首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DOC-1R (deleted in oral cancer-1 related) is a novel putative tumor suppressor. This study investigated DOC-1R antitumor activity and the underlying molecular mechanisms. Cell phenotypes were assessed using flow cytometry, BrdU incorporation and CDK2 kinase assays in DOC-1R overexpressing HeLa cells. In addition, RT-PCR and Western blot assays were used to detect underlying molecular changes in these cells. The interaction between DOC-1R and CDK2 proteins was assayed by GST pull-down and immunoprecipitation-Western blot assays. The data showed that DOC-1R overexpression inhibited G1/S phase transition, DNA replication and suppressed CDK2 activity. Molecularly, DOC-1R inhibited CDK2 expression at the mRNA and protein levels, and there were decreased levels of G1-phase cyclins (cyclin D1 and E) and elevated levels of p21, p27, and p53 proteins. Meanwhile, DOC-1R associated with CDK2 and inhibited CDK2 activation by obstructing its association with cyclin E and A. In conclusion, the antitumor effects of DOC-1R may be mediated by negatively regulating G1 phase progression and G1/S transition through inhibiting CDK2 expression and activation.  相似文献   

2.
Transforming growth factor-beta (TGF-beta) induces a potent G(1)/S-phase cell cycle arrest of epithelial cells by inhibiting the activities of cyclin D- and cyclin E-associated kinase complexes. Downregulation of the kinase activities is mediated by induction of cyclin dependent kinase (CDK) inhibitor p15(Ink4b) which blocks CDK4 and CDK6 kinases and leads to binding of p27(Kip1) to CDK2-cyclin E complex. Levels of several of these factors are controlled by the ubiquitin-proteasome pathway. We demonstrate here that proteasomal inhibitors release the cells from TGF-beta imposed G(1)-phase arrest and instigate the entry of the cells into S-phase. Proteasomal inhibitors are shown to specifically increase the activity of the cyclin D-kinase complex by increasing the levels of p27(Kip1) and cyclin D and by maintaining CDK4/6 protein levels leading to phosphorylation of the retinoblastoma protein without increasing cyclin E-associated kinase activity. The results indicate caution in the potential therapeutic use of the proteasome inhibitors due to unscheduled initiation of DNA replication in the presence of a physiological growth inhibitor.  相似文献   

3.
Alam S  Sen E  Brashear H  Meyers C 《Journal of virology》2006,80(10):4927-4939
Adeno-associated virus type 2 (AAV2) seropositivity is negatively correlated with the development of human papillomavirus (HPV)-associated cervical cancer. We have begun analysis of the molecular mechanisms underlying AAV2-mediated onco-suppression through cell cycle regulation in HPV-infected keratinocytes isolated from a low-grade cervical lesion. AAV2 superinfection of HPV type 31b (HPV31b)-positive cells at early times postinfection resulted in degradation of the cyclin-dependent kinase (CDK) inhibitor p21(WAF1) protein in a proteosome-dependent manner. Downstream consequences of lowering p21(WAF1) levels included a proportional loss of cyclin E/CDK2 complexes bound to p21(WAF1). The loss of stable p21(WAF1)/cyclin E/CDK2 complexes coincided with an increase in CDK2-associated kinase activity and cyclin E levels. Both events have the potential to enhance the G(1)/S transition point mediated by active cyclin E/CDK2 complexes. Concurrently, cyclin A and E2F levels were decreased, conditions reminiscent of delayed entrance into the S phase of the cell cycle. On the other hand, infection of primary human foreskin keratinocytes with AAV2 resulted in upregulation of p21(WAF1) protein levels, reminiscent of a block in G(1) phase progression. We propose that by down regulating p21(WAF1), AAV2 initiates cell cycle activities leading to enhanced G(1)/S phase-like conditions which may be favorable for AAV2-specific functions and may lead to downstream interference with HPV-associated cervical cancer progression.  相似文献   

4.
The origin recognition complex (ORC) is involved in formation of prereplicative complexes (pre-RCs) on replication origins in the G1 phase. At the G1/S transition, elevated cyclin E-CDK2 activity triggers 1DNA replication to enter S phase. The CDK cycle works as an engine that drives progression of cell cycle events by successive activation of different types of cyclin-CDK. However, how the CDK cycle is coordinated with replication initiation remains elusive. Here we report that acute depletion of ORC2 by RNA interference (RNAi) arrests cells with low cyclin E-CDK2 activity. This result suggests that loss of a replication initiation protein prevents progression of the CDK cycle in G1. p27 and p21 proteins accumulate following ORC2 RNAi and are required for the CDK2 inhibition. Restoration of CDK activity by co-depletion of p27 and p21 allows many ORC2-depleted cells to enter S phase and go on to mitosis. However, in some cells the release of the CDK2 block caused catastrophic events like apoptosis. Therefore, the CDK2 inhibition observed following ORC2 RNAi seems to protect cells from premature S phase entry and crisis in DNA replication. These results demonstrate an unexpected role of ORC2 in CDK2 activation, a linkage that could be important for maintaining genomic stability.  相似文献   

5.
RACK1 regulates G1/S progression by suppressing Src kinase activity   总被引:14,自引:0,他引:14       下载免费PDF全文
Cancer genes exert their greatest influence on the cell cycle by targeting regulators of a critical checkpoint in late G(1). Once cells pass this checkpoint, they are fated to replicate DNA and divide. Cancer cells subvert controls at work at this restriction point and remain in cycle. Previously, we showed that RACK1 inhibits the oncogenic Src tyrosine kinase and NIH 3T3 cell growth. RACK1 inhibits cell growth, in part, by prolonging G(0)/G(1). Here we show that RACK1 overexpression induces a partial G(1) arrest by suppressing Src activity at the G(1) checkpoint. RACK1 works through Src to inhibit Vav2, Rho GTPases, Stat3, and Myc. Consequently, cyclin D1 and cyclin-dependent kinases 4 and 2 (CDK4 and CDK2, respectively) are suppressed, CDK inhibitor p27 and retinoblastoma protein are activated, E2F1 is sequestered, and G(1)/S progression is delayed. Conversely, downregulation of RACK1 by short interference RNA activates Src-mediated signaling, induces Myc and cyclin D1, and accelerates G(1)/S progression. RACK1 suppresses Src- but not mitogen-activated protein kinase-dependent platelet-derived growth factor signaling. We also show that Stat3 is required for Rac1 induction of Myc. Our results reveal a novel mechanism of cell cycle control in late G(1) that works via an endogenous inhibitor of the Src kinase.  相似文献   

6.
Progression through the G1/S transition commits cells to synthesize DNA. Cyclin dependent kinase 2 (CDK2) is the major kinase that allows progression through G1/S phase and subsequent replication events. p27 is a CDK inhibitor (CKI) that binds to CDK2 to prevent premature activation of this kinase. Speedy (Spy1), a novel cell cycle regulatory protein, has been found to prematurely activate CDK2 when microinjected into Xenopus oocytes and when expressed in mammalian cells. To determine the mechanism underlying Spy1-induced proliferation in mammalian cell cycle regulation, we used human Spy1 as bait in a yeast two-hybrid screen to identify interacting proteins. One of the proteins isolated was p27; this novel interaction was confirmed both in vitro, using bacterially expressed and in vitro translated proteins, and in vivo, through the examination of endogenous and transfected proteins in mammalian cells. We demonstrate that Spy1 expression can overcome a p27-induced cell cycle arrest to allow for DNA synthesis and CDK2 histone H1 kinase activity. In addition, we utilized p27-null cells to demonstrate that the proliferative effect of Spy1 depends on the presence of endogenous p27. Our data suggest that Spy1 associates with p27 to promote cell cycle progression through the G1/S transition.  相似文献   

7.
The cyclin-dependent kinase (CDK) inhibitor p21CDKN1A is known to induce cell cycle arrest by inhibiting CDK activity and by interfering with DNA replication through binding to proliferating cell nuclear antigen. Although the molecular mechanisms have been elucidated, the temporal dynamics, as well as the intracellular sites of the activity of p21 bound to cyclin/CDK complexes during cell cycle arrest, have not been fully investigated. In this study we have induced the expression of p21CDKN1A fused to green fluorescent protein (GFP) in HeLa cells, in order to visualize the intracellular localization of the inhibitor during the cell cycle arrest. We show that p21-GFP is preferentially expressed in association with cyclin E in cells arrested in G1 phase, and with cyclin A more than with cyclin B1 in cells arrested in the G2/M compartment. In addition, we show for the first time that p21-GFP colocalizes with cyclin E in the nucleolus of HeLa cells during the G1 phase arrest.O. Cazzalini and P. Perucca contributed equally to this work  相似文献   

8.
Productive infection and replication of herpesviruses usually occurs in growth-arrested cells, but there has been no direct evidence in the case of Epstein-Barr virus (EBV), since an efficient lytic replication system without external stimuli does not exist for the virus. Expression of the EBV lytic-switch transactivator BZLF1 protein in EBV-negative epithelial tumor cell lines, however, is known to arrest the cell cycle in G(0)/G(1) by induction of the tumor suppressor protein p53 and the cyclin-dependent kinase (CDK) inhibitors p21(WAF-1/CIP-1) and p27(KIP-1), followed by the accumulation of a hypophosphorylated form of the Rb protein. In order to determine the effect of the onset of lytic viral replication on cellular events in latently EBV-infected B LCLs, a tightly controlled induction system of the EBV lytic-replication program by inducible BZLF1 protein expression was established in B95-8 cells. The induction of lytic replication completely arrested cell cycle progression and cellular DNA replication. Surprisingly, the levels of p53, p21(WAF-1/CIP-1), and p27(KIP-1) were constant before and after induction of the lytic program, indicating that the cell cycle arrest induced by the lytic program is not mediated through p53 and the CDK inhibitors. Furthermore, although cellular DNA replication was blocked, elevation of cyclin E/A expression and accumulation of hyperphosphorylated forms of Rb protein were observed, a post-G(1)/S phase characteristic of cells. Thus, while the EBV lytic program promoted specific cell cycle-associated activities involved in the progression from G(1) to S phase, it inhibited cellular DNA synthesis. Such cellular conditions appear to especially favor viral lytic replication.  相似文献   

9.
Glucocorticoids inhibit cell proliferation by inducing cell cycle lengthening. In this report, we have analyzed, in normal peripheral blood lymphocytes, the involvement of p27Kip1 in this slowing of proliferation. Following dexamethasone (DXM) treatment, p27Kip1 expression and regulation varied differently with the level of lymphocyte stimulation. In quiescent cells, DXM inhibited p27Kip1 protein expression by decreasing its rate of synthesis, whereas its half-life and mRNA steady state remained constant. In contrast, in stimulated lymphocytes, DXM increased p27Kip1 expression by enhancing its mRNA steady state. This increase is not only a consequence of the DXM-induced interleukin 2 inhibition: we also found an increase in p27Kip1 mRNA stability that was not observed in quiescent lymphocytes. Cyclin/cyclin-dependent kinase (CDK) complexes immunoprecipitated with p27Kip1 are differentially modified by DXM addition: (a) G1 kinasic complexes (cyclin D/CDK4 or CDK6) associated with p27Kip1 are strongly decreased by DXM, (b) S-phase complexes (CDK2/cyclin E and A) remained stable or increased, and (c) the association of p27Kip1 with the phosphorylated forms of CDK1 is increased by DXM. In addition, CDK2 kinase activity was decreased in DXM-treated cells: we suggest that p27Kip1 might participate in inhibiting its catalytic activity. These results indicated that, in normal lymphoid cells, p27Kip1 may be involved in DXM antiproliferative effects. The increase of p27Kip1 expression and a decrease in G1 mitogenic factors, together with the redistribution of p27Kip1 to S/G2-M regulatory complexes, may explain the lengthening of G1 and S/G2 after DXM treatment in lymphocytes.  相似文献   

10.
In its course of human infection, varicella-zoster virus (VZV) infects rarely dividing cells such as dermal fibroblasts, differentiated keratinocytes, mature T cells, and neurons, none of which are actively synthesizing DNA; however, VZV is able to productively infect them and use their machinery to replicate the viral genome. We hypothesized that VZV alters the intracellular environment to favor viral replication by dysregulating cell cycle proteins and kinases. Cyclin-dependent kinases (CDKs) and cyclins displayed a highly unusual profile in VZV-infected confluent fibroblasts: total amounts of CDK1, CDK2, cyclin B1, cyclin D3, and cyclin A protein increased, and kinase activities of CDK2, CDK4, and cyclin B1 were strongly and simultaneously induced. Cyclins B1 and D3 increased as early as 24 h after infection, concurrent with VZV protein synthesis. Confocal microscopy indicated that cyclin D3 overexpression was limited to areas of IE62 production, whereas cyclin B1 expression was irregular across the VZV plaque. Downstream substrates of CDKs, including pRb, p107, and GM130, did not show phosphorylation by immunoblotting, and p21 and p27 protein levels were increased following infection. Finally, although the complement of cyclin expression and high CDK activity indicated a progression through the S and G(2) phases of the cell cycle, DNA staining and flow cytometry indicated a possible G(1)/S blockade in infected cells. These data support earlier studies showing that pharmacological CDK inhibitors can inhibit VZV replication in cultured cells.  相似文献   

11.
12.
We have reported previously that herpes simplex virus type 1 (HSV-1) infection disrupts normal progression of the mammalian cell cycle, causing cells to enter a G(1)-like state. Infected cells were characterized by a decline in cyclin-dependent kinase 2 (CDK2) activities, loss of hyperphosphorylated retinoblastoma protein (pRb), accumulation of E2F-pocket protein complexes, and failure to initiate cellular DNA replication. In the present study, we investigated the role of the pocket proteins pRb, p107, and p130 in HSV-1-dependent cell cycle inhibition and cyclin kinase regulation by infecting murine 3T3 cells derived from wild-type (WT) mouse embryos or embryos with deletions of pRb (pRb(-/-)), p107 (p107(-/-)), p130 (p130(-/-)), or both p130 and p107 (p130(-/-)/p107(-/-)). With respect to CDK2 inhibition, viral protein accumulation, viral DNA replication, and progeny virus yield, WT, pRb(-/-), and p107(-/-) cells were essentially identical. In contrast, after infection of p130(-/-) cells, we observed no inhibition of CDK2 activity, a 5- to 6-h delay in accumulation of viral proteins, an impaired ability to form viral DNA replication compartments, and reduced viral DNA synthesis. As a result, progeny virus yield was reduced 2 logs compared to that in WT cells. Notably, p130(-/-)/p107(-/-) double-knockout cells had a virus replication phenotype intermediate between those of the p107(-/-) and p130(-/-) cells. We conclude from these studies that p130 is a key factor in regulating aspects of cell cycle progression, as well as the timely expression of viral genes and replication of viral DNA.  相似文献   

13.
The ability of the cyclin-dependent kinase (CDK) inhibitor p21CDKN1A to interact with PCNA recruited to DNA replication sites was investigated to elucidate the relevance of this interaction in cell cycle arrest. To this end, expression of p21 protein fused to green fluorescent protein (GFP) was induced in HeLa cells. G1 phase cell cycle arrest induced by p21GFP occurred also at the G1/S transition, as shown by cyclin A immunostaining of GFP-positive cells. Confocal microscopy analysis and co-immunoprecipitation studies showed that p21GFP co-localized and interacted with chromatin-bound PCNA and CDK2. GFP-p21 mutant forms unable to bind to PCNA (p21PCNA-) or CDK (p21CDK-) induced cell cycle arrest, although immunoprecipitation experiments showed these mutants to be unstable. Expression of HA-tagged p21wt or mutant proteins confirmed the ability of both mutants to arrest cell cycle. p21(wt)HA and p21CDK-HA, but not p21PCNA-, co-localized and co-immunoprecipitated with chromatin-bound PCNA. Association of p21 to chromatin-bound PCNA resulted in the loss of interaction with the p125 catalytic subunit of DNA polymerase delta (pol delta). These results suggest that in vivo p21 does not interfere with loading of PCNA at DNA replication sites, but prevents, or displaces subsequent binding of pol delta to PCNA at the G1/S phase transition.  相似文献   

14.
The ability of the cyclin-dependent kinase (CDK) inhibitor p21CDKN1A to interact with PCNA recruited to DNA replication sites was investigated to elucidate the relevance of this interaction in cell cycle arrest. To this end, expression of p21 protein fused to green fluorescent protein (GFP) was induced in HeLa cells. G1 phase cell cycle arrest induced by p21GFP occurred also at the G1/S transition, as shown by cyclin A immunostaining of GFP-positive cells. Confocal microscopy analysis and co-immunoprecipitation studies showed that p21GFP co-localized and interacted with chromatin-bound PCNA and CDK2. GFP-p21 mutant forms unable to bind to PCNA (p21PCNA-) or CDK (p21CDK-) induced cell cycle arrest, although immunoprecipitation experiments showed these mutants to be unstable. Expression of HA-tagged p21wt or mutant proteins confirmed the ability of both mutants to arrest cell cycle. p21wtHA and p21CDK-HA, but not p21PCNA-, co-localized and co-immunoprecipitated with chromatin-bound PCNA. Association of p21 to chromatin-bound PCNA resulted in the loss of interaction with the p125 catalytic subunit of DNA polymerase d (pol d). These results suggest that in vivo p21 does not interfere with loading of PCNA at DNA replication sites, but prevents, or displaces subsequent binding of pol d to PCNA at the G1/S phase transition.  相似文献   

15.
Trichostatin A (TSA), a global repressor of histone deacetylase activity, inhibits the proliferation of a number of cell types. However, the identification of the mechanisms underlying TSA-mediated growth arrests has remained elusive. In order to resolve in more detail the cellular process modulated during the growth inhibition induced by TSA, we studied the effect of the drug on G(0)/G(1) traverse in mitogen-stimulated quiescent Balb/c-3T3 cells. Cyclin D1 and retinoblastoma proteins were induced following the mitogenic stimulation of both control and TSA-treated cells, and cyclin D1 formed complexes with CDK4 under both conditions. However, cyclin D1-associated kinase was not increased in growth-arrested cells. The lack of cyclin D-associated kinase was paralleled by an accumulation of RB in a hypophosphorylated form, as would be expected. In contrast, p130 became partially phosphorylated, accompanied by a marked increase in p130-dependent E2F DNA binding activity and a partial release of free E2F-4. Despite the presence of E2F complexes not bound to pocket proteins, late G(1) E2F-dependent gene expression was not observed. The lack of cyclin D1-associated kinase in TSA-treated cultures was potentially due to high levels of the cyclin-dependent inhibitor p27(kip1). However, the modulation of p27(kip1) levels by the deacetylase inhibitor cannot be responsible for the induction of the cell cycle arrest, since the growth of murine embryo fibroblasts deficient in both p27(kip1) and p21(cip1) was also inhibited by TSA. These data support a model in which TSA inhibits very early cell cycle traverse, which, in turn, leads to a decrease in cyclin D1-associated kinase activation and a repression of late cell cycle-dependent events. Alterations in early G(0)/G(1) gene expression accompany the TSA-mediated growth arrest.  相似文献   

16.
细胞周期研究的新进展陆长德(中国科学院上海生物化学研究所200031)主要来自三方面的研究以及它们之间的相互交叉对于细胞周期研究的进展起了很大的作用。十多年来酵母分子遗传学的研究鉴定了许多与细胞周期的控制有关的基因,提供了许多突变株(如CDC);1988年对蛙卵成熟促进因子MPF成分的鉴定和对它生物学功能的确定使人们对细胞周期的认识有了一个飞跃;人类的致癌基因(如Tag),肿瘤抑制基因(如p53,pRB)以及其他一些疾病(如对电离辐射敏感的遗传病,AT的分子机制的研究也大大地促进了细胞周期的研究。  相似文献   

17.
In the present study, we examined the role of PLC delta 1 (phospholipase C delta 1) in the regulation of cellular proliferation. We demonstrate that RNAi (RNA interference)-mediated knockdown of endogenous PLC delta 1, but not PLC beta 3 or PLC epsilon, induces a proliferation defect in Rat-1 and NIH 3T3 fibroblasts. The decreased proliferation was not due to an induction of apoptosis or senescence, but was associated with an approx. 60% inhibition of [(3)H]thymidine incorporation. Analysis of the cell cycle with BrdU (bromodeoxyuridine)/propidium iodide-labelled FACS (fluorescence-activated cell sorting) demonstrated an accumulation of cells in G(0)/G(1)-phase and a corresponding decrease in cells in S-phase. Further examination of the cell cycle after synchronization by serum-starvation demonstrated normal movement through G(1)-phase but delayed entry into S-phase. Consistent with these findings, G(1) cyclin (D2 and D3) and CDK4 (cyclin-dependent kinase 4) levels and associated kinase activity were not affected. However, cyclin E-associated CDK2 activity, responsible for G(1)-to-S-phase progression, was inhibited. This decreased activity was accompanied by unchanged CDK2 protein levels and paradoxically elevated cyclin E and cyclin E-associated CDK2 levels, suggesting inhibition of the cyclin E-CDK2 complex. This inhibition was not due to altered stimulatory or inhibitory phosphorylation of CDK2. However, p27, a Cip/Kip family CKI (CDK inhibitor)-binding partner, was elevated and showed increased association with CDK2 in PLC delta 1-knockdown cells. The result of the present study demonstrate a novel and critical role for PLC delta 1 in cell-cycle progression from G(1)-to-S-phase through regulation of cyclin E-CDK2 activity and p27 levels.  相似文献   

18.
Diet can be one of the most important factors that influence risks for cardiovascular diseases. Hesperetin, a flavonoid present in grapefruits and oranges, is one candidate that may benefit the cardiovascular system. In this study, we have investigated the effect of hesperetin on the platelet-derived growth factor (PDGF)-BB-induced proliferation of primary cultured rat aortic vascular smooth muscle cells (VSMCs). Hesperetin significantly inhibited 50 ng/ml PDGF-BB-induced rat aortic VSMCs proliferation and [(3)H]-thymidine incorporation into DNA at concentrations of 5, 25, 50, and 100 microM. In accordance with these findings, hesperetin revealed blocking of the PDGF-BB-inducible progression through G(0)/G(1) to S phase of the cell cycle in synchronized cells. Western blot showed that hesperetin inhibited not only phosphorylation of retinoblastoma protein (pRb) and expressions of cyclin A, cyclin D, cyclin E, cyclin-dependent kinase 2 (CDK2) as well as proliferating cell nuclear antigen (PCNA) protein, but also downregulation of cyclin-dependent kinase inhibitor (CKI) p27(kip1), while did not affect CKI p21(cip1), p16(INK4), p53, and CDK4 expressions as well as early signaling transductions such as PDGF beta-receptor, extracellular signal-regulated kinase (ERK) 1/2, Akt, p38, and JNK phosphorylation. These results suggest that hesperetin inhibits PDGF-BB-induced rat aortic VSMCs proliferation via G(0)/G(1) arrest in association with modulation of the expression or activation of cell-cycle regulatory proteins, which may contribute to the beneficial effect of grapefruits and oranges on cardiovascular system.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号