首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alcoholic fermentation from raw corn starch using Schizosaccharomyces pombe AHU 3179 and a raw starch saccharifying enzyme (RSSE) from Corticium rolfsii AHU 9627 was investigated. The optimum ethanol production was achieved at pH 3.5, 27°C and under the yeast cell concentration of 2.7 × 109 cells/ml. Addition of RSSE 5 units (as glucoamylase)/g raw corn starch was found sufficient. Under these optimum conditions, 18.5% (v/v, at 15°C) ethanol was obtained from 30% raw corn starch (30.8% as glucose) after incubation for 48 h.  相似文献   

2.
The development of a yeast that converts raw starch to ethanol in one step (called consolidated bioprocessing) could yield large cost reductions in the bioethanol industry. The aim of this study was to develop an efficient amylolytic Saccharomyces cerevisiae strain suitable for industrial bioethanol production. A native and codon-optimized variant of the Aspergillus awamori glucoamylase gene were expressed in the S. cerevisiae Y294 laboratory strain. Codon optimization resulted to be effective and the synthetic sequence sGAI was then δ-integrated into a S. cerevisiae strain with promising industrial fermentative traits. The mitotically stable recombinant strains showed high enzymatic capabilities both on soluble and raw starch (2425 and 1140 nkat/g dry cell weight, respectively). On raw corn starch, the engineered yeasts exhibited improved fermentative performance with an ethanol yield of 0.42 (g/g), corresponding to 75?% of the theoretical maximum yield.  相似文献   

3.
Candida tropicalis is a potentially useful organism for the commercial production of ethanol as it is capable of fermenting starch at a low rate. To enhance this carbon source utilization and increase the rate of alcohol production, we pretreated corn soluble starch with alpha-amylase. Starch liquefaction was sufficient to drive the fermentation and to convert 96% substrate to ethanol. Indeed, in the presence of exogenous alpha-amylase, 9% (w/v) soluble starch was converted to 43.1g ethanol/l in 65 h with a productivity of 0.65 g/l h. Thus, bio-ethanol production using free and calcium alginate-immobilized C. tropicalis does not require the saccharification step. Furthermore, fed-batch fermentation by free C. tropicalis cells increased the final concentration to 56 g ethanol/l, reaching published values for Saccharomyces cerevisiae recombinant strains expressing both alpha-amylase and glucoamylase.  相似文献   

4.
Using only wheat bran koji from the Rhizopus strain, raw cassava starch and cassava pellets converted reasonably well to alcohol (ethanol) without cooking at 35 degrees C and pH 4.5-5.0. When the initial broth contained 30 g raw cassava starch, 10 g Rhizopus sp. koji, and 100 mL tap water, 12.1 g of alcohol was recovered by final distillation from fermented broth. In this case, 12.1 g alcohol corresponds to an 85.5% conversion rate based on the theoretical values of the starch content. When the initial broth contained 40 g cassava starch, 14.1 g of alcohol was recovered, where 14.1 g corresponds to a 74.5% conversion rate. The alcoholic fermentation process described in the present work is considered more effective and reasonable than the process using raw starch without cooking reported until now, since the new process makes it unnecessary to add yeast cells and glucoamylase preparation.  相似文献   

5.
Studies have been conducted in a gas circulation type fermentor in order to characterize the ethanol fermentation of uncooked cassava starch with Rhizopus koji. Results showed that ethanol concentration reached 13-14% (v/v) in 4-day broth, and the maximum productivity of ethanol was 2.3 g ethanol/L broth h. This productivity was about 50% compared to the productivity of a glucose-yeast system. Ethanol yield reached 83.5-72.3% of the theoretical yield for the cassava starch used. The fermentor used in the present work has been proven by experiment to be suitable for ethanol fermentation of the broth with solid substrate.  相似文献   

6.
A diploid yeast strain displaying both α-amylase and glucoamylase was developed for repeated fermentation from raw starch. First, the construct of α-amylase was optimized for cell surface display, as there have been no reports of α-amylase-displaying yeast. The modified yeast displaying both glucoamylase and α-amylase produced 46.5 g/l of ethanol from 200 g/l of raw corn starch after 120 h of fermentation, and this was 1.5-fold higher when compared to native α-amylase-displaying yeast. Using the glucoamylase and modified α-amylase co-displaying diploid strain, we repeated fermentation from 100g/l of raw starch for 23 cycles without the loss of α-amylase or glucoamylase activity. The average ethanol productivity and yield during repeated fermentation were 1.61 g/l/h and 76.6% of the theoretical yield, respectively. This novel yeast may be useful for reducing the cost of bio-ethanol production and may be suitable for industrial-scale bio-ethanol production.  相似文献   

7.
Direct and efficient production of ethanol by fermentation from raw corn starch was achieved by using the yeast Saccharomyces cerevisiae codisplaying Rhizopus oryzae glucoamylase and Streptococcus bovis alpha-amylase by using the C-terminal-half region of alpha-agglutinin and the flocculation functional domain of Flo1p as the respective anchor proteins. In 72-h fermentation, this strain produced 61.8 g of ethanol/liter, with 86.5% of theoretical yield from raw corn starch.  相似文献   

8.
以玉米淀粉糖渣为原料制备米曲发酵酱油   总被引:1,自引:0,他引:1  
以玉米淀粉糖渣为原料制备米曲,米曲中的中性蛋白酶活力能够达到4000 U/g(干基),糖化酶比活力可达到120 U/g左右,满足酿造酱油所需要求。用糖渣米曲发酵酱油,氨基态氮和总氮质量浓度分别能够达到7.1 g/L和11.9 g/L,还原糖质量浓度为13.2 g/L,各项理化指标均可达到国家二级酱油标准。  相似文献   

9.
Raw starch and raw cassava tuber powder were directly and efficiently fermented at elevated temperatures to produce ethanol using the thermotolerant yeast Kluyveromyces marxianus that expresses α‐amylase from Aspergillus oryzae as well as α‐amylase and glucoamylase from Debaryomyces occidentalis. Among the constructed K. marxianus strains, YRL 009 had the highest efficiency in direct starch fermentation. Raw starch from corn, potato, cassava, or wheat can be fermented at temperatures higher than 40°C. At the optimal fermentation temperature 42°C, YRL 009 produced 66.52 g/L ethanol from 200 g/L cassava starch, which was the highest production among the selected raw starches. This production increased to 79.75 g/L ethanol with a 78.3% theoretical yield (with all cassava starch were consumed) from raw cassava starch at higher initial cell densities. Fermentation was also carried out at 45 and 48°C. By using 200 g/L raw cassava starch, 137.11 and 87.71 g/L sugar were consumed with 55.36 and 32.16 g/L ethanol produced, respectively. Furthermore, this strain could directly ferment 200 g/L nonsterile raw cassava tuber powder (containing 178.52 g/L cassava starch) without additional nutritional supplements to produce 69.73 g/L ethanol by consuming 166.07 g/L sugar at 42°C. YRL 009, which has consolidated bioprocessing ability, is the best strain for fermenting starches at elevated temperatures that has been reported to date. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:338–347, 2014  相似文献   

10.
Summary High ethanol and stillage solids have been achieved using whole corn mashes. Ethanol yields of 14% (v/v) (89.5% of theory) and stillage levels of approximately 23% (w/v) were obtained in 74–90 hours using mild acid pretreatment with Aspergillus oryzae wheat bran koji saccharification. High ethanol yields were also obtained with bacterial amylase, instead of the acid treatment, when the sterilization step was omitted. The implications of ethanol fermentation process modifications are explored.  相似文献   

11.
Production of ethanol and xylitol from corn cobs by yeasts   总被引:4,自引:0,他引:4  
Saccharomyces cerevisiae and Candida tropicalis were used separately and as co-culture for simultaneous saccharification and fermentation (SSF) of 5-20% (w/v) dry corn cobs. A maximal ethanol concentration of 27, 23, 21 g/l (w/v) from 200 g/l (w/v) dry corn cobs was obtained by S. cerevisiae, C. tropicalis and the co-culture, respectively, after 96 h of fermentation. However, theoretical yields of 82%, 71% and 63% were observed from 50 g/l dry corn cobs for the above cultures, respectively. Maximal xylitol concentration of 21, 20 and 15 g/l from 200 g/l (w/v) dry corn cobs was obtained by C. tropicalis, co-culture, and S. cerevisiae, respectively. Maximum theoretical yields of 79.0%, 77.0% and 58% were observed from 50 g/l of corn cobs, respectively. The volumetric productivities for ethanol and xylitol increased with the increase in substrate concentration, whereas, yield decreased. Glycerol and acetic acid were formed as minor by-products. S. cerevisiae and C. tropicalis resulted in better product yields (0.42 and 0.36 g/g) for ethanol and (0.52 and 0.71 g/g) for xylitol, respectively, whereas, the co-culture showed moderate level of ethanol (0.32 g/g) and almost maximal levels of xylitol (0.69 g/g).  相似文献   

12.
A halophilic bacterium Halolactibacillus sp. SK71 producing extracellular glucoamylase was isolated from saline soil of Yuncheng Salt Lake, China. Enzyme production was strongly influenced by the salinity of growth medium with maximum in the presence of 5% NaCl. The glucoamylase was purified to homogeneity with a molecular mass of 78.5 kDa. It showed broad substrate specificity and raw starch hydrolyzing activity. Analysis of hydrolysis products from soluble starch by thin‐layer chromatography revealed that glucose was the sole end‐product, indicating the enzyme was a true glucoamylase. Optimal enzyme activity was found to be at 70°C, pH 8.0, and 7.5% NaCl. In addition, it was highly active and stable over broad ranges of temperature (0–100°C), pH (7.0–12.0), and NaCl concentration (0–20%), showing excellent thermostable, alkali stable, and halotolerant properties. Furthermore, it displayed high stability in the presence of hydrophobic organic solvents. The purified glucoamylase was applied for raw corn starch hydrolysis and subsequent bioethanol production using Saccharomyces cerevisiae. The yield in terms of grams of ethanol produced per gram of sugar consumed was 0.365 g/g, with 71.6% of theoretical yield from raw corn starch. This study demonstrated the feasibility of using enzymes from halophiles for further application in bioenergy production. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1262–1268, 2014  相似文献   

13.
Efficient ethanol producing yeast Saccharomyces cerevisiae cannot produce ethanol from raw starch directly. Thus the conventional ethanol production required expensive and complex process. In this study, we developed a direct and efficient ethanol production process from high-yielding rice harvested in Japan by using amylase expressing yeast without any pretreatment or addition of enzymes or nutrients. Ethanol productivity from high-yielding brown rice (1.1g/L/h) was about 5-fold higher than that obtained from purified raw corn starch (0.2g/L/h) when nutrients were added. Using an inoculum volume equivalent to 10% of the fermentation volume without any nutrient supplementation resulted in ethanol productivity and yield reaching 1.2g/L/h and 101%, respectively, in a 24-h period. High-yielding rice was demonstrated to be a suitable feedstock for bioethanol production. In addition, our polyploid amylase-expressing yeast was sufficiently robust to produce ethanol efficiently from real biomass. This is first report of direct ethanol production on real biomass using an amylase-expressing yeast strain without any pretreatment or commercial enzyme addition.  相似文献   

14.
Direct and efficient production of ethanol by fermentation from raw corn starch was achieved by using the yeast Saccharomyces cerevisiae codisplaying Rhizopus oryzae glucoamylase and Streptococcus bovis α-amylase by using the C-terminal-half region of α-agglutinin and the flocculation functional domain of Flo1p as the respective anchor proteins. In 72-h fermentation, this strain produced 61.8 g of ethanol/liter, with 86.5% of theoretical yield from raw corn starch.  相似文献   

15.
In this study, corn starch was used as the substrate for cell growth and trehalose accumulation by Saccharomycopsis fibuligera A11. Effect of different aeration rates, agitation speeds, and concentrations of corn starch on direct conversion of corn starch to trehalose by S. fibuligera A11 were examined using a Biostat B2 2-l fermentor. We found that the optimal conditions for direct conversion of corn starch to trehalose by this yeast strain were that agitation speed was 200 rpm, aeration rate was 4.0 l/min, concentration of corn starch was 2.0% (w/v), initial pH was 5.5, fermentation temperature was 30°C. Under these conditions, over 22.9 g of trehalose per 100 g of cell dry weight was accumulated in the yeast cells, cell mass was 15.2 g/l of the fermentation medium, 0.12% (w/v) of reducing sugar, and 0.21% (w/v) of total sugar were left in the fermented medium within 48 h of the fermentation. It was found that trehalose in the yeast cells could be efficiently extracted by the hot distilled water (80°C). After isolation and purification, the crystal trehalose was obtained from the extract of the cells.  相似文献   

16.
Alcohol fermentation of corn starch without cooking was performed by using Chalara paradoxa glucoamylase preparation, which had stronger raw starch digesting activity than those of the conventionally known glucoamylases. A raw corn starch-enzyme-yeast mixture was fermented optimally at pH 5.0 and 30 degrees C for five days and produced ethanol. The yields of ethanol were between 63.5 and 86.8% of the theoretical value by baker's yeast (Saccharomyces cerevisiae), and between 81.1 and 92.1% of the theoretical value by sake yeast (Saccharomyces sake).  相似文献   

17.
Corn stover (CS) was hydrothermally pretreated using CH3COOH (0.3 %, v/v), and subsequently its ability to be utilized for conversion to ethanol at high-solids content was investigated. Pretreatment conditions were optimized employing a response surface methodology (RSM) with temperature and duration as independent variables. Pretreated CS underwent a liquefaction/saccharification step at a custom designed free-fall mixer at 50 °C for either 12 or 24 h using an enzyme loading of 9 mg/g dry matter (DM) at 24 % (w/w) DM. Simultaneous enzymatic saccharification and fermentation (SSF) of liquefacted corn stover resulted in high ethanol concentration (up to 36.8 g/L), with liquefaction duration having a negligible effect. The threshold of ethanol concentration of 4 % (w/w), which is required to reduce the cost of ethanol distillation, was surpassed by the addition of extra enzymes at the start up of SSF achieving this way ethanol titer of 41.5 g/L.  相似文献   

18.
Recombinant Saccharomyces cerevisiae YKU 131 (capable of expressing glucoamylase) was used to produce ethanol from sago starch. The optimum C/N ratio for ethanol production by the recombinant yeast was 7.9, where 4.7 and 10.1 g/l ethanol was produced from 20 and 40 g/l sago starch, respectively. At sago starch concentration higher than 40 g/l and C/N ratio higher than 10.4, glucoamylase production and rate of starch hydrolysis were reduced, which in turn, reduced ethanol production significantly. The theoretical yield of ethanol based on sago starch consumed in fermentation using 40 g/l was 72.6%. This yield was slightly lower than those obtained in fermentation using soluble starch such as potato and corn starch, which ranged from 80–90% as reported in the literature. However, S. cerevisiae YKU 131 could only utilize 62% of the total amount of starch added to a medium.  相似文献   

19.
Corn hulls and corn germ meal were both evaluated as feedstocks for production of ethanol for biofuel. Currently, these fibrous co-products are combined with corn steep liquor and the fermentation bottoms (if available) and marketed as cattle feed. Samples were obtained from wet and dry corn mills. The corn hulls and germ meal were evaluated for starch and hemicellulose compositions. Starch contents were 12 to 32% w/w and hemicellulose (arabinoxylans) contents were 23 to 64% w/w. Corn fibrous samples were hydrolysed, using dilute sulphuric acid, into mixed sugar streams containing arabinose, glucose and xylose. Total sugar concentrations in the hydrolysate varied from 8.4 to 10.8% w/v. The hydrolysates were fermented to ethanol using recombinant E. coli strains K011 and SL40. Ethanol yields were 0.38 to 0.41g ethanol produced/g total sugars consumed and fermentations were completed in 60h or less. However, residual xylose was detected for each hydrolysate fermentation and was especially significant for fermentations using strain SL40. Strain K011 was a superior ethanologenic strain compared with strain SL40 in terms of both ethanol yield and maximum productivity.  相似文献   

20.
The effect of starch composition and concentration on the rheological properties of starch in a mixed solvent, water–DMSO, was investigated in dynamic shear and extensional mode. High amylose corn starch containing 70% amylose and 30% amylopectin, common corn starch containing 25% amylose and 75% amylopectin, and waxy corn starch containing about 99% amylopectin were used in this study. Concentrations of 2, 4, 6, and 8% (w/v) in 10% water-90% DMSO (v/v) were used for each starch type. An increase in the amylopectin content of starch from 30 to 99% caused a change in behavior from semidilute solution to viscoelastic solid at a concentration of 8% (w/v). At a concentration of 2%, an increase in the amylopectin content of starch from 30 to 99% caused a change from Newtonian to incipient gel-like behavior. Behavior at intermediate concentrations of 4 and 6% (w/v) varied from semidilute to critical gel-like with increasing amylopectin content. A power-law relaxation was observed for all concentrations of common and waxy corn starches with the slope decreasing with increase in concentrations. A 2% waxy corn starch solution displayed extension thinning behavior, while a 2% high amylose corn starch solution displayed Newtonian behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号