at 25 degrees indicate that, at pH 6.8 and at a concentration of 1.0 times 10(-10) 3 M MnC12 or CoC12, phosvitin binds 113 Mn2+ and 120 Co2+. The binding is cooperative at low cation concentrations. The number of Mg2+, Ca2+, Mn2+, and Co2+ bound is not affected by temperatures of up to 60 degrees; however, the cooperactivity is enhanced. Optical rotatory dispersion and circular dichroism studies indicate that a conformational change occurs on binding of Mn2+ and Co2+ which parallels the one produced by Ca2+ and reported elsewhere [Grizzuti, K., and Perlmann, G.E. (1973), Biochemistry 12, 4399]. The conformational changes induced by Mg2+ and Mn2+ follow different paths. Upon binding of Mn2+ and Co2+ the intrinsic viscosity, [eta], of phosvitin decreases from about 0.5 to 0.03 dl/g, while Mg2+ and Ca2+ decrease [eta] to 0.048 dl/g. The ultraviolet absorption spectrum of phosvitin is altered upon binding of Ca2+, Mn2+, and Co2+, but not upon binding of Mg2+; an increase of the temperature to 60% has no further effect on the spectra.  相似文献   

12.
13.
Two lymphoblastoid tumor cell lines, the Burkitt lymphoma derived BJAB cell line which is free of Epstein-Barr virus (EBV) and B95-8 cells, which are marmoset lymphocytes transformed by EBV isolated from an infectious mononucleosis patient, were studied in regards to their effects on the blastogenic responsiveness of normal human peripheral blood leukocytes stimulated in vitro with mitogens. Mitomycin C treated tumor cell suspensions, when cocultured with normal human blood leukocytes, markedly depressed the expected blastogenic responses in vitro to concanavalin A, pokeweed mitogen, and phytohemagglutin. In addition, cell-free sonicates from the cell lines also depressed blastogenic responsiveness of the leukocytes in vitro. Heating the sonicates for 10 min at 100 degrees C markedly diminished the suppressive properties of the sonicates, as did ultraviolet light irradiation. The suppressive activity of the B95-8 sonicates was pelleted by high speed centrifugation as compared to the activity of sonicates derived from the BJAB cells. Further studies are warranted to determine the nature and mechanism of suppression of blastogenic responsiveness of normal human leukocytes by soluble components derived from such lymphoblastoid cell lines.  相似文献   

14.
Cytosolic sulfotransferases (STs), traditionally viewed as Phase II drug-metabolizing or detoxifying enzymes, are increasingly being implicated in the metabolism of endogenous biologically-active molecules. Except for studies on changes in their levels of expression and activity in the early stage of development in mammals, very little is known about how these enzymes are regulated. In this study, the regulatory effects of divalent metal cations on the activity of human cytosolic STs were quantitatively evaluated. Results obtained indicate that all nine human cytosolic STs examined are partially or completely inhibited/stimulated by the ten divalent metal cations tested at 10 mM concentration. Compared with the other metal cations, the inhibitory or stimulatory effect of Mg2+ and Ca2+ on the activities of the human cytosolic STs appeared to be relatively smaller. Concentration-dependent effects of the divalent metal cations were further examined. The IC50 or EC50 values determined for different divalent metal cations were mostly above their normal physiological concentration ranges. In a few cases, however, IC50 values close to the physiological concentrations of certain divalent metal cations were observed. Using the monoamine (M)-form phenol ST (PST) as a model, it was demonstrated that the K(m) for dopamine changed only slightly with increasing concentrations of Cd2+, whereas the V(max) was dramatically decreased.  相似文献   

15.
Y Sato  K Hiwada  T Kokubu 《Life sciences》1985,37(4):371-377
A high molecular weight angiotensinogen (Mr. 332,000 daltons) was prepared from plasma of pregnant women by gel filtration on Sephacryl S-300. The molecular weight was reduced to 81,000 by treatment with dithiothreitol (DTT), but not by treatment with SDS. DTT-treated high molecular weight (HMW) angiotensinogen was very similar to low molecular weight (LMW) angiotensinogen with respect to molecular weight, pH profile for angiotensin formation by human kidney renin, thermostability, Km value and isoelectric point. The antibody against LMW-angiotensinogen completely cross-reacted with HMW-angiotensinogen. These results suggest that HMW-angiotensinogen is probably a complex of LMW-angiotensinogen and other protein(s) which might be bound by disulfide bond.  相似文献   

16.
A high molecular weight glycoprotein consisting of three disulfide-linked 142,000 molecular weight chains has been isolated from human blood platelets. The glycoprotein, designated thrombospondin, is released by platelets in response to thrombin treatment and is proteolyzed when left in the presence of platelets after liberation. It is relatively insensitive to degradation by thrombin. Thrombospondin is a filamentous protein of dimensions approximately 7 X 70 nm and contains 1.9% neutral sugars, 1.4% amino sugars, 0.7% sialic acid, and no hexuronic acid. Amino acid analysis reveals that the level of cysteine is approximately 260 residues per molecule. Thrombospondin binds to immobilized heparin but is released by 0.45 M sodium chloride. A single band is obtained by isoelectric focusing, indicating a pI of 4.7 as well as a relatively high degree of purity. Degradation of the intact molecule with trypsin yields a stable core particle of molecular weight 210,000 comprised of three 70,000 chains.  相似文献   

17.
Endostatin (20 kDa) is a C-terminal proteolytic fragment of collagen XVIII that is localized in vascular basement membrane zones in various organs. It binds zinc, heparin/heparan sulfate, laminin, and sulfatides and inhibits angiogenesis and tumor growth. Here we determined the kinetics and affinity of the interaction of endostatin with heparin/heparan sulfate and investigated the effects of divalent cations on these interactions and on the biological activities of endostatin. The binding of human recombinant endostatin to heparin and heparan sulfate was studied by surface plasmon resonance using BIAcore technology and further characterized by docking and molecular dynamics simulations. Kinetic data, evaluated using a 1:1 interaction model, showed that heparan sulfate bound to and dissociated from endostatin faster than heparin and that endostatin bound to heparin and heparan sulfate with a moderate affinity (K(D) approximately 2 microm). Molecular modeling of the complex between endostatin and heparin oligosaccharides predicted that, compared with mutagenesis studies, two further arginine residues, Arg(47) and Arg(66), participated in the binding. The binding of endostatin to heparin and heparan sulfate required the presence of divalent cations. The addition of ZnCl(2) to endostatin enhanced its binding to heparan sulfate by approximately 40% as well as its antiproliferative effect on endothelial cells stimulated by fibroblast growth factor-2, suggesting that this activity is mediated by the binding of endostatin to heparan sulfate. In contrast, no increase in the antiangiogenic and anti-proliferative activities of endostatin promoted by vascular endothelial growth factor was observed upon the addition of zinc.  相似文献   

18.
The effect of divalent cations on the self-association of high molecular weight subfragment-2 (long S-2) and low molecular weight subfragment-2 (short S-2) of rabbit skeletal muscle myosin has been investigated. In the presence of millimolar concentrations of Ca2+ or Mg2+ long S-2 associates at neutral pH to form ordered, high molecular weight aggregates whereas short S-2 does not associate. The association process is co-operative and results from binding two to four divalent cations within the light meromyosin-heavy meromyosin (LMM-HMM) hinge region of long S-2. Optical diffraction of electron micrographs of the long S-2 aggregates revealed several periodicities including reflections near 143 A. High molecular weight HMM showed a similar divalent metal induced self-association. Chymotryptic digestion studies of rod filaments reveal that cleavage within the LMM-HMM hinge is also strongly dependent on the presence of divalent cations. At pH 8, in the absence of divalent cations, the S-2 region appears to be displaced away from the filament backbone resulting in rapid proteolysis in the hinge domain. At high cation concentrations (greater than 10 mM) proteolytic cleavage is suppressed. A similar depression of the (substantially lower) hinge cleavage rate was also observed at neutral pH following addition of these divalent metal ions. Results suggest that binding of Mg2+ within the hinge domain under physiological conditions may act to lock the cross-bridge onto the thick filament surface in its resting-state orientation.  相似文献   

19.
The time- and concentration-dependent binding of von Willebrand factor to fibrillar collagen was examined by following the disappearance from plasma of ristocetin cofactor activity and factor VIII-related antigen, the functional and immunologic determinants of von Willebrand factor. Examination of both bound and unbound factor VIII-related antigen by crossed immunoelectrophoresis revealed a preferential binding of the higher molecular weight forms of von Willebrand factor to fibrillar collagen.  相似文献   

20.
Microfibrils and elastin are major constituents of elastic fibers, the assembly of which is dictated by multimolecular interactions. Microfibril-associated glycoprotein-1 (MAGP-1) is a microfibrillar component that interacts with the soluble elastin precursor, tropoelastin. We describe here the adaptation of a solid-phase binding assay that defines the effect of divalent cations on the interactions between MAGP-1 and tropoelastin. Using this assay, a strong calcium-dependent interaction was demonstrated, with a dissociation constant of 2.8 +/- 0.3 nm, which fits a single-site binding model. Manganese and magnesium bestowed a weaker association, and copper did not facilitate the protein interactions. Three constructs spanning tropoelastin were used to quantify their relative contributions to calcium-dependent MAGP-1 binding. Binding to a construct spanning a region from the N-terminus to domain 18 followed a single-site binding model with a dissociation constant of 12.0 +/- 2.2 nm, which contrasted with the complex binding behavior observed for fragments spanning domains 17-27 and domain 27 to the C-terminus. To further elucidate binding sites around the kallikrein cleavage site of domains 25/26, MAGP-1 was presented with constructs containing C-terminal deletions within the region. Construct M1659, which spans a region from the N-terminus of tropoelastin to domain 26, inclusive, bound MAGP-1 with a dissociation constant of 9.7 +/- 2.0 nm, which decreased to 4.9 +/- 1.0 nm following the removal of domain 26 (M155n), thus displaying only half the total capacity to bind MAGP-1. These results demonstrate that MAGP-1 is capable of cumulative binding to distinct regions on tropoelastin, with different apparent dissociation constants and different amounts of bound protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号