首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The claim of monophyletic origin of angiosperms arose from the confusion of phylogenetic and taxonomic concepts. Unpreconceived studies of extant angiosperms point to more than one archetype. Several lines of angiosperms have simultaneously entered the fossil record; the monocotyledons, proto-Hamamelidales, proto-Laurales and “proteophylls” (possibly ancestral to the Rosidae) are recognized among them. Three groups of Mesozoic seed plants — the Caytoniales, Czekanowskiales and Dirhopalostachyaceae — are distinguished as major sources of angiosperm characters (proangiosperms). Other Mesozoic lineages probably also contributed to the angiosperm character pool. Angiospermization is related to Mammalization and other processes involved in development of the Cenozoic lithosphere and biosphere.  相似文献   

2.
A literature review of 34 families of flowering plants containing at least one species pollinated primarily by beetles is presented. While the majority of species are represented by magnoliids and basal monocotyledons specialized, beetle-pollinated systems have evolved independently in 14 families of eudicotyldons and six families of petaloid monocots. Four, overlapping modes of floral presentation in plants pollinated exclusively by beetles (Bilabiate, Brush, Chamber Blossom and Painted Bowl) are described. Chamber Blossoms and Painted Bowls are the two most common modes. Chamber Blossoms, found in magnoliids, primitive monocotyledons and in some families of woody eudicots, exploit the greatest diversity of beetle pollinators. Painted Bowls are restricted to petaloid monocots and a few families of eudicots dependent primarily on hairy species of Scarabaeidae as pollen vectors. In contrast, generalist flowers pollinated by a combination of beetles and other animals are recorded in 22 families. Generalist systems are more likely to secrete nectar and exploit four beetle families absent in specialist flowers. Centers of diversity for species with specialized, beetle-pollinated systems are distributed through the wet tropics (centers for Brush and Chamber Blossoms) to warm temperate-Mediterranean zones (centers for Painted Bowls and a few Bilabiate flowers). It is unlikely that beetles were the first pollinators of angiosperms but specialized, beetlepollinated flowers must have evolved by the midlate Cretaceous to join pre-existing guilds of beetlepollinated gymnosperms. The floras of Australia and western North America suggest that mutualistic interactions between beetles and flowers has been a continuous and labile trend in angiosperms with novel interactions evolving through the Tertiary.  相似文献   

3.
The present paper aims at introducting Dahlgren’s system of classification of the angiosperms. Phenetic and phylogenetic classifications are discussed. The basic principles and methods used by Dahlgren are explained. Dahlgren’s opinions on some important problems, such as the origin of angiosperms, the flowers of primitive angiosperms, the relation between the dicotyledons and monocotyledons, the origin of the monocotyledons, the treatment of the “Amentiferae” and of the orders of the “Sympetalae”, are all expressed. A brief comparison between Dahlgren’s system and three other current systems, viz. those of Takhtajan, Cronquist and Thorne is also given.  相似文献   

4.
Molecular phylogenies in angiosperm evolution   总被引:8,自引:0,他引:8  
We have cloned and sequenced cDNAs for the glyceraldehyde-3-phosphate dehydrogenase of glycolysis, gapC, from a bryophyte, a gymnosperm, and three angiosperms. Phylogenetic analyses are presented for these data in the context of other gapC sequences and in parallel with published nucleotide sequences for the chloroplast encoded gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcL). Relative-rate tests were performed for these genes in order to assess variation in substitution rate for coding regions, along individual plant lineages studied. The results of both gene analyses suggest that the deepest dichotomy within the angiosperms separates not magnoliids from remaining angiosperms, but monocotyledons from dicotyledons, in sharp contrast to prediction from the Euanthial theory for angiosperm evolution. Furthermore, these chloroplast and nuclear sequence data taken together suggest that the separation of monocotyledonous and dicotyledonous lineages took place in late Carboniferous times [approximately 300 Myr before the present (Mybp)]. This date would exceed but be compatible with the late-Triassic (approximately 220 Mybp) occurrence of fossil reproductive structures of the primitive angiosperm Sanmiguelia lewisii.   相似文献   

5.
Floral structure and evolution of primitive angiosperms: Recent advances   总被引:4,自引:0,他引:4  
Concepts of primitive angiosperm flowers have changed in recent years due to new studies on relic archaic groups, new paleobotanical finds and the addition of molecular biological techniques to the study of angiosperm systematics and evolution.Magnoliidae are still the hot group, but emphasis is now on small primitive flowers with few organs and also on the great lability of organ number. Of the extant groups, a potential basal position of the paleoherbs has been discussed by some authors. Although some paleoherbs have a simple gynoecium with a single orthotropous ovule, anatropous ovules may still be seen as plesiomorphic in angiosperms. Anatropy is not necessarily a consequence of the advent of closed carpels. It may also exhibit biological advantages under other circumstances as is the case in podocarps among gymnosperms. Valvate anthers have now been found in most larger subgroups of theMagnoliidae (recently also in paleoherbs) and in some Cretaceous fossils. Nevertheless, as seen from its systematic distribution, valvate dehiscence is not necessarily plesiomorphic for the angiosperms, but may be a facultative by-product of the thick connectives and comparatively undifferentiated anther shape inMagnoliidae and lowerHamamelididae. A perianth is relatively simple in extantMagnoliidae or even wanting in some families. In groups with naked flowers the perianth may have been easily lost because integration in the floral architecture was less pronounced than in more advanced angiosperm groups. Problems with the comparison of paleoherb flowers with those ofGnetales are discussed. The rapid growth of information from paleobotany and molecular systematics requires an especially open attitude towards the evaluation of various hypotheses on early flower evolution in the coming years.  相似文献   

6.
Studies in the 1970's reporting the occurrence of fossil pollen types in the Cretaceous, coupled with surveys of extant pollen morphology of primitive flowering plants, laid the foundation for proposing a Lower Cretaceous origin of angiosperms. Over the last 30 years, morphological, ultrastructural, and ontogenetic studies of both extant and fossil pollen have provided an array of new characters, as well as greater resolution in defining character polarities. Moreover, a range of fossil pollen types exhibiting angiosperm characters occur in low frequency within Triassic and Jurassic sediments. The pollen data provide evidence of a pre-Cretaceous origin of angiosperms. Speciation and extinction rates were likely equal during the Triassic and Jurassic, resulting in the paucity of angiosperm pollen types from different geographic areas in the Atlantic – South American/African rift zone. It was not until the Lower Cretaceous that origination rates exceed extinction rates, resulting in the subsequent diversification of angiosperms and the origin of the eudicots.  相似文献   

7.
Phylogenetic evidence for the herbaceous origin of angiosperms   总被引:7,自引:0,他引:7  
The ancestral angiosperm is commonly interpreted as an arborescent to shrubby magnolialean with large, multiparted, complex flowers. We examined this hypothesis using a phylogenetic analysis of new and reevaluated characters polarizabled with outgroup comparison. Our cladistic analysis of basal angiosperms placed the nonmagnolialeanChloranthaceae andPiperaceae at the bottom of the tree. We further inferred the probable ancestral states of characters not polarizable with outgroup comparison by examining their distribution among taxa at the base of our cladogram. The sum of ancestral character states suggests that the protoangiosperm was a diminutive, rhizomatous to scrambling perennial herb, with small, simple flowers.  相似文献   

8.
基于93个形态形状,采用13个被子植物基部类群做为外类群,对49个单子叶植物科级分类阶元进行了分支系统学分析。经过简约性分析,得到了1684棵同等最大简约分支树。严格一致树的分支结构图表明:1)古草本类植物和单子叶植物是姐妹群关系;2)具有网状脉的类群,薯蓣科,菝葜科,百部科是单子叶植物的最基部类群。由于性状状态间存在着较多的平行和逆转进化,这在一定程度上影响了系统发育重建的准确性;所选择的性状状态之间的演化很可能是平行的、多次的或者是特化的状态,因此这样复杂的演化关系的探索关键在于找到一些能确切反映其系统演化关系的形态性状。目前很难通过简约化的形态分支分析来解开整个单子叶植物的起源和演化之谜。为了避开对系统学分析造成干扰的误导性状,形态数据结合DNA序列分析很可能是必需的。  相似文献   

9.
Abstract.— Seed dormancy plays an important role in germination ecology and seed plant evolution. Morphological seed dormancy is caused by an underdeveloped embryo that must mature prior to germination. It has been suggested that the presence of an underdeveloped embryo is plesiomorphic among seed plants and that parallel directional change in embryo morphology has occurred separately in gymnosperms and in angiosperms. We test these hypotheses using original data on embryo morphology of key basal taxa, a published dataset, and the generalized least squares (GLS) method of ancestral character state reconstruction. Reconstructions for embryo to seed ratio (E:S) using family means for 179 families showed that E:S has increased between the ancestral angiosperm and almost all extant angiosperm taxa. Species in the rosid clade have particularly large embryos relative to the angiosperm ancestor. Results for the gymnosperms show a similar but smaller increase. There were no statistically significant differences in E:S between basal taxa and any derived group due to extremely large standard errors produced by GLS models. However, differences between reconstructed values for the angiosperm ancestor and more highly nested nodes are large and these results are robust to topological and branch-length manipulations. Our analysis supports the idea that the underdeveloped embryo is primitive among seed plants and that there has been a directional change in E:S within both angiosperms and gymnosperms. Our analysis suggests that dormancy enforced by an underdeveloped embryo is plesiomorphic among angiosperms and that nondormancy and other dormancy types probably evolved within the angiosperms. The shift in E:S was likely a heterochronic change, and has important implications for the life history of seed plants.  相似文献   

10.
Although flowers, leaves, and stems of the angiosperms have understandably received more attention than roots, the growing root tips, or root apical meristems (RAMs), are organs that could provide insight into angiosperm evolution. We studied RAM organization across a broad spectrum of angiosperms (45 orders and 132 families of basal angiosperms, monocots, and eudicots) to characterize angiosperm RAMs and cortex development related to RAMs. Types of RAM organization in root tips of flowering plants include open RAMs without boundaries between some tissues in the growing tip and closed RAMs with distinct boundaries between apical regions. Epidermis origin is associated with the cortex in some basal angiosperms and monocots and with the lateral rootcap in eudicots and other basal angiosperms. In most angiosperm RAMs, initials for the central region of the rootcap, or columella, are distinct from the lateral rootcap and its initials. Slightly more angiosperm families have exclusively closed RAMs than exclusively open RAMs, but many families have representatives with both open and closed RAMs. Root tips with open RAMs are generally found in angiosperm families considered sister to other families; certain open RAMs may be ancestral in angiosperms.  相似文献   

11.
A new angiosperm fructification, Caloda delevoryana, is described from the Cenomanian age Dakota Formation of central Kansas. It consists of a long, narrow, main axis with numerous secondary axes arranged helically around the main axis. These secondary axes are each terminated in a small receptacle bearing numerous conduplicate carpels. No evidence of a perianth or androecium was found. This fructification bears some similarity to a number of different modern orders, such as the Hamamelidales, Alismatales, Najadales, and Piperales, and families, particularly the Platanaceae and the Aponogetonaceae, but cannot definitely be assigned to any modern taxon within the angiosperms. C. delevoryana exhibits several characters traditionally assumed to be primitive in the angiosperms, and several other features of this fossil are proposed as primitive in the evolution of angiosperms. This floral axis, with its compact mass of numerous secondary axes bearing very small fruits and seeds, may be the product of reduction through diminished growth of internodes and carpels, and elaboration through increased repetition of floral modules. This record adds to the rapidly growing body of paleobotanical data on early angiosperm reproductive structures, which should prove important in the assessment of the extent and direction of angiosperm evolution.  相似文献   

12.

Premise

Recent studies of floral disparity in the asterid order Ericales have shown that flowers vary strongly among families and that disparity is unequally distributed between the three flower modules (perianth, androecium, gynoecium). However, it remains unknown whether these patterns are driven by heterogeneous rates of morphological evolution or other factors.

Methods

Here, we compiled a data set of 33 floral characters scored for 414 species of Ericales sampled from 346 genera and all 22 families. We conducted ancestral state reconstructions using an equal-rates Markov model for each character. We estimated rates of morphological evolution for Ericales and for a separate angiosperm-wide data set of 19 characters and 792 species, creating “rate profiles” for Ericales, angiosperms, and major angiosperm subclades. We compared morphological rates among flower modules within each data set separately and between data sets, and we compared rates among angiosperm subclades using the angiosperm data set.

Results

The androecium exhibits the highest evolutionary rates across most characters, whereas most perianth and gynoecium characters evolve more slowly in both Ericales and angiosperms. Both high and low rates of morphological evolution can result in high floral disparity in Ericales. Analyses of an angiosperm-wide floral data set reveal that this pattern appears to be conserved across most major angiosperm clades.

Conclusions

Elevated rates of morphological evolution in the androecium of Ericales may explain the higher disparity reported for this floral module. Comparing rates of morphological evolution through rate profiles proves to be a powerful tool in understanding floral evolution.  相似文献   

13.
An updated angiosperm classification   总被引:5,自引:0,他引:5  
DAHLGREN, C, 1989. An updated angiosperm classification. A new two-dimensional diagram, reflecting the system of classification of the angiosperms, is presented. It combines the dicotyledon diagram in G. Dahlgren (1989) and an adapted monocotyledon diagram after that in Dahlgren (1985) in a single diagram. An updated monocotyledon taxonomy is presented and the classification is appended.  相似文献   

14.
The ecophysiology of early angiosperms   总被引:1,自引:0,他引:1  
Angiosperms first appeared during the Early Cretaceous, and within 30 million years they reigned over many floras worldwide. Associated with this rise to prominence, angiosperms produced a spectrum of reproductive and vegetative innovations, which produced a cascade of ecological consequences that altered the ecology and biogeochemistry of the planet. The pace, pattern and phylogenetic systematics of the Cretaceous angiosperm diversification are broadly sketched out. However, the ecophysiology and environmental interactions that energized the early angiosperm radiation remain unresolved. This constrains our ability to diagnose the selective pressures and habitat contexts responsible for the evolution of fundamental angiosperm features, such as flowers, rapid growth, xylem vessels and net-veined leaves, which in association with environmental opportunities, drove waves of phylogenetic and ecological diversification. Here, we consider our current understanding of early angiosperm ecophysiology. We focus on comparative patterns of ecophysiological evolution, emphasizing carbon- and water-use traits, by merging recent molecular phylogenetic studies with physiological studies focused on extant basal angiosperms. In doing so, we discuss how early angiosperms established a roothold in pre-existing Mesozoic plant communities, and how these events canalized subsequent bursts of angiosperm diversification during the Aptian-Albian.  相似文献   

15.
Seven dispersed monosulcate pollen taxa from the Dakota Formation of Minnesota, Nebraska, and Kansas were examined ultrastructurally. Rugubivesiculites rugosus has gymnosperm affinities based on its anasulcate aperture and the presence and nature of the formation of sacci. Stellatopollis sp. has exine sculpturing restricted to taxa with angiosperm affinities and is monosulcate. The affinities of the other five monosulcate taxa are uncertain and the exines are tectategranular. The sulcus in many of the remaining five taxa are flanked by small flange-like sacci. These five taxa have features found in gymnosperms and also some features of primitive extant angiosperms. The combination of characters of the pollen types presented here does not entirely agree with our current concept of primitive pollen characters as understood from extant ranalean angiosperms.  相似文献   

16.
The evolutionary significance of the c . 1000-fold range of DNA C-values in angiosperms (1C =  c . 0.1–127.4 pg) has often attracted interest. A recent analysis, which superimposed available C-value data onto the angiosperm phylogeny, that placed Ceratophyllaceae as the most basal angiosperm family led to the conclusion that ancestral angiosperms were characterized by small genomes (defined as 1C £ 3.5 pg). However, with the recent increase in DNA sequence data and large-scale phylogenetic analyses, strong support is now provided for Amborellaceae and/or Nymphaeaceae as the most basal angiosperm families, followed by Austrobaileyales (comprising Schisandraceae, Trimeniaceae and Austrobaileyaceae). Together these five families comprise the ANITA grade. The remaining basal angiosperm families (Ceratophyllaceae, Chloranthaceae and magnoliids), together with monocotyledons and eudicotyledons, form a strongly supported clade. A survey showed that C-value data were scarce in the basal angiosperm families, especially the ANITA grade. The present paper addresses these phylogenetic gaps by providing C-value estimates for each family in ANITA, together with C-values for species in Chloranthaceae, Ceratophyllaceae and a previously unrepresented family in the magnoliids, the Winteraceae.  © The Linnean Society of London, Botanical Journal of the Linnean Society , 2002, 140 , 175–179.  相似文献   

17.
Summary Complete or partial nucleotide sequences of five different rRNA species, coded by nuclear (18S, 5.8S, and 5S) or chloroplast genomes (5S, 4.5S) from a number of seed plants were determined. Based on the sequence data, the phylogenetic dendrograms were built by two methods, maximum parsimony and compatibility. The topologies of the trees for different rRNA species are not fully congruent, but they share some common features. It may be concluded that both gymnosperms and angiosperms are monophyletic groups. The data obtained suggest that the divergence of all the main groups of extant gymnosperms occurred after the branching off of the angiosperm lineage. As the time of divergence of at least some of these gymnosperm taxa is traceable back to the early Carboniferous, it may be concluded that the genealogical splitting of gymnosperm and angiosperm lineages occurred before this event, at least 360 million years ago, i.e., much earlier than the first angiosperm fossils were dated. Ancestral forms of angiosperms ought to be searched for among Progymnospermopsida. Genealogical relationships among gymnosperm taxa cannot be deduced unambiguously on the basis of rRNA data. The only inference may be that the taxon Gnetopsida is an artificial one, andGnetum andEphedra belong to quite different lineages of gymnosperms. As to the phylogenetic position of the two Angiospermae classes, extant monocotyledons seem to be a paraphyletic group located near the root of the angiosperm branch; it emerged at the earliest stages of angiosperm evolution. We may conclude that either monocotyledonous characters arose independently more than once in different groups of ancient Magnoliales or that monocotyledonous forms rather than dicotyledonous Magnoliales were the earliest angiosperms. Judging by the rRNA trees, Magnoliales are the most ancient group among dicotyledons. The most ancient lineage among monocotyledons leads to modern Liliaceae.  相似文献   

18.
First Nuclear DNA C-values for 25 Angiosperm Families   总被引:9,自引:8,他引:1  
DNA amount is a widely used biodiversity character. As knownDNA C-values represent the global angiosperm flora poorly, bettercoverage of taxonomic groups is needed, including at the familiallevel. A workshop, sponsored byAnnals of Botany , was held atthe Royal Botanic Gardens, Kew in 1997. Its key aim was to identifymajor gaps in our knowledge of plant DNA C-values and recommendtargets for new work to fill them by international collaboration.In 1997 C-values were known for approx. 150 families, meaningthere was no estimate for most angiosperm families (approx 68%).The workshop recommended a goal of complete familial representationby 2002, as a main target for angiosperms. Bennett et al. (Annalsof Botany86: 859–909, 2000) presented a fifth supplementarylist of angiosperm C-values from 70 original sources which includedfirst C-values for 691 species. Only 12 (1.7%) of these werefirst C-values for unrepresented families, so the need to improvefamilial representation was substantially unmet. We began newwork to address this in September 1999, and now report firstDNA C-values for 25 angiosperm families. Such targeting seemsessential to achieve the goal of familial coverage set by the1997 workshop within 5 years. 4C values range from 0.67 pg (similartoArabidopsis thaliana ) in Amoreuxia wrightii(Cochlospermaceae)to 7.49 pg in Deutzia prunifolia(Hydrangeaceae). These datasupport the view that ancestral angiosperms almost certainlyhad small genomes (defined as 1C  相似文献   

19.
Flower, enclosed ovule and tetrasporangiate anther are three major characters distinguishing angiosperms from other seed plants. Morphologically, typical flowers are characterised by an organisation with gynoecium and androecium surrounded by corolla and calyx. Theoretically, flowers are derived from their counterparts in ancient ancestral gymnosperms. However, as for when, how and from which groups, there is no consensus among botanists yet. Although angiosperm-like pollen and angiosperms have been claimed in the Triassic and Jurassic, typical flowers with the aforesaid three key characters are still missing in the pre-Cretaceous age, making many interpretations of flower evolution tentative. Thus searching for flower in the pre-Cretaceous has been a tantalising task for palaeobotanists for a long time. Here, we report a typical flower, Euanthus paniigen. et sp. nov., from the Middle–Late Jurassic of Liaoning, China. Euanthus has sepals, petals, androecium with tetrasporangiate dithecate anthers and gynoecium with enclosed ovules, organised just like in perfect flowers of extant angiosperms. The discovery of Euanthus implies that typical angiosperm flowers have already been in place in the Jurassic, and provides a new insight unavailable otherwise for the evolution of flowers.  相似文献   

20.
Stigma characteristics and angiosperm taxonomy   总被引:1,自引:0,他引:1  
When a classification based upon certain morphological and physiological characters of the stigma was applied to ca. 1,000 species of some 900 genera of angiosperms, several taxonomic regularities emerged. Most families proved to be relatively homogeneous in stigma type, whilst others were strikingly diverse. Among the latter were certain supposedly primitive families such as the Liliaceae, a fact that may have some phylogenetical significance. Sometimes where a family proved to be homogeneous in respect to the more general characters of the stigma, fuller investigation revealed great variation in detail. An example is given by the Boraginaceae, a family in which stigma characters are of potential taxonomic importance. The stigma papillae in this family are often capitate, with heavily cutinised heads, and pollen has to be inserted forcibly between the papillae. There is a strong correlation between pollen size and stigma–papilla size, so that certain types of cross pollination are impossible. These specialisations can thus play a part as isolating mechanisms. The form of the stigma papillae is probably also important in genera of the Boraginaceae adapted to arid conditions, since the contiguous cutinised caps overarch the actual receptive surfaces and so. presumably, offer protection from desiccation.
In both monocotyledons and dicotyledons, clear relationships exist between stigma type and physiology, and notably with the type of self–incompatibility system. It is already apparent that stigma characters can have predictive value in the investigation of breeding systems.
The paper includes a comprehensive literature list, covering most ot the principal sources of structural, taxonomic and other data bearing upon angiosperm stigmas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号