首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The NIF3L1 protein is strongly conserved during evolution from bacteria to mammals and recently its function in neuronal differentiation has been demonstrated. In the present study we identified novel binding partners of human NIF3L1 by screening a HeLa cDNA-library using the yeast two-hybrid system. We could show that the NIF3L1 protein is interacting with itself and with the NIF3L1 binding protein 1 (NIF3L1 BP1), a novel protein of 23.67kDa bearing a putative leucine zipper domain. Furthermore, both interactions were confirmed using the mammalian two-hybrid system. Deletion analyses clearly demonstrated that a C-terminal region of 100 amino acids of the NIF3L1 BP1 is sufficient for the interaction with NIF3L1. The NIF3L1 BP1 is ubiquitously expressed and cotransfection experiments revealed that NIF3L1 and NIF3L1 BP1 interact in the cytoplasm of human LNCaP cells. This study provides novel insights into the cellular function of the NIF3L1 protein.  相似文献   

2.
PU.1 is one of key regulators of hematopoietic cell development, a tightly-regulated lineage-specific process. Here we provide the first evidence that PU.1 protein is cleaved into two fragments of 24 kDa and 16 kDa during apoptosis progression in leukemic cell lines and primary leukemic cells. Further experiments with specific capase-3 inhibitor Z-DEVD-fmk and the in vitro proteolytic system confirmed that PU.1 is a direct target of caspase-3. Using site-directed mutagenesis analyses, the aspartic acid residues at positions 97 and 151 of PU.1 protein were identified as capsase-3 target sites. More intriguingly, the suppression of PU.1 expression by small interfering RNAs (siRNAs) significantly inhibits DNA-damaging agents NSC606985 and etoposide-induced apoptosis in leukemic cells, together with the up-regulated expression of anti-apoptotic bcl-2 gene. These results would provide new insights for understanding the mechanism of PU.1 protein in hematopoiesis and leukemogenesis.  相似文献   

3.
Adiponectin is an adipose tissue derived hormone with anti-diabetic and insulin-sensitizing properties. Two adiponectin receptors, AdipoR1 and AdipoR2, have recently been identified, yet the signaling pathways triggered through adiponectin receptors remain to be elucidated. Using a yeast two-hybrid screen, we identified an adaptor protein, receptor for activated protein kinase C1 (RACK1), as an interacting partner of human AdipoR1. RACK1 was confirmed to interact with AdipoR1 by co-immunoprecipitation and co-localization analysis in mammalian cells. The interaction was enhanced by adiponectin stimulation. In addition, the knockdown of RACK1 by RNA interference inhibited adiponectin-stimulated glucose uptake in HepG2 cells. These results suggest that RACK1 may act as a key bridging factor in adiponectin signaling transduction through interacting with AdipoR1.  相似文献   

4.
5.
6.
Inspection of the complete genome of the yeast Yarrowia lipolytica for the presence of genes encoding homologues of known telomere-binding proteins surprisingly revealed no counterparts of typical yeast Myb domain-containing telomeric factors including Rap1 or Taz1. Instead, we identified a gene, YALIOD10923g, encoding a protein containing two Myb domains, exhibiting a high degree of similarity to the Myb domain of human telomeric proteins TRF1 and TRF2 and homologous to an essential fission yeast protein Mug152 whose expression is elevated during meiosis. The protein, which we named Tay1p (telomere-associated in Yarrowia lipolytica 1), was purified for biochemical studies. Using a model Y. lipolytica telomere, we demonstrate that the protein preferentially binds to Y. lipolytica telomeric tracts. Tay1p binds along the telomeric tract as dimers and larger oligomers, and it is able to remodel the telomeric DNA into both looped structures and synaptic complexes of two model telomere DNAs. The ability of Tay1p to induce dimerization of telomeres in vitro goes in line with its oligomeric nature, where each oligomer can employ several Myb domains to form intermolecular telomere clusters. We also provide experimental evidence that Tay1p may be associated with Y. lipolytica telomeres in vivo. Together with its homologues from Schizosaccharomyces pombe and several basidiomycetous fungi (Sánchez-Alonso, P., and Guzman, P. (2008) Fungal Genet. Biol. 45, S54-S62), Tay1p constitutes a novel family of putative telomeric factors whose analysis may be instrumental in understanding the function and evolution of double-stranded DNA telomeric proteins.  相似文献   

7.
8.
9.
10.
11.
12.
We identified human TRPC3 protein by yeast two-hybrid screening of a human brain cDNA library with human TRPM4b as a bait. Immunoprecipitation and confocal microscopic analyses confirmed the protein-protein interaction between TRPM4b and TRPC3, and these two TRPs were found to be highly colocalized at the plasma membrane of HEK293T cells. Overexpression of TRPM4b suppressed TRPC3-mediated whole cell currents by more than 90% compared to those in TRPC3-expressed HEK293T cells. Furthermore, HEK293T cells stably overexpressing red fluorescent protein (RFP)-TRPM4b exhibited an almost complete abolition of UTP-induced store-operated Ca2+ entry, which is known to take place via endogenous TRPC channels in HEK293T cells. This study is believed to provide the first clear evidence that TRPM4b interacts physically with TRPC3, a member of a different TRP subfamily, and regulates negatively the channel activity, in turn suppressing store-operated Ca2+ entry through the TRPC3 channel.  相似文献   

13.
14.
Spinal muscular atrophy is a common neuromuscular disorder caused by mutations in the survival motor neuron (SMN) gene. In mammals, SMN is tightly associated with Gemin2. To gain further insight into the functions of SMN and Gemin2, we have cloned and sequenced smi-1 (Survival of Motor neuron-Interacting protein 1), a C. elegans homologue of the human Gemin2 gene. We show that the SMI-1 expression pattern and RNA interference phenotype show considerable overlap with that previously reported for SMN-1. Finally, we demonstrate that the SMN-1 and SMI-1 proteins directly interact. Having demonstrated the utility of the C. elegans genetic model for investigating genes encoding SMN-interacting proteins, we have undertaken a yeast two-hybrid screen of a C. elegans cDNA library to identify novel proteins that interact with SMN-1. We show the direct interaction of SMN-1 with nine novel proteins, several of which may be involved in RNA metabolism.  相似文献   

15.
16.
17.
The 60S ribosomes from Saccharomyces cerevisiae contain a set of acidic P-proteins playing an important role in the ribosome function. Reversible phosphorylation of those proteins is a mechanism regulating translational activity of ribosomes. The key role in regulation of this process is played by specific, second messenger-independent protein kinases. The PK60S kinase was one of the enzymes phosphorylating P-proteins. The enzyme has been purified from yeast and characterised. Pure enzyme has properties similar to those reported for casein kinase type 2. Peptide mass fingerprinting (PMF) has identified the PK60S as a catalytic alpha(') subunit of casein kinase type 2 (CK2alpha(')). Protein kinase activity is inhibited by SOD1 and by highly specific CK2 inhibitor-4,5,6,7-tetrabromo-benzotriazole (TBBt). The possible mechanism of regulation of CK2alpha(') activity in stress conditions, by superoxide dismutase in regulation of 80S-ribosome activity, is discussed.  相似文献   

18.
Zn2+ caused a noninhibitory binding of IF1 to mitochondrial membranes in both rabbit heart SMP and intact rabbit heart mitochondria. This Zn2+-induced IF1 binding required the presence of at least trace amounts of MgATP and was essentially independent of pH between 6.2 and 8.2. Addition of Zn2+ after the formation of fully inhibited IF1-ATPase complexes very slowly reversed IF1-mediated ATPase inhibition without causing significant IF1 release from the membranes. When Zn2+ was added during the state 4 energization of ischemic mitochondria in which IF1 was already functionally bound, it slowed somewhat energy-driven ATPase activation. This slowing was probably due to the fairly large depressing effect Zn2+ had upon membrane potential development, but Zn2+ did not decrease the degree of ATPase activation eventually reached at 20 min of state 4 incubation. Zn2+ also preempted normal IF1 release from the membranes, causing what little inhibitor that was released to rebind to the enzyme in noninhibitory IF1-ATPase complexes. The data suggest that IF1 can interact with the ATPase in two ways or through two kinds of sites: (a) a noninhibitory interaction involving a noninhibitory IF1 conformation and/or and IF1 docking site on the enzyme and (b) an inhibitory interaction involving an inhibitory IF1 conformation and/or a distinct ATPase activity regulatory site. Zn2+ appears to have the dual effect of stabilizing the noninhibitory IF1-ATPase interaction and possibily a noninhibitory IF1 conformation while concomitantly preventing the formation of an inhibitory IF1-ATPase interaction and possibly an inhibitory IF1 conformation, regardless of pH. While the data do not rule out direct effects of Zn2+ on either free IF1 or the free enzyme, they suggest that Zn2+ cannot interact readily with either the inhibitor or the enzyme once functional IF1-ATPase complexes are formed.  相似文献   

19.
The OZF (ZNF146) protein is a 33 kDa Kruppel protein, composed solely of 10 zinc finger motifs. It is overexpressed in the majority of pancreatic cancers and in more than 80% of colorectal cancers. We have identified OZF interacting factors with a yeast two-hybrid screen. Half of the positive clones characterized encoded UBC9, the E2 enzyme involved in the covalent conjugation of the small ubiquitin-like modifier 1 (SUMO-1). SUMO-1 is a 17 kDa migrating protein that is conjugated to several proteins and has been reported to exhibit multiple effects, including modulation of protein stability, subcellular localization, and gene expression. In HeLa cells transfected with OZF and SUMO-1 expression vectors, immunoblot revealed a major band migrating at 50 kDa and a minor band at 67 kDa, corresponding to the attachment to OZF of one and two SUMO-1 proteins, respectively. The relative amount of the sumoylated proteins increased following transfection with a UBC9 expression vector. The presence of the sumoylated form in HeLa cells solely transfected by OZF indicates the physiological activity of the endogenous SUMO-1 conjugation pathway. Using deletion mutants, we showed that two SUMO-1 modification sites are located on the sixth zinc finger. Mutation of two lysine residues greatly reduced the amount of the sumoylated form of OZF though their surrounding sequences differ from the consensus sequence reported for most proteins modified by SUMO-1 conjugation. Despite the presence of the sixth zinc finger, an OZF mutant containing zinc fingers 1–6 was not modified by SUMO-1 and failed to interact with UBC9. Addition of zinc finger 7 restored SUMO-1 modification and UBC9 interaction and provides evidence that a region downstream of the target lysines is required for interaction with UBC9, in order to achieve SUMO-1 modification. This is the first report of in vivo conjugation of a SUMO-1 protein to a Kruppel zinc finger motif. (Mol Cell Biochem 271: 215–223, 2005)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号