首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
One-year-old oak (Quercus mongolica Fisch.) seedlings were grown in growth chambers for 30 days to investigate the effects of the combination of elevated CO2 concentration ([CO2], 700 μmol/mol) and temperature (ambient T + 4°C) and only elevated temperature (ambient T +4°C) on leaf gas exchange, chlorophyll a fluorescence, and chlorophyll content. In the growth chambers, natural conditions of the Maoershan mountain regions of Heilongjiang Province (45–46°N, 127–128°E) of China for the average growth season were simulated. The results showed that the maximum net photosynthetic rate (P Nmax) was ≈ 1.64 times greater at elevated temperature than at ambient temperature. The irradiance saturation point (I s), apparent quantum yield (AQY), maximum photosystem II efficiency (F v/F m), and chlorophyll content significantly increased, while irradiance compensation point (I c) was not affected by elevated temperature. The combination of elevated [CO2] and temperature also significantly increased P Nmax by approximately 34% but much lower than that under elevated temperature only. In the case of factor combination, dark respiration (R d), I c, F v/F m, and total chlorophyll content increased significantly, while I s and AQY were not affected. Moreover, under elevated [CO2] and temperature, R d and I c, F v/F m were significantly higher than under elevated temperature only. The results indicated that the combination of elevated [CO2] and temperature expected in connection with the further global climate change may affect carbon storage of the coenotype of Q. mongolica in this region of China. This text was submitted by the authors in English.  相似文献   

2.
This work aims to: (1) correlate photochemical activity and productivity, (2) characterize the flow pattern of culture layers and (3) determine a range of biomass densities for high productivity of the freshwater microalga Chlorella spp., grown outdoors in thin-layer cascade units. Biomass density, irradiance inside culture, pigment content and productivity were measured in the microalgae cultures. Chlorophyll-fluorescence quenching was monitored in situ (using saturation-pulse method) to estimate photochemical activities. Photobiochemical activities and growth parameters were studied in cultures of biomass density between 1 and 47 g L−1. Fluorescence measurements showed that diluted cultures (1–2 g DW L−1) experienced significant photostress due to inhibition of electron transport in the PSII complex. The highest photochemical activities were achieved in cultures of 6.5–12.5 g DW L−1, which gave a maximum daylight productivity of up to 55 g dry biomass m−2 day−1. A midday depression of maximum PSII photochemical yield (F v/F m) of 20–30% compared with morning values in these cultures proved to be compatible with well-performing cultures. Lower or higher depression of F v/F m indicated low-light acclimated or photoinhibited cultures, respectively. A hydrodynamic model of the culture demonstrated highly turbulent flow allowing rapid light/dark cycles (with frequency of 0.5 s−1) which possibly match the turnover of the photosynthetic apparatus. These results are important from a biotechnological point of view for optimisation of growth of outdoor microalgae mass cultures under various climatic conditions.  相似文献   

3.
We investigated the seasonal variability of effects of elevated temperature (+3.5°C), CO2 elevation (700 μmol mol−1) and varying water regimes (high to low water content) on physiological responses and biomass growth of reed canary grass (Phalaris arundinacea L., local field-grown cultivar) grown in a boreal environment. In controlled environment greenhouses, various physiological and growth parameters of grass, i.e., light-saturated net photosynthetic rates (P nmax), water use efficiency (WUE) and optimal photochemical efficiency of photosystem II (F v/F m), and leaf area development and biomass of plant organs (leaf, stem, coarse, and fine root) were measured. During the early measurement periods, elevated temperature enhanced leaf photosynthesis and above-ground biomass of reed canary grass; however, this resulted in earlier senescence and lower biomass at the end of measurement period, compared to ambient temperature. This effect was more pronounced under water limitation. Elevated CO2 enhanced P nmax, WUE, and leaf area and total plant biomass (above- and below-ground) over growing season. The explanation for imbalance between stimulated photosynthesis and increase in above-ground biomass was that CO2 enrichment causes a greater increase in the plant’s root system. The combination of elevated temperature and CO2 slightly increases the growth of plant. Adequate water availability favored photosynthesis and biomass growth of reed canary grass. The temperature- and drought-induced stresses were partially mitigated by elevated CO2. Other cultivars should be tested in order to identify those that are better adapted to elevated temperatures and CO2 and variable water levels.  相似文献   

4.
The microalga Haematococcus pluvialis Flotow has been the subject of a number of studies concerned with maximizing astaxanthin production for use in animal feeds and for human consumption. Several of these studies have specifically attempted to ascertain the optimal temperature and irradiance combination for growth of H. pluvialis, but there has been a great deal of disagreement between laboratories. “Ideal” levels of temperature and irradiance have been reported to range from 14 to 28°C and 30 to 200 μmol photons m−2 s−1. The objective of the present study was to simultaneously explore temperature and irradiance effects for a single strain of H. pluvialis (UTEX 2505) across an experimental region that encompassed the reported “optimal” combinations of these factors for multiple strains. To this end, a two-dimensional experimental design based on response surface methodology (RSM) was created. Maximum growth rates for UTEX 2505 were achieved at 27°C and 260 μmol photons m−2 s−1, while maximum quantum yield for stable charge separation at PSII (Fv/Fm) was achieved at 27°C and 80 μmol photons m−2 s−1. Maximum pigment concentrations correlated closely with maximum Fv/Fm. Numeric optimization of growth rate and Fv/Fm produced an optimal combination of 27°C and 250 μmol photons m−2 s−1. Polynomial models of the various response surfaces were validated with multiple points and were found to be very useful for predicting several H. pluvialis UTEX 2505 responses across the entire two-dimensional experimental design space.  相似文献   

5.
Photochemical efficiency, photosynthetic capacity, osmoprotectants, and relative water content (RWC) were recorded in saplings of two evergreen plants (Boehmeria rugulosa Wedd. and Olea glandulifera Wall. ex G. Don) grown inside (GL) and outside (OP) a glasshouse during the winter season. The OP plants experienced 2.0–2.5 °C lower air temperature and dew formation in comparison to GL plants. Diurnal observations indicated no change in RWC in the leaves of GL and OP plants, while significant reduction in both transpiration and net photosynthetic (P N) rates was observed in OP plants: the reduction in P N was much more prominent as was also reflected by poor water use efficiency of these plants. Similarly, OP plants also showed decrease in the apparent quantum yield and irradiance-saturated CO2 assimilation rate. The decrease in P N was not associated with decreased stomatal conductance. However, a significant reduction in the ratio of variable to maximum chlorophyll (Chl) fluorescence (Fv/Fm) and Chl content was recorded in the OP plants which also contained more total soluble saccharides but less proline contents. The greater enhancement of P N at 15 °C in comparison to measurements taken at 10 °C in OP plants over GL plants probably indicated an increase in mesophyll capacity of the OP plants’ growth at increased temperature. Hence the enhanced growth and productivity of plants grown in sheltered environments could be associated to their higher photosynthetic activity that may have important bearing on their field establishment and productivity in the long run. The response varied with plant species; reduction in P N was greater in B. rugulosa than in O. glandulifera. However, the recovery of OP plants in terms of Fv/Fm in the subsequent months revealed that photosynthetic system of these plants is revocable.  相似文献   

6.
Polar oceans are very susceptible to increased levels of atmospheric CO2 and may act as the world’s largest sink for anthropogenic CO2. Simultaneously, as atmospheric CO2 increases, sea surface temperature rises due to global warming. These two factors are important in regulating microalgal ecophysiology, and it has been suggested that future global changes may significantly alter phytoplankton species composition. This study aims to investigate potential consequences of global change in terms of increased temperature and CO2 enrichment on the benthic/sea ice diatom Navicula directa. In a laboratory experiment, the physiological response to elevated temperature and partial pressure of CO2 (pCO2) was investigated in terms of growth, photosynthetic activity and photosynthetic pigment composition. The experiment was performed under manipulated levels of pCO2 (380 and 960 ppm) and temperature (0.5 and 4.5°C) to simulate a change from present levels to predicted levels during a worst-case scenario by the year 2100. After 7 days of treatment, no synergetic effects between temperature and pCO2 were detected. However, elevated temperature promoted effective quantum yield of photosynthesis (∆F/Fm F^\prime_{\rm m} ) and increased growth rates by approximately 43%. Increased temperature also resulted in an altered pigment composition. In addition, enrichment of CO2 appeared to reduce specific growth rates of N. directa. Even though growth rates were only reduced by approximately 5%, we hereby report that increased pCO2 levels might also have potential negative effects on certain diatom strains.  相似文献   

7.
We investigated the influence of root zone temperature (RZT) and the aerial application of paraquat on stress defence mechanisms of Trichosanthes cucumerina L. To achieve this objective, T. cucumerina cv Green was grown with roots at 25 and 30°C root zone temperature and maintained at 20 ± 1°C air temperature in a growth chamber. These RZT and air temperature had earlier been shown to favor growth and fruit production in T. cucumerina. Plants at each RZT were subjected to paraquat treatment (+P) and without paraquat treatment (−P). Paraquat (0.2 mmol/L) was applied as aerial spray. Results showed that the individual main effects of RZT and paraquat treatments significantly affected the chlorophyll fluorescence and gas exchange parameters, while the interaction of both treatments had no significant effect. Results showed that the total phenolics and ascorbic acid contents of T. cucumerina at 30°C were significantly higher than at 25°C. The T. cucumerina plants in +P treatment recorded significantly lower maximum photochemical efficiency (F v/F m), net photosynthesis (A), transpiration rate (E), intercellular CO2 concentration (C i) and stomatal conductance (g 1) compared to untreated plants. Also, plants raised at 30°C recorded significantly higher F v/F m, A, E, C i and g 1 compared to plants raised at 25°C. Plants that were sampled at 48 h after paraquat treatment recorded a higher degree of oxidative damage compared to those sampled at 24 h after treatment. We showed that the degree of damage suffered by T. cucumerina, when treated with paraquat either at 25 or 30°C RZT was similar at 48 h after treatment. We concluded that either at 25 or 30°C, exposure of T. cucumerina to paraquat would impose the same degree of oxidative damage.  相似文献   

8.
We measured soil surface CO2 efflux (Fs) in loblolly pine stands (Pinus taeda L.) located on the Virginia Piedmont (VA) and South Carolina Coastal Plain (SC) in efforts to assess the impact climate, productivity, and cultural practices have on Fs in the managed loblolly pine ecosystem. The effect of stand age on Fs was examined using a replicated chronosequence approach in which stands ranging from 1 to 25 years since planting were investigated. Soil CO2 efflux was measured on both VA and SC sites for over a year using a closed dynamic system. Multiple linear regression was used to evaluate Fs correlates and examine the relationship between candidate explanatory variables and Fs. Soil temperature (top 10 cm) was the major correlate with Fs on both locations. We observed a positive age effect on Fs in VA stands and no relationship between age and Fs in SC stands. Annual soil C efflux declined with stand age in SC due to both reductions in soil temperatures as crown closure occurs and a diminishing heterotrophic C substrate pool. Annual estimated efflux ranges from 16.7 to 13.2 Mg C ha−1 for 1 and 20-year-old stands, respectively. In contrast, annual soil C efflux increased with age in VA stands as a result of the positive relationship between stand age and Fs, which appears to be related to an increase in the contribution of root respiration to total Fs over time. In VA stands, efflux estimates range from 7.6 to 12.3 Mg C ha−1 for 1 and 20-year-old stands, respectively. These results demonstrate the need to further consider the impact forest management and within-region variability have on soil C efflux over time when estimating C budgets.  相似文献   

9.
The effects of shade on the growth, leaf photosynthetic characteristics, and chlorophyll (Chl) fluorescence parameters of Lycoris radiata var. radiata were determined under differing irradiances (15, 65, and 100% of full irradiance) within pots. The HI plants exhibited a typical decline in net photosynthetic rate (P N) during midday, which was not observed in MI- and LI plants. This indicated a possible photoinhibition in HI plants as the ratio of variable to maximum fluorescence (Fv/Fm) value was higher and the minimal fluorescence (F0) was lower in the, and LI plants. Diurnal patterns of stomatal conductance (g s) and transpiration rate (E) were remarkably similar to those of P N at each shade treatments, and the intercellular CO2 concentration (C i) had the opposite change trend. Under both shading conditions, the light saturation point, light compensation point and photon-saturated photosynthetic rate (P max) became lower than those under full sunlight, and it was the opposite for the apparent quantum yield (AQY). The higher the level of shade, the lower the integrated daytime carbon gain, stomatal and epidermis cell densities, specific leaf mass (SLM), bulb mass ratio (BMR), leaf thickness, and Chl a/b ratio. In contrast, contents of Chls per dry mass (DM), leaf area ratio (LAR), leaf mass ratio (LMR), leaf length, leaf area and total leaf area per plant increased under the same shade levels to promote photon absorption and to compensate for the lower radiant energy. Therefore, when the integrated daytime carbon gain, leaf area and total leaf area per plant, which are the main factors determining the productivity of L. radiata var. radiata plant, were taken into account together, this species may be cultivated at about 60∼70% of ambient irradiance to promote its growth.  相似文献   

10.
The temperature dependence of UV effects was studied for Arctic and temperate isolates of the red macrophytes Palmaria palmata, Coccotylus truncatus and Phycodrys rubens. The effects of daily repeated artificial ultraviolet B and A radiation (UVBR: 280–320?nm, UVAR: 320–400?nm) treatments were examined for all isolates at 6, 12 and 18?°C by measuring growth, optimal quantum yield of PSII (Fv/Fm) and cyclobutane-pyrimidine dimer (CPD) accumulation. Furthermore, possible ecotypic differences in UV sensitivity between Arctic and temperate isolates were evaluated. Large species-specific differences in UV sensitivity were observed for all parameters: the lower subtidal species C. truncatus and P. rubens were highly sensitive to the UV treatments, whereas P. palmata, which predominantly occurs in the upper subtidal zone, was not affected by these treatments. Only minor differences were found between Arctic and temperate isolates, suggesting that no differences in UV sensitivity have evolved in these species. Relative growth rates were temperature-dependent, whereas species-specific UV effects on growth rates were relatively independent of temperature. In contrast, the species-specific decrease in Fv/Fm and its subsequent recovery were temperature-dependent in all species. UV effects on Fv/Fm were lower at 12 and 18?°C compared with 6?°C. In addition, UV effects on Fv/Fm decreased in the course of the experiment at all temperatures, indicating acclimation to the UV treatments. CPDs accumulated during the experiment in both isolates of P. rubens, whereas CPD concentrations remained low for the other two species. CPD accumulation appeared to be independent of temperature. The results suggest that summer temperatures occurring in temperate regions facilitate repair of UV-induced damage and acclimation to UV radiation in these algae compared with Arctic temperatures. Because the differences in UV effects on Fv/Fm, growth and CPD accumulation were relatively small over a broad range of temperatures, it was concluded that the influence of temperature on UV effects is small in these species.  相似文献   

11.
A coastal Roseobacter strain of marine aerobic anoxygenic phototrophic bacteria (AAnPB) was isolated and phylogenetically determined. The strain OBYS 0001 was characterized by its physiological and biochemical properties with reference to the Erythrobacter longus type strain NBRC 14126. When grown in batch cultures, the growth curves of the both strains were similar. Cellular bacteriochlorophyll a concentrations of the strains reached the maxima in the stationary growth conditions. In vivo fluorescence excitation/optical density spectra between 470 and 600 nm for OBYS 0001 represented higher values than NBRC 14126. Variable fluorescence measurements revealed that the functional absorption cross section (σ) of the bacterial photosynthetic complexes for OBYS 0001 was significantly higher than that for NBRC 14126 under green excitation. These results suggest that Roseobacter can capture green light more efficiently than Erythrobacter for photosynthesis. The photochemical quantum efficiencies (F v/F m) of the bacterial photosynthetic complexes for OBYS 0001 were consistently lower than those for NBRC 14126. A relationship between the growth rate and F v/F m was significant for OBYS 0001, but that was not found for NBRC 14126. These results suggested that F v/F m for AAnPB could not be used as a proxy of the growth rate which is consistent with their mostly heterotrophic characters.  相似文献   

12.
Two Jerusalem artichoke (Helianthus tuberosus L.) genotypes, NY-1 and NY-7, were subjected to different seawater concentrations (0, 10, 20, 30, 40, and 50%) for various periods of time to determine the effects on seedling growth, ion content, and photosynthetic productivity in a greenhouse. Under different seawater concentrations, sprouting rates varied greatly among the genotypes. The differences in relative growth rate (RGR), leaf chlorophyll content, total leaf area (TLA), plant dry weight (PDW), photosynthetic rate (A), stomatal conductance (g s), and efficiency of the light harvesting of photosystem II (F v/F m) were significant between NY-1 and NY-7 after 12 days of stress at 40 and 50% seawater. Seawater treatments resulted in the reduction of almost all the growth parameters and coincident increases of Na+ and Ca2+ concentrations in plant tissues. Our results indicate that there is great variability for seawater tolerance among H. tuberosus varieties, and that greater photosynthesis capacity, higher RGR, and relatively higher tissue Na+ accumulation at high seawater concentrations appears to be associated with seawater tolerance in H. tuberosus varieties.  相似文献   

13.
Soil CO2 efflux (Fsoil) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity, but the long‐term effects of these factors on Fsoil are less clear. Expanding on previous studies at the Duke Free‐Air CO2 Enrichment (FACE) site, we quantified the effects of elevated [CO2] and N fertilization on Fsoil using daily measurements from automated chambers over 10 years. Consistent with previous results, compared to ambient unfertilized plots, annual Fsoil increased under elevated [CO2] (ca. 17%) and decreased with N (ca. 21%). N fertilization under elevated [CO2] reduced Fsoil to values similar to untreated plots. Over the study period, base respiration rates increased with leaf productivity, but declined after productivity saturated. Despite treatment‐induced differences in aboveground biomass, soil temperature and water content were similar among treatments. Interannually, low soil water content decreased annual Fsoil from potential values – estimated based on temperature alone assuming nonlimiting soil water content – by ca. 0.7% per 1.0% reduction in relative extractable water. This effect was only slightly ameliorated by elevated [CO2]. Variability in soil N availability among plots accounted for the spatial variability in Fsoil, showing a decrease of ca. 114 g C m?2 yr?1 per 1 g m?2 increase in soil N availability, with consistently higher Fsoil in elevated [CO2] plots ca. 127 g C per 100 ppm [CO2] over the +200 ppm enrichment. Altogether, reflecting increased belowground carbon partitioning in response to greater plant nutritional needs, the effects of elevated [CO2] and N fertilization on Fsoil in this stand are sustained beyond the early stages of stand development and through stabilization of annual foliage production.  相似文献   

14.
We present evidence that plant growth at elevated atmospheric CO2 increases the high‐temperature tolerance of photosynthesis in a wide variety of plant species under both greenhouse and field conditions. We grew plants at ambient CO2 (~ 360 μ mol mol ? 1) and elevated CO2 (550–1000 μ mol mol ? 1) in three separate growth facilities, including the Nevada Desert Free‐Air Carbon Dioxide Enrichment (FACE) facility. Excised leaves from both the ambient and elevated CO2 treatments were exposed to temperatures ranging from 28 to 48 °C. In more than half the species examined (4 of 7, 3 of 5, and 3 of 5 species in the three facilities), leaves from elevated CO2‐grown plants maintained PSII efficiency (Fv/Fm) to significantly higher temperatures than ambient‐grown leaves. This enhanced PSII thermotolerance was found in both woody and herbaceous species and in both monocots and dicots. Detailed experiments conducted with Cucumis sativus showed that the greater Fv/Fm in elevated versus ambient CO2‐grown leaves following heat stress was due to both a higher Fm and a lower Fo, and that Fv/Fm differences between elevated and ambient CO2‐grown leaves persisted for at least 20 h following heat shock. Cucumis sativus leaves from elevated CO2‐grown plants had a critical temperature for the rapid rise in Fo that averaged 2·9 °C higher than leaves from ambient CO2‐grown plants, and maintained a higher maximal rate of net CO2 assimilation following heat shock. Given that photosynthesis is considered to be the physiological process most sensitive to high‐temperature damage and that rising atmospheric CO2 content will drive temperature increases in many already stressful environments, this CO2‐induced increase in plant high‐temperature tolerance may have a substantial impact on both the productivity and distribution of many plant species in the 21st century.  相似文献   

15.
Seasonal variability of maximum quantum yield of PSII photochemistry (Fv/Fm) was studied in needles of Taxus baccata seedlings acclimated to full light (HL, 100% solar irradiance), medium light (ML, 18% irradiance) or low light (LL, 5% irradiance). In HL plants, Fv/Fm was below 0.8 (i.e. state of photoinhibition) throughout the whole experimental period from November to May, with the greatest decline in January and February (when Fv/Fm value reached 0.37). In ML seedlings, significant declines of Fv/Fm occurred in January (with the lowest level at 0.666), whereas the decline in LL seedlings (down to 0.750) was not significant. Full recovery of Fv/Fm in HL seedlings was delayed until the end of May, in contrast to ML and LL seedlings. Fv/Fm was significantly correlated with daily mean (T mean), maximal (T max) and minimal (T min) temperature and T min was consistently the best predictor of Fv/Fm in HL and ML needles. Temperature averages obtained over 3 or 5 days prior to measurement were better predictors of Fv/Fm than 1- or 30-day averages. Thus our results indicate a strong light-dependent seasonal photoinhibition in needles of T. baccata as well as suggest a coupling of Fv/Fm to cumulative temperature from several preceding days. The dependence of sustained winter photoinhibition on light level to which the plants are acclimated was further demonstrated when plants from the three light environments were exposed to full daylight over single days in December, February and April and Fv/Fm was followed throughout the day to determine residual sensitivity of electron transport to ambient irradiance. In February, the treatment revealed a considerable midday increase in photoinhibition in ML plants, much less in HL (already downregulated) and none in LL plants. This suggested a greater capacity for photosynthetic utilization of electrons in LL plants and a readiness for rapid induction of photoinhibition in ML plants. Further differences between plants acclimated to contrasting light regimes were revealed during springtime de-acclimation, when short term regeneration dynamics of Fv/Fm and the relaxation of nonphotochemical quenching (NPQ) indicated a stronger persistent thermal mechanism for energy dissipation in HL plants. The ability of Taxus baccata to sustain winter photoinhibition from autumn until late spring can be beneficial for protection against an excessive light occurring together with frosts but may also restrict photosynthetic carbon gain by this shade-tolerant species when growing in well illuminated sites.  相似文献   

16.
Drought is a major stress impacting forest ecosystems worldwide. We utilized quantitative trait loci (QTL) analysis to study the genetic basis of variation in (a) drought resistance and recovery and (b) candidate traits that may be associated with this variation in the forest tree Eucalyptus globulus. QTL analysis was performed using a large outcrossed F2 mapping population from which 300 trees were phenotyped based on the mean performance of their open-pollinated F3 progeny. Progenies were grown in a glasshouse in a randomized complete block design. A subset of seedlings was subjected to a drought treatment after which they were rewatered and scored for damage and growth postdrought. Nondroughted seedlings were assessed for growth traits as well as lignotuber size and resprouting following severe damage to the main stem. QTL were detected for most traits. Importantly, independent QTL were detected for (a) drought damage and plant size, (b) drought damage and growth recovery, and (c) lignotuber size and resprouting capacity. Such independence argues that trade-offs are unlikely to be a major limitation to the response to selection and at the early life history stage studied; there are opportunities to improve resilience to drought without adverse effects on productivity.  相似文献   

17.
This paper presents the application of a new developed measuring device for continuous determination of ammonium concentration especially in the field of biotechnology. Kinetic measurements of changes of ammonium concentration during stationary and instationary growth of microorganisms allows to quantify such interesting parameters as nitrogen consumption rate rN, productivity rx, specific growth rate ß, adaption time, diauxic behavior and mass content MF of fermenter etc. The results received by the combination of appropriated methods with the ammonium measuring device are not limited to biotechnology, so other applications in the field of chemistry, agriculture, technology, waste water industry etc. are possible.  相似文献   

18.
Simultaneous measurements of chlorophyll (Chl) fluorescence and CO2 assimilation (A) in Vicia faba leaves were taken during the first weeks of growth to evaluate the protective effect of 24-epibrassinolide (EBR) against damage caused by the application of the herbicide terbutryn (Terb) at pre-emergence. V. faba seeds were incubated for 24 h in EBR solutions (2 × 10−6 or 2 × 10−5 mM) and immediately sown. Terb was applied at recommended doses (1.47 or 1.96 kg ha−1) at pre-emergence. The highest dose of Terb strongly decreased CO2 assimilation, the maximum quantum yield of PSII photochemistry in the dark-adapted state (F V/F M), the nonphotochemical quenching (NPQ), and the effective quantum yield (ΔF/FM) during the first 3–4 weeks after plant emergence. Moreover, Terb increased the basal quantum yield of nonphotochemical processes (F 0/F M), the degree of reaction center closure (1 − q p), and the fraction of light absorbed in PSII antennae that was dissipated via thermal energy dissipation in the antennae (1 − FV/FM). The herbicide also significantly reduced plant growth at the end of the experiment as well as plant length, dry weight, and number of leaves. The application of EBR to V. faba seeds before sowing strongly diminished the effect of Terb on fluorescence parameters and CO2 assimilation, which recovered 13 days after plant emergence and showed values similar to those of control plants. The protective effect of EBR on CO2 assimilation was detected at a photosynthetic photon flux density (PFD) of 650 μmol m−2 s−1 and the effect on ΔF/FM and photosynthetic electron transport (J) was detected under actinic lightings up to 1750 μmol m−2 s−1. The highest dose of EBR also counteracted the decrease in plant growth caused by Terb, and plants registered the same growth values as controls.  相似文献   

19.
Abies faxoniana is a key species in reforestation processes in the southeast of the Qinghai-Tibetan Plateau of China. The changes in growth, photosynthesis and nutrient status of A. faxoniana seedlings exposed to enhanced ultraviolet-B (UV-B), nitrogen supply and their combination were investigated. The experimental design included two levels of UV-B treatments (ambient UV-B, 11.02 KJ m−2 day−1; enhanced UV-B, 14.33 KJ m−2 day−1) and two nitrogen levels (0; 20 g N m−2). The results indicated that: (1) enhanced UV-B significantly caused a marked decline in growth parameters, net photosynthetic rate (Pn), photosynthetic pigments and F v/F m, (2) supplemental nitrogen supply increased the accumulation of total biomass, Pn, photosynthetic pigments and F v/F m under ambient UV-B, whereas supplemental nitrogen supply reduced Pn, and not affect biomass under enhanced UV-B, (3) enhanced UV-B or nitrogen supply changed the concentration of nutrient elements of various organs.  相似文献   

20.
Evergreens undergo reductions in maximal photochemical efficiency (Fv/Fm) during winter due to increases in sustained thermal energy dissipation. Upon removing winter stressed leaves to room temperature and low light, Fv/Fm recovers and can include both a rapid and a slow phase. The goal of this study was to determine whether the rapid component to recovery exists in winter stressed conifers at any point during the season in a seasonally extreme environment. Additional goals were to compare the effects of species, growth light environment and the extent of the winter season on recovery kinetics in conifers. Four species (sun and shade needle) were monitored during the winter of 2007/2008: eastern white pine (Pinus strobus), balsam fir (Abies balsamea), Taxus cuspidata and white spruce (Picea glauca). Fv/Fm was measured in the field, and then monitored indoors at room temperature and low light for 6 days. The results showed that all species showed a rapid component to recovery in early winter that disappeared later in the season in sun needles but was present in shade needles on most days monitored during winter. There were differences among species in the recovery kinetics across the season, with pine recovering the most slowly and spruce the most quickly. The results suggest an important role for the rapidly reversible form of energy dissipation in early winter, as well as important differences between species in their rate of recovery in late winter/early spring which may have implications for spring onset of photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号