首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Cline K 《Plant physiology》1988,86(4):1120-1126
The apoprotein of the light-harvesting chlorophyll a/b protein (LHCP) is a major integral thylakoid membrane protein that is normally complexed with chlorophyll and xanthophylls and serves as the antenna complex of photosystem II. LHCP is encoded in the nucleus and synthesized in the cytosol as a higher molecular weight precursor that is subsequently imported into chloroplasts and assembled into thylakoids. In a previous study it was established that the LHCP precursor can integrate into isolated thylakoid membranes. The present study demonstrates that under conditions designed to preserve thylakoid structure, the inserted LHCP precursor is processed to mature size, assembled into the LHC II chlorophyll-protein complex, and localized to the appressed thylakoid membranes. Under these conditions, light can partially replace exogenous ATP in the membrane integration process.  相似文献   

2.
The addition of ATP to thylakoids isolated from Chlorella vulgaris is shown to lead to a quenching of fluorescence originating from Photosystem II and phosphorylation of chlorophyll achlorophyll b light-harvesting protein (LHCP) directly analogous to that reported for higher-plant chloroplasts. The time courses of these two processes are shown to be identical. Parallel measurements of ATP-induced changes in the fluorescence properties of isolated algal thylakoids and light-driven (State 1 / State 2 changes) in whole cells strongly support the idea that LHCP phosphorylation plays an important role in State 2 adaptation under in vivo conditions.  相似文献   

3.
4.
The light-harvesting chlorophyll a/b protein (LHCP) is synthesized in the cytosol as a precursor (pLHCP) that is imported into chloroplasts and assembled into thylakoid membranes. Under appropriate conditions, either pLHCP or LHCP will integrate into isolated thylakoids. We have identified two situations that inhibit integration in this assay. Ionophores and uncouplers inhibited integration up to 70%. Carboxyl-terminal truncations of pLHCP also interfered with integration. A 22-residue truncation reduced integration to about 25% of control, whereas a 93 residue truncation completely abolished it. When pLHCP was imported into chloroplasts in the presence of uncouplers or when truncated forms of pLHCP were used, significant amounts of the imported proteins failed to insert into thylakoids and instead accumulated in the aqueous stroma. Accumulation of stromal LHCP occurred at uncoupler concentrations required to dissipate the trans-thylakoid proton electrochemical gradient and was enhanced at reduced levels of ATP. The latter effect may be a secondary consequence of a reduction in ATP-dependent degradation within the stroma. These results indicate that the stroma is an intermediate location in the LHCP assembly pathway and provide the first evidence for a soluble intermediate during biogenesis of a chloroplast membrane protein.  相似文献   

5.
The insertion of a protein into a lipid bilayer usually involves a short signal sequence and can occur either during or after translation. A light-harvesting chlorophyll a/b-binding protein (LHCP) is synthesized in the cytoplasm of plant cells as a precursor and is post-translationally imported into chloroplasts where it subsequently inserts into the thylakoid membrane. Only mature LHCP is required for insertion into the thylakoid. To define which sequences of the mature protein are necessary and sufficient for thylakoid integration, fusion and deletion proteins and proteins with internal rearrangements were synthesized and incubated with isolated thylakoids and stroma. No evidence is found for the existence of a short signal sequence within LHCP, and, with the exception of the amino terminus and a short lumenal loop, the entire mature protein with consecutively ordered alpha-helices is required for insertion into thylakoid membranes. The addition of positive charges into stromal but not lumenal segments permits the insertion of mutant LHCPs into isolated thylakoids. Replacement of the LHCP transit peptide with the transit peptide from plastocyanin has no effect on LHCP insertion and does not restore insertion of the lumenal charge addition mutants.  相似文献   

6.
A Kuttkat  R Grimm    H Paulsen 《Plant physiology》1995,109(4):1267-1276
The light-harvesting chlorophyll a/b-binding protein (LHCP) is largely protected against protease (except for about 1 kD on the N terminus) in the thylakoid membrane; this protease resistance is often used to assay successful insertion of LHCP into isolated thylakoids in vitro. In this paper we show that this protease resistance is exhibited by trimeric light-harvesting complex of photosystem II (LHCII) but not by monomeric LHCII in which about 5 kD on the N terminus of LHCP are cleaved off by protease. When a mutant version of LHCP that is unable to trimerize in an in vitro reconstitution assay is inserted into isolated thylakoids, it gives rise to only the shorter protease digestion product indicative of monomeric LHCII. We conclude that more of the N-terminal domain of LHCP is shielded in trimeric than in monomeric LHCII and that this difference in protease sensitivity can be used to distinguish between LHCP assembled in LHCII monomers or trimers. The data presented prove that upon insertion of LHCP into isolated thylakoids at least part of the protein spontaneously binds pigments to form LHCII, which then is assembled in trimers. The dependence of the protease sensitivity of thylakoid-inserted LHCP on the oligomerization state of the newly formed LHCII justifies caution when using a protease assay to verify successful insertion of LHCP into the membrane.  相似文献   

7.
H. Paulsen  U. Rümler  W. Rüdiger 《Planta》1990,181(2):204-211
A gene for a light-harvesting chlorophyll (Chl) a/b-binding protein (LHCP) from pea (Pisum sativum L.) has been cloned in a bacterial expression vector. Bacteria (Escherichia coli) transformed with this construct produced up to 20% of their protein as pLHCP, a derivative of the authentic precursor protein coded for by the pea gene with three amino-terminal amino acids added and-or exchanged, or as a truncated LHCP carrying a short amino-terminal deletion into the mature protein sequence. Following the procedure of Plumley and Schmidt (1987, Proc. Natl. Acad. Sci. USA84, 146–150), all bacteria-produced LHCP derivatives can be reconstituted with acetone extracts from pea thylakoids or with isolated pigments to yield pigment-protein complexes that are stable during partially denaturing polyacrylamide-gel electrophoresis. The spectroscopic properties of these complexes closely resemble those of the light-harvesting complex associated with photosystem II (LHCII) isolated from pea thylakoids. The pigment requirement for the reconstitution is highly specific for the pigments found in native LHCII: Chl a and b as well as at least two out of three xanthophylls are necessary. Varying the Chl a:Chl b ratios in the reconstitution mixtures changes the yields of complex formed but not the Chl a:Chl b ratio in the complex. We conclude that LHCP-pigment assembly in vitro is highly specific and that the complexes formed are structurally similar to LHCII. The N-terminal region of the protein can be varied without affecting complex formation and therefore does not seem to be involved in pigment binding. Dedicated to Professor Hans Mohr on the occasion of his 60th birthday  相似文献   

8.
We have investigated the specificity of a chloroplast soluble processing enzyme that cleaves the precursor of the major light-harvesting chlorophyll a/b binding protein (LHCP). The precursor of LHCP (preLHCP) was synthesized in Escherichia coli and recovered from inclusion-like bodies. It was found to be a substrate for proteolytic cleavage by the soluble enzyme in an organelle-free reaction, yielding a 25 kilodalton peptide. This peptide co-migrated during sodium dodecyl sulfate-polyacrylamide gel electrophoresis with the smaller of the forms (25 and 26 kilodalton) produced when either the E. coli-synthesized precursor, or preLHCP made in a reticulocyte lysate, was imported into chloroplasts. N-Terminal sequence analysis of the E. coli-generated precursor showed that it lacked an N-terminal methionine. N-Terminal sequencing of the 25 kilodalton peptide produced in the organelle-free reaction indicated that processing occurred between residues 40 and 41, removing a basic domain (RKTAAK) thought to be at the N-terminus of all LHCP molecules of type I associated with photosystem II. To determine if the soluble enzyme involved also cleaves other precursor polypeptides, or is specific to preLHCP, it was partially purified, and the precursors for Rubisco small subunit, plastocyanin, Rubisco activase, heat shock protein 21, and acyl carrier protein were tested as substrates. All of these precursors were cleaved by the same chromatographic peak of activity that processes preLHCP in the organelle-free reaction.  相似文献   

9.
The precursor for a Lemna light-harvesting chlorophyll a/b protein (pLHCP) has been synthesized in vitro from a single member of the nuclear LHCP multigene family. We report the sequence of this gene. When incubated with Lemna chloroplasts, the pLHCP is imported and processed into several polypeptides, and the mature form is assembled into the light-harvesting complex of photosystem II (LHC II). The accumulation of the processed LHCP is enhanced by the addition to the chloroplasts of a precursor and a co-factor for chlorophyll biosynthesis. Using a model for the arrangement of the mature polypeptide in the thylakoid membrane as a guide, we have created mutations that lie within the mature coding region. We have studied the processing, the integration into thylakoid membranes, and the assembly into light-harvesting complexes of six of these deletions. Four different mutant LHCPs are found as processed proteins in the thylakoid membrane, but only one appears to have an orientation in the membrane that is similar to that of the wild type. No mutant LHCP appears in LHC II. The other two mutant LHCPs cannot be detected within the chloroplasts. We conclude that stable complex formation is not required for the processing and insertion of altered LHCPs into the thylakoid membrane. We discuss the results in light of our model.  相似文献   

10.
11.
The light-harvesting chlorophyll a/b protein (LHCP) is an approximately 25,000-D thylakoid membrane protein. LHCP is synthesized in the cytosol as a precursor and must translocate across the chloroplast envelope before becoming integrally associated with the thylakoid bilayer. Previous studies demonstrated that imported LHCP traverses the chloroplast stroma as a soluble intermediate before thylakoid insertion. Here, examination of this intermediate revealed that it is a stable, discrete approximately 120,000-D species and thus either an LHCP oligomer or a complex with another component. In vitro-synthesized LHCP can be converted to a similar form by incubation with a stromal extract. The stromal component responsible for this conversion is proteinaceous as evidenced by its inactivation by heat, protease, and NEM. Furthermore, the conversion activity coelutes from a gel filtration column with a stromal protein factor(s) previously shown to be necessary for LHCP integration into isolated thylakoids. Conversion of LHCP to the 120-kD form prevents aggregation and maintains its competence for thylakoid insertion. However, conversion to this form is apparently not sufficient for membrane insertion because the isolated 120-kD LHCP still requires stroma to complete the integration process. This suggests a need for at least one more stroma-mediated reaction. Our results explain how a hydrophobic thylakoid protein remains soluble as it traverses the aqueous stroma. Moreover, they describe in part the function of the stromal requirement for insertion into the thylakoid membrane.  相似文献   

12.
13.
We have investigated whether the precursors for the light-harvesting chlorophyll a/b binding proteins (LHCP) of photosystems II and I (PSII and PSI) are cleavable substrates in an organelle-free reaction, and have compared the products with those obtained during in vitro import into chloroplasts. Representatives from the tomato (Lycopersicon esculentum) LHCP family were analyzed. The precursor for LHCP type I of PSII (pLHCPII-1), encoded by the tomato gene Cab3C, was cleaved at only one site in the organelle-free assay, but two sites were recognized during import, analogous to our earlier results with a wheat precursor for LHCPII-1. The relative abundance of the two peptides produced was investigated during import of pLHCPII-1 into chloroplasts isolated from plants greened for 2 or 24 hours. In contrast to pLHCPII-1, the precursors for LHCP type II and III of PSI were cleaved in both assays, giving rise to a single peptide. The precursor for LHCP type I of PSI, encoded by gene Cab6A, yielded two peptides of 23.5 and 21.5 kilodaltons during import, whereas in the organelle-free assay only the 23.5 kilodalton peptide was found. N-terminal sequence analysis of this radiolabeled peptide has tentatively identified the site cleaved in the organelle-free assay between met40 and ser41 of the precursor.  相似文献   

14.
Proteins synthesized as soluble precursors in the cytoplasm of eukaryotic cells often cross organellar membrane barriers and then insert into lipid bilayers. One such polypeptide, the light-harvesting chlorophyll a/b-binding protein (LHCP), must also associate with pigment molecules and be assembled into the photosystem II light-harvesting complex in the chloroplast thylakoid membrane. A study of the import of mutant LHCPs into isolated chloroplasts has shown that a putative alpha-helical membrane-spanning domain near the carboxy terminus (helix 3) is essential for the stable insertion of LHCP in the thylakoid. Protease digestion experiments are consistent with the carboxy terminus of the protein being in the lumen. This report also shows that helix 3, when fused to a soluble protein, can target it to the thylakoids of isolated, intact chloroplasts. Although helix 3 is required for the insertion of LHCP and mutant derivatives into the thylakoid, the full insertion of helix 3 itself requires additionally the presence of other regions of LHCP. Thus, LHCP targeting and integration into thylakoid membranes requires a complex interaction involving a number of different domains of the LHCP polypeptide.  相似文献   

15.
The activity of the protein kinase that phosphorylates the light-harvesting chlorophyll-protein of Photosystem II (LHCP) has been investigated in intact chloroplasts isolated from maize mesophyll cells. Measurements of 32P incorporation into LHCP, ATP concentration, ATPADP ratio, ΔpH, chlorophyll fluorescence and oxygen evolution were made in the presence of different metabolic substrates. Without added substrate a high level of LHCP phosphorylation was observed which was suppressed by addition of oxaloacetate or phosphoglycerate but stimulated by pyruvate. Whereas no correlation was observed between LHCP phosphorylation and adenylate status, a clear effect of redox state on protein kinase activity was observed. A correlation between a highly reduced electron-transfer chain (produced under conditions which favour cyclic electron flow) and the maximum level of protein phosphorylation was observed. The regulation of kinase activity and its dependence on electron transfer and carbon assimilation are discussed.  相似文献   

16.
The polypeptide composition and spectral properties of isolated light-harvesting chlorophyll ab-protein complexes from intact and trypsin-treated thylakoid membranes of Hordeum vulgare and Vicia faba are compared. The LHCP complexes consist of four distinct polypeptides with molecular weights between 21 000 and 25 000 occurring in equal relative amounts in the whole polypeptide spectra of thylakoid membranes. It is shown indirectly that the two major polypeptides very probably belong to different chlorophyll-proteins. The loss of a small segment from both polypeptides during trypsin digestion of thylakoids does not substantially alter the spectral properties and cation-mediated aggregation of isolated LHCP complexes.  相似文献   

17.
Early events in the import/assembly pathway of an integral thylakoid protein   总被引:22,自引:0,他引:22  
The light-harvesting chlorophyll a/b protein (LHCP) is nuclear-encoded and must traverse the chloroplast envelope before becoming integrally assembled into thylakoid membranes. Previous studies implicated a soluble stromal form of LHCP in the assembly pathway, but relied upon assays in which the thylakoid insertion step was intentionally impaired [Cline, K., Fulsom, D. R. and Viitanen, P. V. (1989) J. Biol. Chem. 264, 14225-14232]. Here we have developed a rapid-stopping procedure, based upon the use of HgCl2, to analyze early events of the uninhibited assembly process. With this approach, we have found that proper assembly of LHCP into thylakoids lags considerably behind trans-envelope translocation. During the first few minutes of import, two distinct populations of mature-size LHCP accumulate within the chloroplast. One is the aforementioned soluble stromal intermediate, while the other is a partially (or improperly) assembled thylakoid species. Consistent with precursor/product relationships, both species reach peak levels at a time when virtually none of the imported molecules are correctly assembled. These results confirm and extend our previous interpretation, that upon import, preLHCP is rapidly processed to its mature form, giving rise to a soluble stromal intermediate. They further suggest that the stromal intermediate initially inserts into the thylakoid bilayer in a partially assembled form, which eventually becomes properly assembled into the light-harvesting complex.  相似文献   

18.
When the in vitro synthesized precursor of a light-harvesting chlorophyll a/b binding protein (LHCP) from Lemna gibba is imported into barley etiochloroplasts, it is processed to a single form. Both the processed form and the precursor are found in the thylakoid membranes, assembled into the light-harvesting complex of photosystem II. Neither form can be detected in the stromal fraction. The relative amounts of precursor and processed forms observed in the thylakoids are dependent on the developmental stage of the plastids used for uptake. The precursor as well as the processed form can also be detected in thylakoids of greening maize plastids used in similar uptake experiments. This detection of a precursor in the thylakoids, which has not been previously reported, could be a result of using rapidly developing plastids and/or using an heterologous system. Our results demonstrate that the extent of processing of LHCP precursor is not a prerequisite for its inclusion in the complex. They are also consistent with the possibility that the processing step can occur after insertion of the protein into the thylakoid membrane.  相似文献   

19.
A barley gene encoding the major light-harvesting chlorophyll a/b-binding protein (LHCP) has been sequenced and then expressed in vitro to produce a labelled LHCP precursor (pLHCP). When barley etiochloroplasts are incubated with this pLHCP, both labelled pLHCP and LHCP are found as integral thylakoid membrane proteins, incorporated into the major pigment-protein complex of the thylakoids. The presence of pLHCP in thylakoids and its proportion with respect to labelled LHCP depends on the developmental stage of the plastids used to study the import of pLHCP. The reduced amounts of chlorophyll in a chlorophyll b-less mutant of barley does not affect the proportion of pLHCP to LHCP found in the thylakoids when import of pLHCP into plastids isolated from the mutant plants is examined. Therefore, insufficient chlorophyll during early stages of plastid development does not seem to be responsible for their relative inefficiency in assembling pLHCP. A chase of labelled pLHCP that has been incorporated into the thylakoids of intact plastids, by further incubation of the plastids with unlabelled pLHCP, reveals that the pLHCP incorporated into the thylakoids can be processed to its mature size. Our observations strongly support the hypothesis that after import into plastids, pLHCP is inserted into thylakoids and then processed to its mature size under in vivo conditions.  相似文献   

20.
In thylakoid membranes isolated from green plants of parsley, pea, and barley, the light-harvesting chlorophyll a/b protein complex (LHCP, mol. weight: 25,000), is a major constituent. Poly(A)RNA isolated from these species was translated in a wheat germ, cell-free system. The in vitro translation products were treated with antibodies raised against the LHCP. This treatment resulted in the precipitation of a precursor protein (mol. weight: 29,000). Poly(A)RNA was also prepared from a cell culture ofPetroselinum that does not develop chloroplasts upon illumination. This poly(A)RNA is capable of stimulating amino acid incorporation in the in vitro translation system, however, it does not direct the synthesis of LHCP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号