首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of glucocorticoid in the prolactin-induced accumulation of casein mRNA in mammary explants from midpregnant mice has been studied after an initial 4-day incubation to allow the level of messenger to decline to undetectable levels. Subsequent culture for 3 days: 1) with insulin and glucocorticoid did not result in detectable accumulation of messenger; 2) with insulin and prolactin resulted in a very small accumulation; 3) with insulin, glucocorticoid and prolactin elicited a 20-fold greater accumulation of casein mRNA than the system with only insulin and prolactin. Therefore, although glucocorticoids are not an absolute requirement for casein gene expression in mouse mammary tissue, they are necessary for massive accumulation of casein mRNA induced by prolactin. It appears that this dependence is not a result of either mRNA stabilization or alteration in prolactin receptors. By contrast, stimulation of total epithelial RNA synthesis by prolactin does not have this glucocorticoid dependency.  相似文献   

2.
Masayoshi Ono  Takami Oka 《Cell》1980,19(2):473-480
The dose-response relationship between cortisol and the accumulation of the two milk proteins, casein and α-lactalbumin, was studied in organ culture of mammary gland from midpregnant mice. The accumulation of casein was low in culture with insulin but was enhanced by the further addition of prolactin. Further increases in casein were effected by the addition of cortisol in increasing concentrations up to 3 × 10?6 M, which was optimal for the accumulation of this protein. The content of α-lactalbumin in explants was similarly low in culture with insulin alone, but, in contrast, was increased to a maximal level by the addition of insulin and prolactin. The addition of cortisol up to 3 × 10?8 M with insulin and prolactin did not further increase the level of α-lactalbumin; in fact, at concentrations above 3 × 10?7 M the steroid caused progressive inhibition of the accumulation of this protein in cultured explants. Studies of the appearance of casein and α-lactalbumin in incubation medium during organ culture revealed the presence of substantial amounts of these milk proteins. During the first 2 days of culture with insulin, prolactin and 3 × 10?6 M cortisol, the amount of α-lactalbumin in culture medium was almost equal to the level found in tissue, whereas in the presence of 3 × 10?8 M cortisol, or in the absence of exogenous steroid, over 70% of total α-lactalbumin was retained in tissue. The observed difference in the amount of α-lactalbumin in culture medium can, however, only partially account for the inhibitory effect of high doses of cortisol on the accumulation of α-lactalbumin in cultured mammary explants. In contrast to α-lactalbumin, the relative amount of casein in culture medium containing insulin and prolactin was smaller—19% of total casein synthesized—and was further reduced to 16% and 11% of the total in the presence of 3 × 10?8 M and 3 × 10?6 M cortisol, respectively. The above results indicate that cortisol exerts dose-dependent differential actions on the accumulation of casein and α-lactalbumin in mouse mammary epithelium in vitro.  相似文献   

3.
Addition of cortisol at concentrations above 300 nM selectively inhibited the synthesis of alpha-lactalbumin and the accumulation of its mRNA in the mouse mammary gland cultured in the presence of insulin and prolactin, whereas the same treatment augmented casein synthesis and the accumulation of casein mRNA. Prostaglandin E2 or F2 alpha reversed the inhibitory effects of cortisol in a dose-dependent manner, without affecting casein production. The levels of prostaglandin E2 or F2 alpha in tissue explants cultured with insulin and prolactin increased about 2.6-fold over those in uncultured tissue, and the addition of cortisol decreased these levels approximately 2-fold. These results indicate the ability of prostaglandins to counteract the inhibitory effect of cortisol on the alpha-lactalbumin gene expression in the mouse mammary gland.  相似文献   

4.
J W Perry  T Oka 《In vitro》1984,20(1):59-65
The organ culture of the mammary gland of lactating mice was used to examine the response of the differentiated gland to lactogenic stimuli, insulin, cortisol, and prolactin. Time course studies showed that casein synthesis in cultured tissue decreased rapidly during the first 2 d despite the presence of the three hormones, but on the 3rd d tissue cultured with either insulin and prolactin or all three hormones regained the ability to synthesize milk proteins, casein, and alpha-lactalbumin: a greater increase occurred in the three hormone system. The delayed addition of prolactin on Day 2 to the culture system containing insulin and cortisol also stimulated casein synthesis. The addition of cytarabine, which inhibited insulin-dependent cell proliferation in cultured explants, did not block the rebound of milk protein synthesis. These results indicate that in the presence of insulin, cortisol, and prolactin mammary epithelial cells in culture first lose and then regain the ability of synthesizing milk protein without requiring the formation of new daughter cells.  相似文献   

5.
When mammary gland explants from mid-pregnant rats were incubated with insulin (5 μg/ml) and [3H]cortisol (5 μg/ml) for one day, the tissue accumulated 1.69 μg cortisol/g wet tissue. During a second incubation with insulin and prolactin (5 μg/ml), only 20% of the steroid was lost per day. Such retention of glucocorticoid had an important biological consequence: the tissue exposed for one day to insulin and cortisol showed a transient stimulation of casein synthesis during a subsequent, five-day incubation with insulin and prolactin. No casein synthesis was detected, if the first culture medium contained only insulin. In conclusion, mammary gland explants from mid-pregnant rats require a glucocorticoid for casein synthesis, but this requirement may be obscured if the explants are initially incubated in medium containing cortisol, since they are capable of accumulating and retaining this steroid. Similar interpretative difficulties may arise in studies on other steroid-tissue relationships.  相似文献   

6.
Cortisol was previously shown to exert different, concentration-dependent, effects on the accumulation of casein and alpha-lactalbumin in mammary glands from mid-pregnant mice cultured in the presence of insulin and prolactin [Ono & Oka (1980) Cell 19, 473-480]. The present study demonstrated that the addition of 30nM-cortisol to the medium containing insulin and prolactin resulted in a marked enhancement of the rate of synthesis of both alpha-lactalbumin and casein in cultured tissue. The addition of 3 microM-cortisol in combination with insulin and prolactin caused a marked decrease in the rate of alpha-lactalbumin synthesis, but increased casein synthesis substantially. Similar changes were also observed in the amount of translatable mRNA for alpha-lactalbumin and casein in mammary explants cultured with insulin, prolactin and the two concentrations of cortisol. The study of the turnover of the milk proteins in cultured explants showed that virtually all of the casein synthesized remained intact in tissue explants cultured with 3 microM cortisol, whereas about 45% of casein disappeared in 40h from explants cultured with 30nM-cortisol. In contrast, the two concentrations of cortisol did not differentially affect the disappearance of alpha-lactalbumin, which was about 55% in 40h. These results indicate that the concentration-dependent differential actions of cortisol on the accumulation of alpha-lactalbumin and casein are exerted through its effects on the rate of synthesis and turnover of the two proteins as well as on the accumulation of their mRNA species.  相似文献   

7.
Summary Cortisol was previously shown to elicit a concentration-dependent inhibition of α-lactalbumin accumulation in midpregnant mouse mammary gland cultured in medium containing optimal concentrations of 5 μg/ml prolactin and insulin. In contrast, casein accumulation under these conditions was progressively stimulated by addition of increasing amounts of cortisol (Ono, M.; Oka, T. Cell 19: 473–480; 1980). In the present study we found that in the presence of a suboptimal concentration of 0.5 μg/ml prolactin, 2.8×10−9 M to 2.8×10−7 M cortisol stimulated α-lactalbumin accumulation. Furthermore, higher concentrations of cortisol produced a smaller inhibition of α-lactalbumin accumulation as compared to that obtained in cultures containing 5 μg/ml prolactin. The maximal increase in α-lactalbumin accumulation attained in the presence of 1.4×10−8 M cortisol, 0.5 μg/ml prolactin, and insulin was comparable to that observed in culture containing 5 μg/ml prolactin and insulin. Similar results were obtained in a cortisol concentration-response study of α-lactalbumin accumulation in cultures containing a suboptimal concentration of 0.5 μg/ml human placental lactogen. Measurement of the rate of α-lactalbumin synthesis in cultured tissue indicated that the opposing effects of low and high concentrations of cortisol on α-lactalbumin accumulation involved an alteration in the rate of synthesis of the milk protein. In contrast to α-lactalbumin, the synthesis of casein was stimulated in a concentration-dependent manner by addition of cortisol that acted synergistically with either 0.5 μg/ml or 5 μg/ml prolactin. The maximal increases were obtained in the presence of 2.8×10−6 M cortisol. These results indicated that the action of cortisol on α-lactalbumin accumulation can be modulated by the concentration, of prolactin and suggest that the interplay between cortisol and prolactin in regulation of α-lactalbumin synthesis may be different from that involved in casein synthesis.  相似文献   

8.
Summary The organ culture of the mammary gland of lactating mice was used to examine the response of the differentiated gland to lactogenic stimuli, insulin, cortisol, and prolactin. Time course studies showed that casein synthesis in cultured tissue decreased rapidly during the first 2 d despite the presence of the three hormones, but on the 3rd d tissue cultured with either insulin and prolactin or all three hormones regained the ability to synthesize milk proteins, casein, and α-lactalbumin: a greater increase occurred in the three hormone system. The delayed addition of prolactin on Day 2 to the culture system containing insulin and cortisol also stimulated casein synthesis. The addition of cytarabine, which inhibited insulin-dependent cell proliferation in cultured explants, did not block the rebound of milk protein synthesis. The results indicate that in the presence of insulin, cortisol, and prolactin mammary epithelial cells in culture first lose and then regain the ability of synthesizing milk protein without requiring the formation of new daughter cells.  相似文献   

9.
We examined the effects of 1alpha,25-dihydroxycholecalciferol (1,25-DHCC) and the glucocorticoid, cortisol, on primary mouse mammary epithelial cells in collagen gel cell culture systems. Physiological low concentrations (10(-11)-10(-9) M) of 1,25-DHCC stimulated growth of the cells in a collagen gel matrix culture in serum-free DMEM+Ham's F12 (1:1) medium containing BSA, EGF and cholera toxin, and the cell number reached 1.8-fold the control after 6 d in culture. In contrast, supraphysiological concentrations (10(-8)-10(-7) M) of 1,25-DHCC suppressed cell growth. Cortisol produced similar, but smaller, dose-dependent effects. The addition of serum to the culture medium masked the stimulatory effect of 1,25-DHCC and both the stimulatory and inhibitory effects of cortisol. 1,25-DHCC also affected casein synthesis by cells cultured in a serum-free floating collagen gel culture containing prolactin, insulin and cortisol, enhancing synthesis at low concentrations (10(-11)-10(-9) M) and inhibiting it above 10(-8) M. In the absence of cortisol, no detectable change in casein synthesis was induced by 1,25-DHCC. These results suggest a physiological role for 1,25-DHCC in stimulating both growth and differentiation of mouse mammary epithelial cells, though 1,25-DHCC does not substitute for glucocorticoids in the differentiation of the cells.  相似文献   

10.
The effect of progesterone on the synthesis of milk proteins, casein and alpha-lactalbumin was investigated by culturing mammary explants from mid-pregnant mice in serum-free medium. The addition of progesterone at concentrations above 10 ng/ml inhibited both the casein and alpha-lactalbumin accumulation that were induced by the synergistic actions of insulin, prolactin and cortisol. The maximal inhibition was attained at a progesterone concentration of 100 ng/ml. The maximal level of inhibition of the alpha-lactalbumin accumulation was about 90% in the presence of insulin and prolactin or insulin, prolactin and 0.01 microgram/ml of cortisol. The inhibition of the casein accumulation by progesterone was about 80% in the presence of insulin and prolactin, and about 40% in the presence of insulin, prolactin and 1 microgram/ml of cortisol, indicating that cortisol partially antagonized the action of progesterone on the casein synthesis. When the inhibitory effect of progesterone on the accumulation of both alpha-lactalbumin and casein was examined in cultured mammary tissues from virgin, early pregnant, mid-pregnant and late pregnant mice, the degree of inhibition was markedly reduced in tissue from late pregnant mice. This indicates that the susceptibility of mammary gland to the inhibitory action of progesterone varies with the developmental stage of the tissue.  相似文献   

11.
Dibutyryl cAMP and prolactin stimulated ornithine decarboxylase activity in mouse mammary gland explants which had been preincubated with insulin and cortisol for 1 day; maximally stimulatory concentrations of dibutyryl cAMP and prolactin produced a response which was greater than the sum of the responses of prolactin and dibutyryl cAMP when tested alone. 8-Bromo-cGMP inhibited ornithine decarboxylase activity whereas other derivatives of cyclic nucleotides were without effect. Cortisol concentrations were found to be important for optimizing the dibutyryl cAMP and prolactin responses. Optimal prolactin responses were obtained with cortisol concentrations greater than 10(-7) M, whereas optimal dibutyryl cAMP responses were observed with cortisol concentrations less than 10(-7) M. Despite the differing optimal cortisol concentrations for the prolactin and dibutyryl cAMP responses, it is concluded that prolactin and dibutyryl cAMP probably stimulate ornithine decarboxylase activity in the mammary gland via the same mechanism.  相似文献   

12.
13.
Casein turnover in rabbit mammary explants in organ culture   总被引:2,自引:1,他引:1       下载免费PDF全文
1. Explants of mammary gland from mid-pregnant rabbits were cultured in medium 199 containing insulin, prolactin and cortisol, and specific anti-casein immunoglobulin G was used to measure the amount, rate of synthesis and rate of degradation of casein in the explants in the presence of hormones and after removal of hormones from previously stimulated tissue. 2. The amount of casein in particle-free supernatants prepared from mammary explants was measured by ;rocket' immunoelectrophoresis. 3. The rate of incorporation of l-[4,5-(3)H]leucine into casein was measured after isolation of the casein by immunoadsorbent chromatography and polyacrylamide-gel electrophoresis in the presence of urea and sodium dodecyl sulphate. 4. Casein accumulates in mammary explants in the presence of insulin, prolactin and cortisol, but not in the absence of hormones. Removal of hormones after 24h in culture results in a decrease in the rate of accumulation of casein in the explants. 5. Casein-synthetic rate increases in mammary explants in the presence of insulin, prolactin and cortisol, but not in the absence of hormones. Removal of hormones after 24h in culture results in continued casein synthesis at approx. 30% of the rate in the presence of hormones. The synthetic rate does not decrease to values observed in explants cultured throughout in the absence of hormones. 6. Casein is not degraded in mammary explants during a phase of rapid casein accumulation (36-72h) in the presence of hormones. Furthermore casein is not degraded when hormones are removed from the tissue after between 36 and 72h in culture. 7. Casein is glycosylated in mammary explants; the extent of glycosylation parallels the rate of synthesis. The glycosylated protein is rapidly secreted from the tissue. 8. The results are consistent with the notion that after hormonal stimulation mammary explants from mid-pregnant rabbits synthesize, glycosylate and rapidly secrete casein. Removal of hormones decreases the synthetic rate of casein, but does not cause the accumulation of a pool of degradable casein in the lobuloalveolar cells.  相似文献   

14.
Milk synthesis is initiated solely by prolactin in the pseudopregnant rabbit and glucocorticoids potentiate this action of prolactin. In organ culture, prolactin, in the presence or in the absence of insulin, enhances casein synthesis and cortisol (inactive alone) amplifies this action. Measurements of casein mRNA concentration in total cellular RNA, by hybridization with DNA complementary to casein mRNA, revealed that the stimulation of casein synthesis by the glucocorticoid is accompanied by an increase in the amount of casein mRNA. A systematic comparison of variations of these two parameters indicated that the major effect of glucocorticoids on lactogenesis in the rabbit at this stage of mammary gland development is mediated through an increase in the quantity of casein mRNA available for translation. No simultaneous control of casein mRNA translation by cortisol was observed.  相似文献   

15.
The addition of 5 micrograms/ml of both insulin and prolactin, 3 microM cortisol and 5% fetal bovine serum stimulated casein synthesis during a 5 day culture of mammary epithelium from lactating mice using a floating collagen gel as a culture substratum. Omission of any of the three hormones or serum decreased casein synthesis substantially. The use of 10% serum or the attached gel culture system also decreased casein synthesis. Cells cultured with the combination of the three hormones and 5% serum contained a low level of casein mRNA on day 2, but it increased to much higher levels on day 4 and 5, amounting to over 30% of total mRNA on day 5. In contrast to casein synthesis, the maximal increase in alpha-lactalbumin synthesis required the presence of 0.03 microM cortisol. The combination of insulin, prolactin and 3 microM cortisol or insulin and prolactin elicited smaller increases. The translatable mRNA for alpha-lactalbumin in cells cultured with insulin, cortisol and prolactin for 5 days was detected, but not in cells with insulin and cortisol. Both a high and low concentration of cortisol in combination with insulin increased prolactin binding capacity of cultured cells to the same extent, whereas cells cultured with insulin alone contained much lower levels of prolactin binding. The difference in the capacity of prolactin binding between cells cultured with insulin alone and those cultured with insulin and cortisol correlated well with their ability to synthesize casein in response to prolactin.  相似文献   

16.
Mouse glycosylation-dependent cell adhesion molecule 1 (GlyCAM-1), also known as mC26 and homologous to bovine PP3, is a milk protein synthesized in the mammary gland. Several studies have investigated the regulation of casein, the major milk protein, gene in the mammary gland, but little is known about GlyCAM-1. Here we examined GlyCAM-1 gene expression in mouse mammary epithelial cells. First, we detected GlyCAM-1 expression in mammary epithelial cells in situ by immunohistochemistry; almost all mammary epithelial cells of the lactating mouse expressed GlyCAM-1. Second, mammary epithelial cells were digested with collagenase and cultured with insulin, prolactin and/or glucocorticoid. alpha-Casein and beta-casein genes were expressed following treatment with insulin, prolactin and glucocorticoid. In contrast, GlyCAM-1 expression could not be detected with any combination of these three hormones. We also analyzed changes in the levels of GlyCAM-1 and caseins mRNAs in cultured cells. The addition of hormones to the culture medium increased casein mRNAs, but surprisingly reduced GlyCAM-1 mRNA. Our results suggest that the mechanisms that regulate GlyCAM-1 gene in mammary cells of lactating mice are different from those involved in the regulation of casein genes.  相似文献   

17.
We studied the effect of progesterone and its agonist, R 5020, on casein and transferrin production in pregnant rabbit mammary gland explant culture and its modulation by hormones that synergize with prolactin. The glands were obtained from rabbits on days 12-14 of gestation. The progestins had no effect alone, but significantly inhibited ovine and porcine prolactin stimulation of casein synthesis in a dose dependent manner. There were no effects on transferrin content of the tissue, demonstrating a specific effect of progesterone on casein synthesis. In approx 15% of the cultures, prolactin stimulated casein production to very high levels and the progestins lost their inhibitory action. Progestins were also ineffective when the tissue was cultured with prolactin and unphysiologically high levels of insulin (5 mg/l) or cortisol (280 nmol/l), which stimulated casein synthesis to higher levels than prolactin alone. The concentration of cortisol used was 10 times higher than the serum levels seen in rabbits at the stage of gestation studied (approx 10 ng/ml) and corresponded to levels seen at the end of gestation, a period when the glands are secreting milk and progesterone serum levels have commenced to decrease. Thus, when the prolactin effect upon casein synthesis had been potentiated, whether spontaneously or through synergism with insulin or corticoids, progestins were unable to inhibit it, as is the case in lactating tissues. The results show that utilization of unphysiological levels of hormones in culture may distort the response of the tissue, masking responses that are clearly seen in vivo.  相似文献   

18.
Mammary glands from BALB/cfC3H midpregnant (9–11 days) mice were dissociated with collagenase and pronase, separated on a Percoll gradient, and the epithelial cells were cultured inside collagen gel. The cell number increased three-to five-fold when cultured for 6–8 days in DME/F12 (1: 1) medium containing 3% swine serum, insulin (10 μg/ml), cortisol (1.0 μg/ml), prolactin (10 μg/ml), transferrin (10 μg/ml), and epidermal growth factor (0.01 μg/ml). The casein level, as determined by radioimmunoassay, at the end of this growth phase, was much lower than that present in freshly dissociated cells. In order to stimulate casein production, the gels were released from the sides of the plastic dish and allowed to float for eight days in Waymouth's medium, containing insulin (10 μg/ml), cortisol (5 μg/ml), prolactin (10 μg/ml), and 0.25% bovine serum albumin. The casein level at the end of this differentiation phase was found to be comparable to that seen in the original freshly dissociated cells. Cells grown in DME/F12 (1: 1) medium containing 3% swine serum, insulin (10 μg/ml), and transferrin (10 μg/ml) were still capable of undergoing casein production, indicating that the presence of exogenous lactogenic hormones such as cortisol and prolactin, as well as exogenous growth factors such as epidermal growth factor, is not necessary during the growth phase for subsequent casein production during the differentiation phase. Two factors that seemed more important for subsequent casein stimulation were: (1) releasing collagen gels at the beginning of the differentiation phase, and (2) switching to'differentiation' medium. This present two-step protocol has allowed primary cultures of dissociated midpregnant mouse mammary epithelial cells to undergo several rounds of division inside a collagen gel matrix and to be subsequently stimulated to produce the mammary-specific protein, casein.  相似文献   

19.
A specific homologous radioimmunoassay was developed to measure rabbit beta-casein in rabbit mammary gland with a sensitivity of 0.5 ng/ml protein. It was used to measure casein concentration during pregnancy and in organ culture of mammary gland explants. Casein was detectable in virgin mammary glands, showed a small increase during the first half of pregnancy, increased more than 20-fold between Days 21 and 27, and diminished somewhat on the first days of lactation. After 24 hr of culture, mammary gland explants had no detectable casein, but the addition of increasing concentrations of prolactin to a culture medium which contained insulin (5 micrograms/ml) and cortisol (0.5 microgram/ml) induced a regular increase in the casein content of the tissue. Casein started to increase when 10 ng/ml of prolactin was present and maximal values were achieved for 100 ng/ml of the hormone.  相似文献   

20.
During a 10-h incubation, cyclic nucleotide phosphodiesterase inhibitors, viz. theophylline and quinine, were found to reduce by 40-50% the rate of [3H] leucine incorporation into casein in mammary gland explants from midpregnant mice. Further, dibutyryl cyclic AMP as well as the phosphodiesterase inhibitors were found to abolish the prolactin stimulation of leucine incorporation into casein. Elevated levels of cyclic AMP therefore appear to impair the functionality of the mammary gland. Although cyclic GMP was previously shown to stimulate RNA synthesis in the mammary gland in a prolactin-like manner, it had no effect on the rate of casein synthesis in mammary gland explants. Preincubation of explants with cyclic GMP did, however, attenuate the time required for the commencement of the prolactin stimulation of the rate of leucine incorporation into casein. A physiological role of cyclic GMP for the regulation of the rate of casein synthesis is thus suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号