首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
To investigate genome size evolution, it is usually informative to compare closely related species that vary dramatically in genome size. A whole genome duplication (polyploidy) that occurred in rice (Oryza sativa) about 70 million years ago has been well documented based on current genome sequencing. The presence of three distinct duplicate blocks from the polyploidy, of which one duplicated segment in a block is intact (no sequencing gap) and less than half the length of its syntenic duplicate segment, provided an excellent opportunity for elucidating the causes of their size variation during the post-polyploid time. The results indicated that incongruent patterns (shrunken, balanced and inflated) of chromosomal size evolution occurred in the three duplicate blocks, spanning over 30 Mb among chromosomes 2, 3, 6, 7, and 10, with an average of 20.3% for each. DNA sequences of chromosomes 2 and 3 appeared to had become as short as about half of their initial sequence lengths, chromosomes 6 and 7 had remained basically balanced, and chromosome 10 had become dramatically enlarged (approximately 70%). The size difference between duplicate segments of rice was mainly caused by variations in non-repetitive DNA loss. Amplification of long terminal repeat retrotransposons also played an important role. Moreover, a relationship seems to exist between the chromosomal size differences and the nonhomologous combination in corresponding regions in the rice genome. These findings help shed light on the evolutionary mechanism of genomic sequence variation after polyploidy and genome size evolution.  相似文献   

3.
Rice as a model for cereal genomics.   总被引:9,自引:0,他引:9  
Over the past two years, selected regions of the rice genome have been sequenced and shown to be colinear at the sequence level with limited regions of other cereal genomes. A large number of expressed gene sequences and molecular markers have accumulated in the public databases. Large insert clone libraries of the rice genome have been constructed, and rice has become an increasingly attractive candidate for whole genome sequencing.  相似文献   

4.
Food shortages have once again become a serious problem, not only because of world population growth but also as a result of escalating demand for crops as a substrate for biofuels. The production of improved plant varieties, especially major crops such as rice, is urgently required to increase yield. The completion of the sequencing of the rice genome has made it possible to clone and analyze quantitative trait loci (QTLs). Furthermore, the development of high-throughput sequencing and genotyping technologies has improved spectacularly the accuracy of QTL analysis. In this review article, we focus on the potential roles of major QTLs in the selection for agronomic traits in rice and discuss the application of high-throughput technologies for high-resolution genetic analysis.  相似文献   

5.
Liu F  Xu W  Tan L  Xue Y  Sun C  Su Z 《Genomics》2008,91(2):186-194
Alternative splicing (AS) is one of the most significant components of the functional complexity of the eukaryote genome, increasing protein diversity, creating isoforms, and affecting mRNA stability. Recently, whole genome sequences and large microarray data sets have become available, making data integration feasible and allowing the study of the possible regulatory mechanism of AS in rice (Oryza sativa) by erecting and testing hypotheses before doing bench studies. We have developed a new strategy and have identified 215 rice genes with alternative expression isoforms related to insertion and deletion (indel) between subspecies indica and subspecies japonica. We did a case study for alternative expression isoforms of the rice peroxidase gene LOC_Os06g48030 to investigate possible mechanisms by which indels caused alternative splicing between the indica and the japonica varieties by mining of array data together with validation by RT-PCR and genome sequencing analysis. Multiple poly(A) signals were detected in the specific indel region for LOC_Os06g48030. We present a new methodology to promote more discoveries of potentially indel-caused AS genes in rice, which may serve as the foundation for research into the regulatory mechanism of alternative expression isoforms between subspecies.  相似文献   

6.
Brassinosteroid (BR) and gibberellin (GA) are two groups of plant growth regulators essential for normal plant growth and development. To gain insight into the molecular mechanism by which BR and GA regulate the growth and development of plants, especially the monocot plant rice, it is necessary to identify and analyze more genes and proteins that are regulated by them. With the availability of draft sequences of two major types, japonica and indica rice, it has become possible to analyze expression changes of genes and proteins at genome scale. In this review, we summarize rice functional genomic research by using microarray and proteomic approaches and our recent research results focusing on the comparison of cDNA microarray and proteomic analyses of BR- and GA-regulated gene and protein expression in rice. We believe our findings have important implications for understanding the mechanism by which BR and GA regulate the growth and development of rice.  相似文献   

7.
水稻单核苷酸多态性及其应用现状   总被引:6,自引:0,他引:6  
刘传光  张桂权 《遗传》2006,28(6):737-744
单核苷酸多态性(single nucleotide polymorphisms, SNPs)在水稻中数量多,分布密度高,遗传稳定性高。水稻SNPs的发现方法主要有对样本DNA的PCR产物直接测序、从SSR区段检测SNPs和从基因组序列直接搜索等。目前已有多种基因分型技术运用到了水稻SNPs检测,SNPs检测的高度自动化使水稻SNPs基因分型非常方便。单核苷酸多态性在水稻遗传图谱的构建、基因克隆和功能基因组学研究、标记辅助选择育种、遗传资源分类及物种进化等方面的应用具有巨大潜力。  相似文献   

8.
The recent release of the genome sequences of a number of crop and model plant species has made it possible to define the genome organisation and functional characteristics of specific genes and gene families of agronomic importance. For instance, Sorghum bicolor, maize (Zea mays) and Brachypodium distachyon genome sequences along with the model grass species rice (Oryza sativa) enable the comparative analysis of genes involved in plant defence. Germin-like proteins (GLPs) are a small, functionally and taxonomically diverse class of cupin-domain containing proteins that have recently been shown to cluster in an area of rice chromosome 8. The genomic location of this gene cluster overlaps with a disease resistance QTL that provides defence against two rice fungal pathogens (Magnaporthe oryzae and Rhizoctonia solani). Studies showing the involvement of GLPs in basal host resistance against powdery mildew (Blumeria graminis ssp.) have also been reported in barley and wheat. In this mini-review, we compare the close proximity of GLPs in publicly available cereal crop genomes and discuss the contribution that these proteins, and their genome sequence organisation, play in plant defence.  相似文献   

9.
10.
Molecular-genetic analysis of soriz genotypes (Sorghum oryzoidum), its paternal form Sorghum bicolor (L.) Moench (grain sorghum), possible parents (Sorghum sudanense (Piper.) Stapf. (Sudan grass) and Oryza sativa L. (rice planting)) and the nearest relatives has been carried out using microsatellite (MS) loci of sorghum and rice. Based on these data genetic distances have been calculated. It was shown that soriz do not bear DNA fragments of rice, but contains in its genome DNA fragments belonging to the Sudanese grass indicating that the origin of soriz is associated with Sorghum sudanense.  相似文献   

11.
With the available Arabidopsis genome and near-completion of the rice genome sequencing project, large-scale analysis of plant proteins with mass spectrometry has now become possible. Determining the proteome of a cell is a challenging task, which is complicated by proteome dynamics and complexity. The biochemical heterogeneity of proteins constrains the use of standardized analytical procedures and requires demanding techniques for proteome analysis. Several proteome studies of plant cell organelles have been reported, including chloroplasts and mitochondria. Chloroplasts are of particular interest for plant biologists because of their complex biochemical pathways for essential metabolic functions. Information from the chloroplast proteome will therefore provide new insights into pathway compartmentalization and protein sorting. Some approaches for the analysis of the chloroplast proteome and future prospects of plastid proteome research are discussed here.  相似文献   

12.
Rice genome organization: the centromere and genome interactions   总被引:9,自引:0,他引:9  
Over the last decade, many varied resources have become available for genome studies in rice. These resources include over 4000 DNA markers, several bacterial artificial chromosome (BAC) libraries, P-1 derived artificial chromosome (PAC) libraries and yeast artificial chromosome (YAC) libraries (genomic DNA clones, filters and end-sequences), retrotransposon tagged lines, and many chemical and irradiated mutant lines. Based on these, high-density genetic maps, cereal comparative maps, YAC and BAC physical maps, and quantitative trait loci (QTL) maps have been constructed, and 93 % of the genome has also been sequenced. These data have revealed key features of the genetic and physical structure of the rice genome and of the evolution of cereal chromosomes. This Botanical Briefing examines aspects of how the rice genome is organized structurally, functionally and evolutionarily. Emphasis is placed on the rice centromere, which is composed of long arrays of centromere-specific repetitive sequences. Differences and similarities amongst various cereal centromeres are detailed. These indicate essential features of centromere function. Another view of various kinds of interactive relationships within and between genomes, which could play crucial roles in genome organization and evolution, is also introduced. Constructed genetic and physical maps indicate duplication of chromosomal segments and spatial association between specific chromosome regions. A genome-wide survey of interactive genetic loci has identified various reproductive barriers that may drive speciation of the rice genome. The significance of these findings in genome organization and evolution is discussed.  相似文献   

13.
适于蛋白双向电泳的水稻叶片样品提取方法初探   总被引:1,自引:0,他引:1  
在水稻基因组测序完成后,利用蛋白质组学技术揭示水稻基因功能的研究,已成为水稻分子生物学研究的热点之一。水稻叶片作为DNA研究的便利材料被经常使用,但对蛋白质研究来说,占叶片全蛋白50%~60%的核酮糖二磷酸羧化酶(RuBP羧化酶)对低丰度蛋白常常造成掩盖。以水稻叶片为材料,用不同浓度的聚乙二醇(PEG)去除叶片中RuBP羧化酶。通过SDS-PAGE垂直电泳比较发现,浓度为17%的PEG对去除RuBP羧化酶效果最好,所获得的蛋白质样品可以得到质量较高的双向电泳图谱。  相似文献   

14.
利用in vivo转座技术构建了白叶枯病抗性基因Xa23鉴别菌株的突变体库,特异性引物PCR扩增和转座子插入位点旁侧序列分析结果表明转座子插入到白叶枯病菌的基因组中。经人工接种鉴定,筛选到4个毒力发生变化的突变体。为进一步克隆Xa23无毒基因提供了条件。  相似文献   

15.
With the advent of DNA sequencing technologies, more and more reference genome sequences are available for many organisms. Analyzing sequence variation and understanding its biological importance are becoming a major research aim. However, how to store and process the huge amount of eukaryotic genome data, such as those of the human, mouse and rice, has become a challenge to biologists. Currently available bioinformatics tools used to compress genome sequence data have some limitations, such as the requirement of the reference single nucleotide polymorphisms (SNPs) map and information on deletions and insertions. Here, we present a novel compression tool for storing and analyzing Genome ReSequencing data, named GRS. GRS is able to process the genome sequence data without the use of the reference SNPs and other sequence variation information and automatically rebuild the individual genome sequence data using the reference genome sequence. When its performance was tested on the first Korean personal genome sequence data set, GRS was able to achieve ~159-fold compression, reducing the size of the data from 2986.8 to 18.8 MB. While being tested against the sequencing data from rice and Arabidopsis thaliana, GRS compressed the 361.0 MB rice genome data to 4.4 MB, and the A. thaliana genome data from 115.1 MB to 6.5 KB. This de novo compression tool is available at http://gmdd.shgmo.org/Computational-Biology/GRS.  相似文献   

16.
Rice biotechnology has made rapid advances since the first transgenic rice plants were produced 15 years ago. Over the past decade, this progress has resulted in the development of high frequency, routine and reproducible genetic transformation protocols for rice. This technology has been applied to produce rice plants that withstand several abiotic stresses, as well as to gain tolerance against various pests and diseases. In addition, quality improving and increased nutritional value traits have also been introduced into rice. Most of these gains were not possible through conventional breeding technologies. Transgenic rice system has been used to understand the process of transformation itself, the integration pattern of transgene as well as to modulate gene expression. Field trials of transgenic rice, especially insect-resistant rice, have recently been performed and several other studies that are prerequisite for safe release of transgenic crops have been initiated. New molecular improvisations such as inducible expression of transgene and selectable marker-free technology will help in producing superior transgenic product. It is also a step towards alleviating public concerns relating to issues of transgenic technology and to gain regulatory approval. Knowledge gained from rice can also be applied to improve other cereals. The completion of the rice genome sequencing together with a rich collection of full-length cDNA resources has opened up a plethora of opportunities, paving the way to integrate data from the large-scale projects to solve specific biological problems.  相似文献   

17.
18.
Rice is an excellent system for plant genomics as it represents a modest size genome of 430 Mb. It feeds more than half the population of the world. Draft sequences of the rice genome, derived by whole-genome shotgun approach at relatively low coverage (4-6 X), were published and the International Rice Genome Sequencing Project (IRGSP) declared high quality (> 10 X), genetically anchored, phase 2 level sequence in 2002. In addition, phase 3 level finished sequence of chromosomes 1, 4 and 10 (out of 12 chromosomes of rice) has already been reported by scientists from IRGSP consortium. Various estimates of genes in rice place the number at >50,000. Already, over 28,000 full-length cDNAs have been sequenced, most of which map to genetically anchored genome sequence. Such information is very useful in revealing novel features of macroand micro-level synteny of rice genome with other cereals. Microarray analysis is unraveling the identity of rice genes expressing in temporal and spatial manner and should help target candidate genes useful for improving traits of agronomic importance. Simultaneously, functional analysis of rice genome has been initiated by marker-based characterization of useful genes and employing functional knock-outs created by mutation or gene tagging. Integration of this enormous information is expected to catalyze tremendous activity on basic and applied aspects of rice genomics.  相似文献   

19.
The cloning of genes for complex traits in polyploid plants that possess large genomes, such as hexaploid wheat, requires an efficient strategy. We present here one such strategy focusing on the homologous pairing suppressor (Ph1) locus of wheat. This locus has been shown to affect both premeiotic and meiotic processes, possibly suggesting a complex control. The strategy combined the identification of lines carrying specific deletions using multiplex PCR screening of fast-neutron irradiated wheat populations with the approach of physically mapping the region in the rice genome equivalent to the deletion to reveal its gene content. As a result, we have located the Ph1 factor controlling the euploid-like level of homologous chromosome pairing to the region between two loci (Xrgc846 and Xpsr150A). These loci are located within 400 kb of each other in the rice genome. By sequencing this region of the rice genome, it should now be possible to define the nature of this factor.  相似文献   

20.
TILLING在水稻育种中的应用前景   总被引:1,自引:0,他引:1  
TILLING(Targeting Induced Local Lesions in Genomes)是功能基因组研究中应用的一种反向遗传学技术。它能高通量低成本地在EMS诱变群体中鉴定出发生在特定基因上的点突变。在其基础上发展出的EcoTILLING技术则可发现种质资源中的SNP位点及小插入或缺失多态性位点。水稻是非常重要的粮食作物, 也是已经完成了全基因组序列测定,有丰富的生物信息学资源可以利用的基因组研究模式植物。水稻的分子标记辅助育种将在育种中扮演越来越重要的角色。在这样的背景下,本文从基于特定基因的种质资源鉴定、EMS诱变育种、及水稻功能标记开发等方面论述了其在水稻育种中的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号