首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reperfusion of the ischemic myocardium is associated with a dramatic inflammatory response leading to TNF-alpha release, IL-6 induction, and subsequent neutrophil-mediated cytotoxic injury. Because inflammation is also an important factor in cardiac repair, we hypothesized the presence of components of the inflammatory reaction with a possible role in suppressing acute injury. Thus, we investigated the role of IL-10, an anti-inflammatory cytokine capable of modulating extracellular matrix biosynthesis, following an experimental canine myocardial infarction. Using our canine model of myocardial ischemia and reperfusion, we demonstrated significant up-regulation of IL-10 mRNA and protein in the ischemic and reperfused myocardium. IL-10 expression was first detected at 5 h and peaked following 96-120 h of reperfusion. In contrast, IL-4 and IL-13, also associated with suppression of acute inflammation and macrophage deactivation, were not expressed. In the ischemic canine heart, CD5-positive lymphocytes were the predominant source of IL-10 in the myocardial infarct. In the absence of reperfusion, no significant induction of IL-10 mRNA was noted. In addition, IL-12, a Th1-related cytokine associated with macrophage activation, was not detected in the ischemic myocardium. In vitro experiments demonstrated late postischemic cardiac-lymph-induced tissue inhibitor of metalloproteinases (TIMP)-1 mRNA expression in isolated canine mononuclear cells. This effect was inhibited when the incubation contained a neutralizing Ab to IL-10. Our findings suggest that lymphocytes infiltrating the ischemic and reperfused myocardium express IL-10 and may have a significant role in healing by modulating mononuclear cell phenotype and inducing TIMP-1 expression.  相似文献   

2.
Diabetic cardiomyopathy is known to result in increased mortality after ischemic events. Permanently increased oxidative stress with formation of oxygen-free radicals plays a key role in the development of specific heart muscle disease. Associated lesions include structural alterations to cardiomyocytes. Antioxidative treatment in addition to the usual insulin substitution would seem sensible in preventing or delaying long-term diabetic complications and protecting the myocardium against acute ischemic events. We investigated the effects of radical scavenger Ginkgo biloba extract EGb 761 against diabetes-induced damage to cardiomyocytes and additional ischemia/reperfusion injury in spontaneously diabetic BioBreeding/Ottawa Karlsburg (BB/OK) rats, as a model of diabetic myocardium infarction. Morphological and morphometric parameters of heart muscles were analyzed by light and electron-microscopic techniques. We used immunohistochemistry to evaluate parameters of oxidative stress (superoxide dismutase [SOD]) and inducible nitric oxide synthase (iNOS) protein expression. Our results indicated that A) Diabetic myocardium appears more vulnerable to ischemia/reperfusion damage concerning ultrastructure of cardiomyocytes (sarcomeres, vacuoles, mitochondria), expression of antioxidative enzymes (CuZnSOD, MnSOD), and iNOS than normal myocardium; B) Pre-treatment of diabetic myocardium with EGb and additional ischemia/reperfusion leads to a relative improvement in myocardial ultrastructure compared to unprotected myocardium. In summary, EGb appears to be promising as an adjuvant therapeutic drug in diabetics with respect to ischemic myocardium injury. It may contribute to the prevention of late diabetic complications in diabetic cardiomyopathy.  相似文献   

3.
During remodeling progress post myocardial infarction, the contribution of neoangiogenesis to the infarct-bed capillary is insufficient to support the greater demands of the hypertrophied but viable myocardium resulting in further ischemic injury to the viable cardiomyocytes at risk. Here we reported the bio-assay-guided identification and isolation of angiogenic tannins (angio-T) from Geum japonicum that induced rapid revascularization of infarcted myocardium and promoted survival potential of the viable cardiomyocytes at risk after myocardial infarction. Our results demonstrated that angio-T displayed potent dual effects on up-regulating expression of angiogenic factors, which would contribute to the early revascularization and protection of the cardiomyocytes against further ischemic injury, and inducing antiapoptotic protein expression, which inhibited apoptotic death of cardiomyocytes in the infarcted hearts and limited infarct size. Echocardiographic studies demonstrated that angio-T-induced therapeutic effects on acute infarcted myocardium were accompanied by significant functional improvement by 2 days after infarction. This improvement was sustained for 14 days. These therapeutic properties of angio-T to induce early reconstitution of a blood supply network, prevent apoptotic death of cardiomyocytes at risk, and improve heart function post infarction appear entirely novel and may provide a new dimension for therapeutic angiogenesis medicine for the treatment of ischemic heart diseases.  相似文献   

4.
A significant amount of cardiomyocytes in subendocardial region survive from ischemic insults. In order to understand the mechanism by which these cardiomyocytes survive, the present study was undertaken to examine changes in these surviving cardiomyocytes and their extracellular matrix. Male C57BL/6 mice aged 8–12 weeks old were subjected to a permanent left anterior descending coronary artery ligation to induce ischemic injury. The hearts were collected at 1, 4, 7, or 28 days after the surgery and examined by histology. At day 1 after left anterior descending ligation, there was a significant loss of cardiomyocytes through apoptosis, but a proportion of cardiomyocytes were surviving in the subendocardial region. The surviving cardiomyocytes were gradually changed from rod-shaped to round-shaped, and appeared disconnected. Connexin 43, an important gap junction protein, was significantly decreased, and collagen I and III deposition was significantly increased in the extracellular matrix. Furthermore, lysyl oxidase, a copper-dependent amine oxidase catalyzing the cross-linking of collagens, was significantly increased in the extracellular matrix, paralleled with the surviving cardiomyocytes. Inhibition of lysyl oxidase activity reduced the number of surviving cardiomyocytes. Thus, the extracellular matrix remodeling is correlated with the deformation of cardiomyocytes, and the electrical disconnection between the surviving cardiomyocytes due to connexin 43 depletion and the increase in lysyl oxidase would help these deformed cardiomyocytes survive under ischemic conditions.  相似文献   

5.
The proinflammatory cytokines interleukin (IL)-1 and IL-6 are increased after acute myocardial infarction (MI). Moreover, serum IL-6 level is elevated after MI, but has also been associated with heart failure. In the present study, heart function was monitored in a rat model of chronic MI. Cytokine expression in the infarcted and non-infarcted myocardium as well as in hearts of sham-operated controls was measured by the ribonuclease-protection assay. To identify the cells contributing to the increased cytokine expression, we further analyzed myocytes and non-myocytes isolated in the acute phase as well as during congestive heart failure (CHF) after MI. There was a strong induction in cytokine expression in the myocytes of the infarct area 6 h after MI. In the non-infarcted myocardium, cytokine expression increased only slightly in the non-myocytes after 6 h. This was not different from sham-operated controls and may, therefore, be induced by stress and catecholamines. In CHF, however, cytokine expression level in myocytes was normal. It increased slightly but significantly in the non-myocytes 4 and 8 weeks after MI. In conclusion, we suggest that pro-inflammatory cytokines, produced by the ischemic myocytes may be involved in the initiation of wound healing of the necrotic area, whereas the effect of pro-inflammatory cytokines in CHF, if any, seems not to be crucial.  相似文献   

6.
The multidrug-resistant (MDR)-1 gene-encoded P-glycoprotein (Pgp-170) is not normally present in the cardiomyocyte. Given that in other tissues Pgp-170 is not found under normoxic conditions but is expressed during hypoxia, we searched for Pgp-170 in chronically ischemic porcine cardiomyocytes. Pgp-170 was detected and localized via immunohistochemistry in ischemic and nonischemic cardiomyocytes of eight adult pigs 8 weeks after placement of an Ameroid constrictor at the origin of the left circumflex artery (Cx). Regional myocardial ischemia in the Cx bed was documented with nuclear perfusion scans. Pgp-170 mass was quantified using Western blot analysis. In all pigs, Pgp-170 was consistently present in the sarcolemma and T invaginations of the cardiomyocytes of the ischemic zone. Pgp-170 expression decreased toward the border of the ischemic zone and was negative in nonischemic regions as well as in the myocardium of sham-operated animals. Western blot analysis yielded significantly higher Pgp-170 mass in ischemic than in nonischemic areas. We conclude that Pgp-170 is consistently expressed in the cardiomyocytes of chronically ischemic porcine myocardium. Its role in the ischemic heart as well as in conditions such as myocardial hibernation, stunning, and preconditioning may have potentially relevant clinical implications and merits further investigation.  相似文献   

7.
Gap junctions (GJ) are important determinants of cardiac conduction and the evidence has recently emerged that altered distribution of these junctions and changes in the expression of their constituent connexins (Cx) may lead to abnormal coupling between cardiomyocytes and likely contribute to arrhythmogenesis. However, it is largely unknown whether changes in the expression and distribution of the major cardiac GJ protein, Cx43, is a general feature of diverse chronic myocardial diseases or is confined to some particular pathophysiological settings. In the present study, we therefore set out to investigate qualitatively and quantitatively the distribution and expression of Cx43 in normal human myocardium and in patients with dilated (DCM), ischemic (ICM), and inflammatory cardiomyopathies (MYO). Left ventricular tissue samples were obtained at the time of cardiac transplantation and investigated with immunoconfocal and electron microscopy. As compared with the control group, Cx43 labeling in myocytes bordering regions of healed myocardial infarction (ICM), small areas of replacement fibrosis (DCM) and myocardial inflammation (MYO) was found to be highly disrupted instead of being confined to the intercalated discs. In all groups, myocardium distant from these regions showed an apparently normal Cx43 distribution at the intercalated discs. Quantitative immunoconfocal analyis of Cx43 in the latter myocytes revealed that the Cx43 area per myocyte area or per myocyte volume is significantly decreased by respectively 30 and 55% in DCM, 23 and 48% in ICM, and by 21 and 40% in MYO as compared with normal human myocardium. In conclusion, focal disorganization of GJ distribution and down-regulation of Cx43 are typical features of myocardial remodeling that may play an important role in the development of an arrhythmogenic substrate in human cardiomyopathies.  相似文献   

8.

Objectives

Because the distribution volume and mechanism of extracellular and intravascular MR contrast media differ considerably, the enhancement pattern of chronic myocardial infarction with extracellular or intravascular media might also be different. This study aims to investigate the differences in MR enhancement patterns of chronic myocardial infarction between extracellular and intravascular contrast media.

Materials and Methods

Twenty pigs with myocardial infarction underwent cine MRI, first pass perfusion MRI and delayed enhancement MRI with extracellular or intravascular media at four weeks after coronary occlusion. Myocardial blood flow (MBF) was determined with microsphere measurement. The infarction histopathological changes were evaluated by hematoxylin and eosin staining and Masson''s trichrome method.

Results

Cine MRI revealed the reduced wall thickening in chronic infarction compared with normal myocardium. Moreover, significant wall thinning in chronic infarction was observed in cine MRI. Peak first-pass signal intensity didn’t significantly differ between chronic infarction and normal myocardium no matter what kinds of contrast media. At the following delayed enhancement phase, extracellular media-enhanced signal intensity was significantly higher in chronic infarction than in normal myocardium. Conversely, intravascular media-enhanced signal intensity was almost equivalent among chronic infarction and normal myocardium. At four weeks after infarction, MBF in chronic infarction approached to that in normal myocardium. Large thick-walled vessels were detected at peri-infarction zones. The cardiomyocytes were replaced by scar tissue consisting of dilated blood vessels and discrete fibers of collagen.

Conclusions

Chronic infarction was characterized by the significantly reduced wall thickening and the definite wall thinning. First-pass myocardial perfusion defect was not detected in chronic infarction with two media due to the significantly recovered MBF and well-developed collateral vessels. Infarction remodeling enlarged the extracellular compartment, which was available for extracellular media but not accessible to intravascular media. Extracellular media identified chronic infarction as the hyper-enhancement; nonetheless, intravascular media didn’t provide delayed enhancement.  相似文献   

9.
Ischemia and simulated ischemic conditions cause intracellular Ca2+ overload in the myocardium. The relationship between ischemia injury and Ca2+ overload has not been fully characterized. The aim of the present study was to investigate the expression and characteristics of PLC isozymes in myocardial infarction-induced cardiac remodeling and heart failure. In normal rat heart tissue, PLC-delta1 (about 44 ng/mg of heart tissue) was most abundant isozymes compared to PLC-gamma1 (6.8 ng/mg) and PLC-beta1 (0.4 ng/mg). In ischemic heart and hypoxic neonatal cardiomyocytes, PLC-delta1, but not PLC-beta1 and PLC-gamma1, was selectively degraded, a response that could be inhibited by the calpain inhibitor, calpastatin, and by the caspase inhibitor, zVAD-fmk. Overexpression of the PLC-delta1 in hypoxic neonatal cardiomyocytes rescued intracellular Ca2+ overload by ischemic conditions. In the border zone and scar region of infarcted myocardium, and in hypoxic neonatal cardiomyocytes, the selective degradation of PLC-delta1 by the calcium sensitive proteases may play important roles in intracellular Ca2+ regulations under the ischemic conditions. It is suggested that PLC isozyme-changes may contribute to the alterations in calcium homeostasis in myocardial ischemia.  相似文献   

10.
The effect of exogenous phosphocreatine on ischemic myocardium was studied in experimental infarction in rabbits and in total ischemia of pig heart tissue (in vitro). It is shown that single dose administration of phosphocreatine is followed by its rapid clearance from blood plasma (with a half lifetime of 4-6 min), but constantly high plasma concentration of phosphocreatine can be maintained by its intravenous infusion. When administered by this method into rabbits during experimental myocardial infarction, phosphocreatine reduces by 40% the size of the necrotic zone. Morphological electron microscopic studies using a lanthanum tracer method showed significant protection of the sarcolemma of cardiomyocytes in the perinecrotic zone by phosphocreatine. In vitro studies on the model of total ischemia also showed significant protection of cardiac sarcolemma from irreversible ischemic injury and reduction in the rate of high-energy phosphate depletion in the presence of phosphocreatine in the extracellular space. Additionally, it is demonstrated that creatine kinase released during myocardial infarction into the blood flow and exogenous phosphocreatine administered intravenously may significantly inhibit platelet aggregation by rapid removal of ADP, and thus potentially improve microcirculation during myocardial infarction.  相似文献   

11.
12.
Chronic heart failure is most commonly due to ischemic cardiomyopathy after a previous myocardial infarction (MI). Rebuilding lost myocardium to prevent heart failure mandates a neovasculature able to nourish new cardiomyocytes. Previously we have used a series of novel techniques to directly measure the ability of the scar neovasculature to deliver and exchange oxygen at 1-4 wk after MI in rats following left coronary artery ligation. In this study, we have developed a morphologically realistic mathematical model of oxygen transport in cardiac tissue to help in deciding what angiogenic strategies should be used to rebuild the vasculature. The model utilizes microvascular morphology of cardiac tissue based on available morphometric images and is used to simulate experimentally measured oxygen levels after MI. Model simulations of relative oxygenation match experimental measurements closely and can be used to simulate distributions of oxygen concentration in normal and infarcted rat hearts. Our findings indicate that both vascular density and vascular spatial distribution play important roles in cardiac tissue oxygenation after MI. Furthermore, the model can simulate relative changes in tissue oxygen levels in infarcted tissue treated with proangiogenic compounds such as losartan. From the minimum oxygen concentration myocytes need to maintain their normal function, we estimate that 2 wk after MI 29% of the myocardium is severely hypoxic and that the vascular density of the infarcted tissue should reach 75% of normal tissue to ensure that no areas of the myocardium are critically hypoxic.  相似文献   

13.
Temporary or persistent heart failure is one of the major complications after myocardial infarction (MI). In order to elucidate the pathogenesis of MI, we studied the spaciotemporal alteration of 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in cardiomyocytes in a rat model of ligation of the left anterior descending branch of the coronary artery. The lethality in this model was 18%. Hearts were dissected at 0, 3, 6, 12, 24, 48 h, and 1, 2, 4, 6 weeks after the operation. The cardiac level of 8-OHdG was evaluated biochemically as well as by immunohistochemistry with monoclonal antibody N45.1. Three to 6 h after ligation, the 8-OHdG levels were increased in the cardiomyocytes of MI (six-fold) and peri-MI (four-fold) areas. After 24 h, the myocardium in the MI area was necrotized, and thereafter the 8-OHdG level decreased. 8-OHdG levels in the myocardium of peri-MI areas returned once to a normal level, but were significantly increased at 2-4 weeks along with the appearance of apoptotic cardiomyocytes in this area. The heart after MI has been generally considered as clinically stable after four weeks. However, cardiomyocytes near the infarcted area were oxidatively stressed even after four weeks when the affected lesion was extensive. The present data support the use of supplementary antioxidant therapies to save functional myocardium after MI. (213 words)  相似文献   

14.
Extracellular matrix (ECM)-degrading enzymes such as matrix metalloproteases (MMPs) play an essential role in the repair of infarcted tissue, which affects ventricular remodeling after myocardial infarction. ADAMTS1 (A disintegrin and metalloprotease with thrombospondin motifs), a newly discovered metalloprotease, was originally cloned from a cancer cell line, but little is known about its contribution to disease. To test the hypothesis that ADAMTS1 appears in infarcted myocardial tissue, we examined ADAMTS1 mRNA expression in a rat myocardial infarction model by Northern blotting, real-time RT-PCR and in situ hybridization. Normal endothelium expressed little ADAMTS1 mRNA, while normal myocardium expressed no detectable ADAMTS1 mRNA. Up-regulation of ADAMTS1 was demonstrated by Northern blot analysis and real-time RT-PCR at 3 h after coronary artery ligation. In situ hybridization revealed strong ADAMTS1 mRNA signals in the endothelium and myocardium in the infarcted heart, mainly in the infarct zone, at 3 h after myocardial infarction. The rapid and transient up-regulation of the ADAMTS1 gene in the ischemic heart was distinct from the regulatory patterns of other MMPs. Our study demonstrated that the ADAMTS1 gene is a new early immediate gene expressed in the ischemic endothelium and myocardium.  相似文献   

15.
16.
目的建立兔实验性动脉粥样硬化和心肌梗死双模型,比较血管新生在动脉粥样硬化和缺血心肌中发生机制的差异。方法选择20只雄性新西兰兔,随机分为两组,A组10只为普通饮食对照组,B组10只为高脂饮食组,共喂养9周。第3周末心导管封堵冠状动脉血管致急性心肌梗死。测定不同时期血脂水平。实验终点,苏丹Ⅲ染色测定主动脉斑块阳性面积;免疫组化染色测定不同心肌区域和主动脉血管壁CD34阳性反应强度,测定不同心肌区域新生血管密度;Western blot检测hypoxia-inducible factor1α(HIF-1α)在动脉粥样硬化和缺血心肌中的表达。结果高脂组血脂水平进行性增高。高脂组主动脉斑块阳性面积高于对照组,差异有显著性。在心肌正常区、梗死区和梗死边缘区:CD34阳性反应强度和新生血管密度各组间差异有显著性,HIF-1α的表达各组间差异有显著性;均为梗死边缘区最高,梗死区次之,正常区最低。在高脂组和对照组主动脉:CD34阳性反应强度两组间差异有显著性,HIF-1α的表达两组间差异有显著性;高脂组强于对照组。结论成功建立兔实验性动脉粥样硬化和心肌梗死双模型,提示动脉粥样硬化和缺血心肌中均有血管新生的参与。  相似文献   

17.
S100A1 is a Ca2+-binding protein of the EF-hand type that belongs to the S100 protein family. It is specifically expressed in the myocardium at high levels and is considered to be an important regulator of cardiac contractility. Because the S100A1 protein is released into the extracellular space during ischemic myocardial injury, we examined the cardioprotective potential of the extracellular S100A1 protein on ventricular cardiomyocytes in vitro. In this report we show that extracellularly added S100A1 protein is endocytosed into the endosomal compartment of neonatal ventricular cardiomyocytes via a Ca2+-dependent clathrin-mediated process. S100A1 uptake protects neonatal ventricular cardiomyocytes from 2-deoxyglucose and oxidative stress-induced apoptosis in vitro. S100A1-mediated anti-apoptotic effects involve specific activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) pro-survival pathway, including activation of phospholipase C, protein kinase C, mitogen-activated protein kinase kinase 1, and ERK1/2. In contrast, neither transsarcolemmal Ca2+ influx via the L-type channel nor protein kinase A activity seems to take part in the S100A1-mediated signaling pathway. In conclusion, this study provides evidence for the S100A1 protein serving as a novel cardioprotective factor in vitro. These findings warrant speculation that injury-dependent release of the S100A1 protein from cardiomyocytes may serve as an intrinsic mechanism to promote survival of the myocardium in vivo.  相似文献   

18.
It is well known that the implantation of bone marrow mononuclear cells (BM-MNCs) into ischemic hearts can induce angiogenesis and improve cardiac function after myocardial infarction, but the precise mechanisms of these actions are unclear. We hypothesize that the cytokines produced by BM-MNCs play a key role in this cell-based therapy. BM-MNCs from rats were cultured under normoxic or hypoxic (1% O2) conditions for 24 h, and then supernatants were collected for study. ELISA and Western blotting analysis showed that various cytokines, including VEGF, IL-1 beta, PDGF, and IGF-1, were produced from BM-MNCs, some of which were enhanced significantly under hypoxia stimulation. When compared with a control blank medium, the supernatants of BM-MNCs cultured under normoxic or hypoxic conditions inhibited apoptosis significantly and preserved the contractile capacity of isolated adult rat cardiomyocytes in vitro (P < 0.05). Using a rat model of acute myocardial infarction, we injected the supernatants of BM-MNCs or control medium intramyocardially on day 0 and then intraperitoneally on days 2, 4, and 6 after infarction. When compared with the control medium, the supernatants of BM-MNCs cultured under both normoxic or hypoxic conditions increased the microvessel density and decreased the fibrotic area in the infarcted myocardium significantly, contributing to remarkable improvement in cardiac function. Various cytokines were produced by BM-MNCs, and these cytokines contributed to functional improvement of the infarcted heart by directly preserving the contractile capacity of the myocardium, inhibiting apoptosis of cardiomyocytes, and inducing therapeutic angiogenesis of the infarcted heart.  相似文献   

19.
Chronic left ventricular dysfunctional but viable myocardium of patients with chronic hibernation is characterized by structural changes, which consist of depletion of contractile elements, accumulation of glycogen, nuclear chromatin dispersion, depletion of sarcoplasmic reticulum and mitochondrial shape changes. These alterations are not reminiscent of degeneration but are interpreted as de-differentiation of the cardiomyocytes. The above mentioned changes are accompanied by a marked increase in the interstitial space. The present study describes qualitative and quantitative changes in the cellular and non-cellular compartments of the interstitial space. In chronic hibernating myocardial segments the increased extracellular matrix is filled with large amounts of type I collagen, type III collagen and fibronectin. An increase in the number of vimentin-positive cells (endothelial cells and fibroblasts) compared with normal myocardium is seen throughout the extracellular matrix.The increase in interstitial tissue is considered as one of the main determinants responsible for the lack of immediate recovery of contractile function after restoration of the blood flow to the affected myocardial segments of patients with chronic left ventricular dysfunction.  相似文献   

20.
Interleukin-1 receptor antagonist (IL-1ra) is a recently-described member of the IL-1 family. This unique human protein has 30% amino acid sequence homology to IL-1β and binds to human types I and II IL-1 receptors without apparent cellular activation. IL-1ra blocks the in vitro stimulatory effects of IL-1 on thymocytes, fibroblasts, endothelial cells and bone cells. In addition, IL-1ra is a potent inhibitor of the inflammatory effects of IL-1 in vivo. IL-1ra represents the first naturally-occurring cytokine inhibitor and may be important in modulating IL-1 effects in both normal and abnormal physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号