共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Hoxa4 expression in developing mouse hair follicles and skin 总被引:1,自引:0,他引:1
Packer AI Jane-Wit D McLean L Panteleyev AA Christiano AM Wolgemuth DJ 《Mechanisms of development》2000,99(1-2):153-157
We have examined the expression of the Hoxa4 gene in embryonic vibrissae and developing and cycling postnatal pelage hair follicles by digoxigenin-based in situ hybridization. Hoxa4 expression is first seen in E13.5 vibrissae throughout the follicle placode. From E15.5 to E18.5 its expression is restricted to Henle's layer of the inner root sheath. Postnatally, Hoxa4 expression is observed at all stages of developing pelage follicles, from P0 to P4. Sites of expression include both inner and outer root sheaths, matrix cells, and the interfollicular epidermis. Hoxa4 is not expressed in hair follicles after P4. Hoxb4, however, is expressed both in developing follicles at P2 and in catagen at P19, suggesting differential expression of these two paralogous genes in the hair follicle cycle. 相似文献
3.
4.
5.
We examine the Hoxc12 RNA expression pattern during both hair follicle morphogenesis and cycling in direct comparison to its only upstream neighbor, Hoxc13. Expression of both genes is restricted to the epidermal part of the follicle excluding the outer root sheath and interfollicular epidermis in a distinct stage-dependent and cyclical manner. During the progressive growth phase (anagen) of developing and cycling follicles, the distinct proximo-distal expression domain of Hoxc12 overlaps only proximally, at the upper-most region of the bulb, with the more proximally restricted Hoxc13 domain. This arrangement of the expression domains of the two genes along the proximal-toward-distal axis of increasing follicular differentiation correlates with the sequential expression of first Hoxc13 and then Hoxc12. This indicates a reversal of the typical temporal colinearity of Hox gene activation otherwise observed along the anterior-posterior morphogenetic axis of the embryo (review: Cell 78 (1994) 191). 相似文献
6.
Proper dorsal--ventral pattern formation of the optic cup is essential for vertebrate eye morphogenesis and retinotectal topographic mapping. Previous studies have suggested that midline tissue-derived Sonic hedgehog (Shh) molecules play critical roles in establishing the bilateral eye fields and in determining the proximal--distal axis of the eye primordium. Here, we have examined the temporal requirements for Shh during the optic vesicle to optic cup transition and after early optic cup formation in chick embryos. Both misexpressing Shh by virus and blocking Shh activity by antibodies resulted in disruption of ventral ocular tissues. Decreasing endogenous Shh signals unexpectedly revealed a sharp morphological boundary subdividing dorsal and ventral portions of the optic cup. In addition, Shh signals differentially influenced expression patterns of genes involved in ocular tissue specification (Pax6, Pax2, and Otx2) and dorsal--ventral patterning (cVax) within the ventral but not dorsal optic cup. Ectopic Shh suppressed expression of Bone Morphogenetic Protein 4 (BMP4) in the dorsal retina, whereas reducing endogenous Sonic hedgehog activity resulted in a ventral expansion of BMP4 territory. These results demonstrate that temporal requirements for Shh signals persist after the formation of the optic cup and suggest that the early vertebrate optic primordium may be subdivided into dorsal and ventral compartments. We propose a model in which ventrally derived Shh signals and dorsally restricted BMP4 signals act antagonistically to regulate the growth and specification of the optic primordium. 相似文献
7.
Studies with gene knockout mice have shown that Sonic hedgehog (Shh) is required for early development of hair follicles, but the role of this gene in the late stages of follicle development is not clear. By using an organ culture system of embryonic mouse skin, the role of Shh signaling in the early and late stages of follicle development was investigated. In the early stage of follicle development, the downward growth of the follicular epithelium was suppressed by cyclopamine, an inhibitor of Shh signaling, and accelerated by recombinant Shh. In addition, cyclopamine impaired dermal papilla formation, accompanied by the rearrangement of papilla cells, but not the elongation of the follicular epithelium at the later stage. These results suggest that Shh signaling is required for the proliferation of epithelial cells in the early development of hair follicles and for the morphogenetic movement of mesenchymal cells at the later stage of follicle development. 相似文献
8.
Characterization and expression analysis of KAP7.1, KAP8.2 gene in Liaoning new-breeding cashmere goat hair follicle 总被引:2,自引:0,他引:2
Keratin-associated protein is one of the major structural proteins of the hair, whose content in hair has important effect
on the quality of cashmere. In order to study the relationship between HGTKAP gene expression and cashmere fineness, the quantitative
real-time RT–PCR (qRT–PCR) was firstly used to detect the levels of KAP7.1, KAP8.2 gene expression in the primary and secondary
hair follicles; semi-quantitative RT–PCR was used to detect whether KAP7.1, KAP8.2 gene are expressed in heart, liver, spleen,
lung, kidney tissues; and in situ hybridization(ISH) to detect KAP7.1 gene expression location. qRT–PCR result showed that
the expression of both KAP7.1 and KAP8.2 gene in the secondary hair follicles are significantly higher than that in the primary
follicles, relative quantitative analysis obtained that KAP7.1 was 2.28 times, while KAP8.2 was 2.71 times. Semi-quantitative
RT–PCR results revealed that KAP 7.1 and KAP8.2 mRNA were not detected in the heart, liver, spleen, lung and kidney tissues,
demonstrating that KAP7.1 and KAP8.2 were specially expressed in hair follicles, participating in hair formation. Moreover,
KAP7.1 gene has a strong expression in the cortical layer, inner root sheath of the primary follicles and the cortical layer,
inner root sheath and hair matrix of the secondary hair follicles by ISH analysis. Taken together, the evidence presented
here indicated that in the formation of cashmere and wool, differential expression of these two genes in the primary and secondary
hair follicles may have an important role in regulating the fiber diameter. 相似文献
9.
10.
Masuya H Sezutsu H Sakuraba Y Sagai T Hosoya M Kaneda H Miura I Kobayashi K Sumiyama K Shimizu A Nagano J Yokoyama H Kaneko S Sakurai N Okagaki Y Noda T Wakana S Gondo Y Shiroishi T 《Genomics》2007,89(2):207-214
Mammal-fish-conserved-sequence 1 (MFCS1) is a highly conserved sequence that acts as a limb-specific cis-acting regulator of Sonic hedgehog (Shh) expression, residing 1 Mb away from the Shh coding sequence in mouse. Using gene-driven screening of an ENU-mutagenized mouse archive, we obtained mice with three new point mutations in MFCS1: M101116, M101117, and M101192. Phenotype analysis revealed that M101116 mice exhibit preaxial polydactyly and ectopic Shh expression at the anterior margin of the limb buds like a previously identified mutant, M100081. In contrast, M101117 and M101192 show no marked abnormalities in limb morphology. Furthermore, transgenic analysis revealed that the M101116 and M100081 sequences drive ectopic reporter gene expression at the anterior margin of the limb bud, in addition to the normal posterior expression. Such ectopic expression was not observed in the embryos carrying a reporter transgene driven by M101117. These results suggest that M101116 and M100081 affect the negative regulatory activity of MFCS1, which suppresses anterior Shh expression in developing limb buds. Thus, this study shows that gene-driven screening for ENU-induced mutations is an effective approach for exploring the function of conserved, noncoding sequences and potential cis-regulatory elements. 相似文献
11.
12.
《Animal : an international journal of animal bioscience》2020,14(7):1502-1509
Heat shock proteins (HSPs) consist of highly preserved stress proteins that are expressed in response to stress. Two studies were carried out to investigate whether HSP genes in hair follicles from beef calves can be suggested as indicators of heat stress (HS). In study 1, hair follicles were harvested from three male Hanwoo calves (aged 172.2 ± 7.20 days) on six dates over the period of 10 April to 9 August 2017. These days provided varying temperature–humidity indices (THIs). In study 2, 16 Hanwoo male calves (aged 169.6 ± 4.60 days, with a BW of 136.9 ± 6.23 kg) were maintained (4 calves per experiment) in environmentally controlled chambers. A completely randomized design with a 2 × 4 factorial arrangement involving two periods (thermoneutral: TN; HS) and four THI treatment groups (threshold: THI = 68 to 70; mild: THI = 74 to 76; moderate THI = 81 to 83; severe: THI = 88 to 90). The calves in the different group were subjected to ambient temperature (22°C) for 7 days (TN) and subsequently to the temperature and humidity corresponding to the target THI level for 21 days (HS). Every three days (at 1400 h) during both the TN and HS periods, the heart rate (HR) and rectal temperature (RT) of each individual were measured, and hair follicles were subsequently collected from the tails of each individual. In study 1, the high variation (P < 0.0001) in THI indicated that the external environment influenced the HS to different extents. The expression levels of the HSP70 and HSP90 genes at the high-THI level were higher (P = 0.0120, P = 0.0002) than those at the low-THI level. In study 2, no differences in the THI (P = 0.2638), HR (P = 0.2181) or RT (P = 0.3846) were found among the groups during the TN period, whereas differences in these indices (P < 0.0001, P < 0.0001 and P < 0.0001, respectively) were observed during the HS period. The expression levels of the HSP70 (P = 0.0010, moderate; P = 0.0065, severe) and HSP90 (P = 0.0040, severe) genes were increased after rapid exposure to heat-stress conditions (moderate and severe levels). We conclude that HSP gene expression in hair follicles provides precise and accurate data for evaluating HS and can be considered a novel indicator of HS in Hanwoo calves maintained in both external and climatic chambers. 相似文献
13.
14.
Ishida K Murofushi M Nakao K Morita R Ogawa M Tsuji T 《Biochemical and biophysical research communications》2011,(3):6995-461
Ectodermal organs, such as the tooth, salivary gland, hair, and mammary gland, develop through reciprocal epithelial–mesenchymal interactions. Tooth morphologies are defined by the crown width and tooth length (macro-morphologies), and by the number and locations of the cusp and roots (micro-morphologies). In our current study, we report that the crown width of a bioengineered molar tooth, which was reconstructed using dissociated epithelial and mesenchymal cells via an organ germ method, can be regulated by the contact area between epithelial and mesenchymal cell layers. We further show that this is associated with cell proliferation and Sonic hedgehog (Shh) expression in the inner enamel epithelium after the germ stage has formed a secondary enamel knot. We also demonstrate that the cusp number is significantly correlated with the crown width of the bioengineered tooth. These findings suggest that the tooth micro-morphology, i.e. the cusp formation, is regulated after the tooth width, or macro-morphology, is determined. These findings also suggest that the spatiotemporal patterning of cell proliferation and the Shh expression areas in the epithelium regulate the crown width and cusp formation of the developing tooth. 相似文献
15.
16.
Wnt/β-catenin signaling plays critical roles in embryonic development and tissue homeostasis in adults by controlling the expression of target genes. We found that expression of ptpro, which encodes a protein tyrosine phosphatase receptor type O (PTPRO), was induced by Wnt/β-catenin signaling in a T cell factor/lymphoid enhancer factor dependent manner. Biochemical assays found that PTPRO interacted with Wnt via its extracellular domain. In addition, ectopic expression of this extracellular domain inhibited Wnt-mediated reporter activity. These results suggest that ptpro is a target gene of Wnt/β-catenin signaling and that PTPRO may function as a novel receptor for Wnt.
Structured summary
MINT-7992076: Ptpro (uniprotkb:Q7TSY7) physically interacts (MI:0915) with Wnt3a (uniprotkb:P27467) by anti tag coimmunoprecipitation (MI:0007)MINT-7992094: Ptpro (uniprotkb:Q7TSY7) physically interacts (MI:0915) with Wnt-3a (uniprotkb:P27467) by cross-linking study (MI:0030) 相似文献17.
Osada A Kiyozumi D Tsutsui K Ono Y Weber CN Sugimoto N Imai T Okada A Sekiguchi K 《Experimental cell research》2005,303(1):148-159
We screened for genes specifically expressed in the mesenchymes of developing hair follicles using representational differential analysis; one gene identified was MAEG, which encodes a protein consisting of five EGF-like repeats, a linker segment containing a cell-adhesive Arg-Gly-Asp (RGD) motif, and a MAM domain. Immunohistochemistry showed that MAEG protein was localized at the basement membrane of embryonic skin and developing hair follicles, while MAEG expression diminished at the tip of the hair bud. A recombinant MAEG fragment containing the RGD motif was active in mediating adhesion of keratinocytes to the substratum in an RGD-dependent manner. One of the adhesion receptors recognizing the RGD motif was found to be the alpha8beta1 integrin, the expression of which was detected in the placode close to MAEG-positive mesenchymal cells, but later became restricted to the tip of the developing hair bud. Given its localized expression at the basement membrane in developing hair follicles and the RGD-dependent cell-adhesive activity, MAEG may play a role as a mediator regulating epithelial-mesenchymal interaction through binding to RGD-binding integrins including alpha8beta1 during hair follicle development. 相似文献
18.
19.
《中国组织化学与细胞化学杂志》2017,(1)
Objective To investigate the distribution and dynamic changes of both Wnt signaling molecules and CK15 throughoutthe three phases of the follicular cycle,and to explore the relationship between Wnt/β-catenin signaling and CK15 in rat whisker hair follicle(HF)growth cycles.Methods Hematoxylin-Eosin(HE)and immunofluorescence stains were used to characterize the expression patterns,including sites and levels of some representative proteins of both canonical and non-canonical Wnt signaling molecules,as well as HF epithelial stem cell marker CK15.Results The expression patterns of bothβ-catenin and Wnt5a were correlated with that of CK15.CK15 was only expressed in anagen.In catagen,β-catenin showed a massive depletion while Wnt5a noticeably increased.In telogen,high level expression ofβ-catenin and low level of Wnt5a were detected.Wnt10b and TCF3 were detected during the entire HF growth cycle.Conclusion These results suggest that Wnt5a is associated with the transition of anagen-catagen phase,accompanied by broad deletion ofβ-catenin and loss of CK15.WntlOb is important for the maintenance of HF activity and is related to the telogenanagen transition. 相似文献
20.
Roles for PDGF-A and sonic hedgehog in development of mesenchymal components of the hair follicle. 总被引:10,自引:0,他引:10
Skin appendages, such as hair, develop as a result of complex reciprocal signaling between epithelial and mesenchymal cells. These interactions are not well understood at the molecular level. Platelet-derived growth factor-A (PDGF-A) is expressed in the developing epidermis and hair follicle epithelium, and its receptor PDGF-Ralpha is expressed in associated mesenchymal structures. Here we have characterized the skin and hair phenotypes of mice carrying a null mutation in the PDGF-A gene. Postnatal PDGF-A-/- mice developed thinner dermis, misshapen hair follicles, smaller dermal papillae, abnormal dermal sheaths and thinner hair, compared with wild-type siblings. BrdU labeling showed reduced cell proliferation in the dermis and in the dermal sheaths of PDGF-A-/- skin. PDGF-A-/- skin transplantation to nude mice led to abnormal hair formation, reproducing some of the features of the skin phenotype of PDGF-A-/- mice. Taken together, expression patterns and mutant phenotypes suggest that epidermal PDGF-A has a role in stimulating the proliferation of dermal mesenchymal cells that may contribute to the formation of dermal papillae, mesenchymal sheaths and dermal fibroblasts. Finally, we show that sonic hedgehog (shh)-/- mouse embryos have disrupted formation of dermal papillae. Such embryos fail to form pre-papilla aggregates of postmitotic PDGF-Ralpha-positive cells, suggesting that shh has a critical role in the assembly of the dermal papilla. 相似文献