首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphatidylinositol-3,5-bisphosphate [PtdIns(3,5)P2] regulates several vacuolar functions, including acidification, morphology, and membrane traffic. The lipid kinase Fab1 converts phosphatidylinositol-3-phosphate [PtdIns(3)P] to PtdIns(3,5)P2. PtdIns(3,5)P2 levels are controlled by the adaptor-like protein Vac14 and the Fig4 PtdIns(3,5)P2-specific 5-phosphatase. Interestingly, Vac14 and Fig4 serve a dual function: they are both implicated in the synthesis and turnover of PtdIns(3,5)P2 by an unknown mechanism. We now show that Fab1, through its chaperonin-like domain, binds to Vac14 and Fig4 and forms a vacuole-associated signaling complex. The Fab1 complex is tethered to the vacuole via an interaction between the FYVE domain in Fab1 and PtdIns(3)P on the vacuole. Moreover, Vac14 and Fig4 bind to each other directly and are mutually dependent for interaction with the Fab1 kinase. Our observations identify a protein complex that incorporates the antagonizing Fab1 lipid kinase and Fig4 lipid phosphatase into a common functional unit. We propose a model explaining the dual roles of Vac14 and Fig4 in the synthesis and turnover of PtdIns(3,5)P2.  相似文献   

2.
Phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) helps control various endolysosome functions including organelle morphology, membrane recycling, and ion transport. Further highlighting its importance, PtdIns(3,5)P2 misregulation leads to the development of neurodegenerative diseases like Charcot-Marie-Tooth disease. The Fab1/PIKfyve lipid kinase phosphorylates PtdIns(3)P into PtdIns(3,5)P2 whereas the Fig4/Sac3 lipid phosphatase antagonizes this reaction. Interestingly, Fab1 and Fig4 form a common protein complex that coordinates synthesis and degradation of PtdIns(3,5)P2 by a poorly understood process. Assembly of the Fab1 complex requires Vac14/ArPIKfyve, a multimeric scaffolding adaptor protein that coordinates synthesis and turnover of PtdIns(3,5)P2. However, the properties and function of Vac14 multimerization remain mostly uncharacterized. Here we identify several conserved C-terminal motifs on Vac14 required for self-interaction and provide evidence that Vac14 likely forms a dimer. We also show that monomeric Vac14 mutants do not support interaction with Fab1 or Fig4, suggesting that Vac14 multimerization is likely the first molecular event in the assembly of the Fab1 complex. Finally, we show that cells expressing monomeric Vac14 mutants have enlarged vacuoles that do not fragment after hyperosmotic shock, which indicates that PtdIns(3,5)P2 levels are greatly abated. Therefore, our observations support an essential role for the Vac14 homocomplex in controlling PtdIns(3,5)P2 levels.  相似文献   

3.
The lipid kinase Fab1 governs yeast vacuole homeostasis by generating PtdIns(3,5)P(2) on the vacuolar membrane. Recruitment of effector proteins by the phospholipid ensures precise regulation of vacuole morphology and function. Cells lacking the effector Atg18p have enlarged vacuoles and high PtdIns(3,5)P(2) levels. Although Atg18 colocalizes with Fab1p, it likely does not directly interact with Fab1p, as deletion of either kinase activator-VAC7 or VAC14-is epistatic to atg18Delta: atg18Deltavac7Delta cells have no detectable PtdIns(3,5)P(2). Moreover, a 2xAtg18 (tandem fusion) construct localizes to the vacuole membrane in the absence of PtdIns(3,5)P(2), but requires Vac7p for recruitment. Like the endosomal PtdIns(3)P effector EEA1, Atg18 membrane binding may require a protein component. When the lipid requirement is bypassed by fusing Atg18 to ALP, a vacuolar transmembrane protein, vac14Delta vacuoles regain normal morphology. Rescue is independent of PtdIns(3,5)P(2), as mutation of the phospholipid-binding site in Atg18 does not prevent vacuole fission and properly regulates Fab1p activity. Finally, the vacuole-specific type-V myosin adapter Vac17p interacts with Atg18p, perhaps mediating cytoskeletal attachment during retrograde transport. Atg18p is likely a PtdIns(3,5)P(2)"sensor," acting as an effector to remodel membranes as well as regulating its synthesis via feedback that might involve Vac7p.  相似文献   

4.
Perturbations in phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2)-synthesizing enzymes result in enlarged endocytic organelles from yeast to humans, indicating evolutionarily conserved function of PtdIns(3,5)P2 in endosome-related events. This is reinforced by the structural and functional homology of yeast Vac14 and human Vac14 (ArPIKfyve), which activate yeast and mammalian PtdIns(3,5)P2-producing enzymes, Fab1 and PIKfyve, respectively. In yeast, PtdIns(3,5)P2-specific phosphatase, Fig4, in association with Vac14, turns over PtdIns(3,5)P2, but whether such a mechanism operates in mammalian cells and what the identity of mammalian Fig4 may be are unknown. Here we have identified and characterized Sac3, a Sac domain phosphatase, as the Fig4 mammalian counterpart. Endogenous Sac3, a widespread 97-kDa protein, formed a stable ternary complex with ArPIKfyve and PIKfyve. Concordantly, Sac3 cofractionated and colocalized with ArPIKfyve and PIKfyve. The intrinsic Sac3(WT) phosphatase activity preferably hydrolyzed PtdIns(3,5)P2 in vitro, although the other D5-phosphorylated polyphosphoinositides were also substrates. Ablation of endogenous Sac3 by short interfering RNAs elevated PtdIns(3,5)P2 in (32)P-labeled HEK293 cells. Ectopically expressed Sac3(WT) in COS cells colocalized with and dilated EEA1-positive endosomes, consistent with the PtdIns(3,5)P2 requirement in early endosome dynamics. In vitro reconstitution of carrier vesicle formation from donor early endosomes revealed a gain of function upon Sac3 loss, whereas PIKfyve or ArPIKfyve protein depletion produced a loss of function. These data demonstrate a coupling between the machinery for PtdIns(3,5)P2 synthesis and turnover achieved through a physical assembly of PIKfyve, ArPIKfyve, and Sac3. We suggest that the tight regulation in PtdIns(3,5)P2 homeostasis is mechanistically linked to early endosome dynamics in the course of cargo transport.  相似文献   

5.
Phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P(2)) is widespread in eukaryotic cells. In Saccharomyces cerevisiae, PtdIns(3,5)P(2) synthesis is catalyzed by the PtdIns3P 5-kinase Fab1p, and loss of this activity results in vacuolar morphological defects, indicating that PtdIns(3,5)P(2) is essential for vacuole homeostasis. We have therefore suggested that all Fab1p homologues may be PtdIns3P 5-kinases involved in membrane trafficking. It is unclear which phosphatidylinositol phosphate kinases (PIPkins) are responsible for PtdIns(3,5)P(2) synthesis in higher eukaryotes. To clarify how PtdIns(3,5)P(2) is synthesized in mammalian and other cells, we determined whether yeast and mammalian Fab1p homologues or mammalian Type I PIPkins (PtdIns4P 5-kinases) make PtdIns(3,5)P(2) in vivo. The recently cloned murine (p235) and Schizosaccharomyces pombe FAB1 homologues both restored basal PtdIns(3,5)P(2) synthesis in Deltafab1 cells and made PtdIns(3,5)P(2) in vitro. Only p235 corrected the growth and vacuolar defects of fab1 S. cerevisiae. A mammalian Type I PIPkin supported no PtdIns(3,5)P(2) synthesis. Thus, FAB1 and its homologues constitute a distinct class of Type III PIPkins dedicated to PtdIns(3,5)P(2) synthesis. The differential abilities of p235 and of SpFab1p to complement the phenotypic defects of Deltafab1 cells suggests that interaction(s) with other protein factors may be important for spatial and/or temporal regulation of PtdIns(3,5)P(2) synthesis. These results also suggest that p235 may regulate a step in membrane trafficking in mammalian cells that is analogous to its function in yeast.  相似文献   

6.
The phosphorylated derivatives of phosphatidylinositol (PtdIns), known as the polyphosphoinositides (PIs), represent key membrane-localized signals in the regulation of fundamental cell processes, such as membrane traffic and cytoskeleton remodelling. The reversible production of the PIs is catalyzed through the combined activities of a number of specific phosphoinositide phosphatases and kinases that can either act separately or in concert on all the possible combinations of the 3, 4, and 5 positions of the inositol ring. So far, seven distinct PI species have been identified in mammalian cells and named according to their site(s) of phosphorylation: PtdIns 3-phosphate (PI3P); PtdIns 4-phosphate (PI4P); PtdIns 5-phosphate (PI5P); PtdIns 3,4-bisphosphate (PI3,4P2); PtdIns 4,5-bisphosphate (PI4,5P2); PtdIns 3,5-bisphosphate (PI3,5P2); and PtdIns 3,4,5-trisphosphate (PI3,4,5P3). Over the last decade, accumulating evidence has indicated that the different PIs serve not only as intermediates in the synthesis of the higher phosphorylated phosphoinositides, but also as regulators of different protein targets in their own right. These regulatory actions are mediated through the direct binding of their protein targets. In this way, the PIs can control the subcellular localization and activation of their various effectors, and thus execute a variety of cellular responses. To exert these functions, the metabolism of the PIs has to be finely regulated both in time and space, and this is achieved by controlling the subcellular distribution, regulation, and activation states of the enzymes involved in their synthesis and removal (kinases and phosphatases). These exist in many different isoforms, each of which appears to have a distinctive intracellular localization and regulation. As a consequence of this subcompartimentalized PI metabolism, a sort of "PI-fingerprint" of each cell membrane compartment is generated. When combined with the targeted recruitment of their protein effectors and the different intracellular distributions of other lipids and regulatory proteins (such as small GTPases), these factors can maintain and determine the identity of the cell organelles despite the extensive membrane flux []. Here, we provide an overview of the regulation and roles of different phosphoinositide kinases and phosphatases and their lipid products at the Golgi complex.  相似文献   

7.
Joining an antagonistic phosphoinositide (PtdInsP) kinase and phosphatase into a single protein complex may regulate rapid and local PtdInsP changes. This may be important for processes such as membrane fission that require a specific PtdInsP and that are innately local and rapid. Such a complex could couple vesicle formation, with erasing of the identity of the donor organelle from the vesicle prior to its fusion with target organelles, thus preventing organelle identity intermixing. Coordinating signals are postulated to switch the relative activities of the kinase and phosphatase in a spatio‐temporal manner that matches membrane fission events. The discovery of two such complexes supports this hypothesis. One regulates the interconversion of phosphatidylinositol and PtdIns(3)P by joining the Vps34 PtdIns 3‐kinase and the myotubularin 3‐phosphatases. The other regulates the interconversion between PtdIns(3)P and PtdIns(3,5)P2 through the Fab1/PIKfyve kinase and the Fig4/mFig4 phosphatase. These lipids are essential components of the endosomal identity code.  相似文献   

8.
The Saccharomyces cerevisiae FAB1 gene encodes a 257-kD protein that contains a cysteine-rich RING-FYVE domain at its NH2-terminus and a kinase domain at its COOH terminus. Based on its sequence, Fab1p was initially proposed to function as a phosphatidylinositol 4-phosphate (PtdIns(4)P) 5-kinase (Yamamoto et al., 1995). Additional sequence analysis of the Fab1p kinase domain, reveals that Fab1p defines a subfamily of putative PtdInsP kinases that is distinct from the kinases that synthesize PtdIns(4,5)P2. Consistent with this, we find that unlike wild-type cells, fab1Δ, fab1tsf, and fab1 kinase domain point mutants lack detectable levels of PtdIns(3,5)P2, a phosphoinositide recently identified both in yeast and mammalian cells. PtdIns(4,5)P2 synthesis, on the other hand, is only moderately affected even in fab1Δ mutants. The presence of PtdIns(3)P in fab1 mutants, combined with previous data, indicate that PtdIns(3,5)P2 synthesis is a two step process, requiring the production of PtdIns(3)P by the Vps34p PtdIns 3-kinase and the subsequent Fab1p- dependent phosphorylation of PtdIns(3)P yielding PtdIns(3,5)P2. Although Vps34p-mediated synthesis of PtdIns(3)P is required for the proper sorting of hydrolases from the Golgi to the vacuole, the production of PtdIns(3,5)P2 by Fab1p does not directly affect Golgi to vacuole trafficking, suggesting that PtdIns(3,5)P2 has a distinct function. The major phenotypes resulting from Fab1p kinase inactivation include temperature-sensitive growth, vacuolar acidification defects, and dramatic increases in vacuolar size. Based on our studies, we hypothesize that whereas Vps34p is essential for anterograde trafficking of membrane and protein cargoes to the vacuole, Fab1p may play an important compensatory role in the recycling/turnover of membranes deposited at the vacuole. Interestingly, deletion of VAC7 also results in an enlarged vacuole morphology and has no detectable PtdIns(3,5)P2, suggesting that Vac7p functions as an upstream regulator, perhaps in a complex with Fab1p. We propose that Fab1p and Vac7p are components of a signal transduction pathway which functions to regulate the efflux or turnover of vacuolar membranes through the regulated production of PtdIns(3,5)P2.  相似文献   

9.
The Saccharomyces cerevisiae FAB1 gene encodes the sole phosphatidylinositol 3-phosphate [PtdIns(3)P] 5-kinase responsible for synthesis of the polyphosphoinositide PtdIns(3,5)P(2). VAC7 encodes a 128-kDa transmembrane protein that localizes to vacuolar membranes. Both vac7 and fab1 null mutants have dramatically enlarged vacuoles and cannot grow at elevated temperatures. Additionally, vac7Delta mutants have nearly undetectable levels of PtdIns(3,5)P(2), suggesting that Vac7 functions to regulate Fab1 kinase activity. To test this hypothesis, we isolated a fab1 mutant allele that bypasses the requirement for Vac7 in PtdIns(3,5)P(2) production. Expression of this fab1 allele in vac7Delta mutant cells suppresses the temperature sensitivity, vacuolar morphology, and PtdIns(3,5)P(2) defects normally exhibited by vac7Delta mutants. We also identified a mutant allele of FIG4, whose gene product contains a Sac1 polyphosphoinositide phosphatase domain, which suppresses vac7Delta mutant phenotypes. Deletion of FIG4 in vac7Delta mutant cells suppresses the temperature sensitivity and vacuolar morphology defects, and dramatically restores PtdIns(3,5)P(2) levels. These results suggest that generation of PtdIns(3,5)P(2) by the Fab1 lipid kinase is regulated by Vac7, whereas turnover of PtdIns(3,5)P(2) is mediated in part by the Sac1 polyphosphoinositide phosphatase family member Fig4.  相似文献   

10.
PIKfyve is an essential mammalian lipid kinase with pleiotropic cellular functions whose genetic knockout in mice leads to preimplantation lethality. Despite several reports for PIKfyve-catalyzed synthesis of phosphatidylinositol 5-phosphate (PtdIns5P) along with phosphatidylinositol-3,5-biphosphate [PtdIns(3,5)P(2)] in vitro and in vivo, the role of the PIKfyve pathway in intracellular PtdIns5P production remains underappreciated and the function of the PIKfyve-synthesized PtdIns5P pool poorly characterized. Hence, the recently discovered potent PIKfyve-selective inhibitor, the YM201636 compound, has been solely tested for inhibiting PtdIns(3,5)P(2) synthesis. Here, we have compared the in vitro and in vivo inhibitory potency of YM201636 toward PtdIns5P and PtdIns(3,5)P(2). Unexpectedly, we observed that at low doses (10-25 nM), YM201636 inhibited preferentially PtdIns5P rather than PtdIns(3,5)P(2) production in vitro, whereas at higher doses, the two products were similarly inhibited. In cellular contexts, YM201636 at 160 nM inhibited PtdIns5P synthesis twice more effectively compared with PtdIns(3,5)P(2) synthesis. In 3T3L1 adipocytes, human embryonic kidney 293 and Chinese hamster ovary (CHO-T) cells, levels of PtdIns5P dropped by 62-71% of the corresponding untreated controls, whereas those of PtdIns(3,5)P(2) fell by only 28-46%. The preferential inhibition of PtdIns5P versus PtdIns(3,5)P(2) at low doses of YM201636 was explored to probe contributions of the PIKfyve-catalyzed PtdIns5P pool to insulin-induced actin stress fiber disassembly in CHO-T cells, GLUT4 translocation in 3T3L1 adipocytes, and induction of aberrant cellular vacuolation in these or other cell types. The results provide the first experimental evidence that the principal pathway for PtdIns5P intracellular production is through PIKfyve and that insulin effect on actin stress fiber disassembly is mediated entirely by the PIKfyve-produced PtdIns5P pool.  相似文献   

11.
Phosphatidylinositol 3-phosphate, PtdIns3P, is a phosphoinositide which is implicated in regulating membrane trafficking in both mammalian and yeast cells. It also serves as a precursor for the synthesis of phosphatidylinositol 3,5-bisphosphate, PtdIns3,5P2, a phosphoinositide, the exact functions of which remain unknown. In this report, we show that these two phosphoinositides are constitutive lipid components of the ciliate Tetrahymena. Using HPLC analysis, PtdIns3P and PtdIns3,5P2 were found to comprise 16% and 30-40% of their relevant phosphoinositide pools, respectively. Treatment of Tetrahymena cells with wortmannin (0.1-10 microM) resulted in the depletion of PtdIns3P and PtdIns3,5P2 without any effect on D-4 phosphoinositides. Wortmannin was further used for the investigation of D-3 phosphoinositide involvement in the regulation of lysosomal vesicular trafficking. Incubation of Tetrahymena cells with wortmannin resulted in enhanced secretion of two different lysosomal enzymes without any change in their total activities. Experiments performed with a T. thermophila secretion mutant strain verified that the wortmannin-induced secretion is specific and it is not due to a diversion of lysosomal enzymes to other secretory pathways. Moreover, experiments performed with a phagocytosis-deficient T. thermophila strain showed that a substantial fraction of wortmannin-induced secretion was dependent on the presence of functional phagosomes/phagolysosomes.  相似文献   

12.
Endosomal phosphoinositides and human diseases   总被引:1,自引:0,他引:1  
Phosphoinositides (PIs) are lipid second messengers implicated in signal transduction and membrane trafficking. Seven distinct PIs can be synthesized by phosphorylation of the inositol ring of phosphatidylinositol (PtdIns), and their metabolism is accurately regulated by PI kinases and phosphatases. Two of the PIs, PtdIns3 P and PtdIns(3,5) P 2, are present on intracellular endosomal compartments, and several studies suggest that they have a role in membrane remodeling and trafficking. We refer to them as 'endosomal PIs'. An increasing number of human genetic diseases including myopathy and neuropathies are associated to mutations in enzymes regulating the turnover of these endosomal PIs. The PtdIns3 P and PtdIns(3,5) P 2 3-phosphatase myotubularin gene is mutated in X-linked centronuclear myopathy, whereas its homologs MTMR2 and MTMR13 and the PtdIns(3,5) P 2 5-phosphatase SAC3/FIG4 are implicated in Charcot–Marie–Tooth peripheral neuropathies. Mutations in the gene encoding the PtdIns3 P 5-kinase PIP5K3/PIKfyve have been found in patients affected with François–Neetens fleck corneal dystrophy. This review presents the roles of the endosomal PIs and their regulators and proposes defects of membrane remodeling as a common pathological mechanism for the corresponding diseases.  相似文献   

13.
Movin' on up: the role of PtdIns(4,5)P(2) in cell migration   总被引:7,自引:0,他引:7  
Cell migration requires the coordination of many biochemical events, including cell-matrix contact turnover and cytoskeletal restructuring. Recent advances further implicate phosphatidylinositol(4,5)-bisphosphate [PtdIns(4,5)P(2)] in the control of these events. Many proteins that are crucial to the assembly of the migration machinery are regulated by PtdIns(4,5)P(2). Coordinated synthesis of PtdIns(4,5)P(2) at these sites is dependent on the precise targeting of the type I phosphatidylinositol phosphate kinases (PIPKs). Two PIPKI isoforms target to, and generate, PtdIns(4,5)P(2) at membrane ruffles and focal adhesions during cell migration. Here, we discuss our current understanding of PtdIns(4,5)P(2) in the regulation of cell responses to migratory stimuli and how the migrating cell controls PtdIns(4,5)P(2) availability.  相似文献   

14.
PtdIns(3,5)P2 was discovered about a decade ago and much of the machinery that makes, degrades and senses it has been uncovered. Despite this, we still lack a complete understanding of how the pieces fit together but some patterns are beginning to emerge. Molecular functions for PtdIns(3,5)P2 are also elusive, but the identification of effectors offers a way into some of these processes. An examination of the defects associated with loss of synthesis of PtdIns(3,5)P2 in lower and higher eukaryotes begins to suggest a unifying theme; this lipid regulates membrane retrieval via retrograde trafficking from distal compartments to organelles that are more proximal in the endocytic/lysosomal system. Another unifying theme is stress signalling to organelles, possibly both to change their morphology in response to external insults and to maintain the lumenal pH or membrane potential of organelles. The next few years seem likely to uncover details of the molecular mechanisms underlying the biology of this fascinating lipid. This review also highlights some areas where further research is needed.  相似文献   

15.
Phosphoinositides are lipid second messengers that are essential for many cellular processes, including signal transduction and cell compartmentalization. Among them, phosphatidylinositol 5-phosphate (PtdIns5P) is the least characterized, although several proteins involved in its regulation are implicated in human diseases. We studied the distribution of 32 PtdIns5P-metabolizing proteins in 39 eukaryotic genomes. Phylogenetic profiles identify four groups of co-evolving proteins, confirming known protein complexes and revealing new ones. The complexes comprise a phosphatase, a kinase and a regulator; this indicates that physical interactions between the three partners are necessary for the acute spatial regulation of PtdIns5P turnover. By examining PtdIns5P metabolism in this new perspective, we propose a role for PtdIns5P in membrane trafficking from late endosomal compartments to the plasma membrane.  相似文献   

16.
Phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2), made by Fab1p, is essential for vesicle recycling from vacuole/lysosomal compartments and for protein sorting into multivesicular bodies. To isolate PtdIns(3,5)P2 effectors, we identified Saccharomyces cerevisiae mutants that display fab1delta-like vacuole enlargement, one of which lacked the SVP1/YFR021w/ATG18 gene. Expressed Svp1p displays PtdIns(3,5)P2 binding of exquisite specificity, GFP-Svp1p localises to the vacuole membrane in a Fab1p-dependent manner, and svp1delta cells fail to recycle a marker protein from the vacuole to the Golgi. Cells lacking Svp1p accumulate abnormally large amounts of PtdIns(3,5)P2. These observations identify Svp1p as a PtdIns(3,5)P2 effector required for PtdIns(3,5)P2-dependent membrane recycling from the vacuole. Other Svp1p-related proteins, including human and Drosophila homologues, bind PtdIns(3,5)P2 similarly. Svp1p and related proteins almost certainly fold as beta-propellers, and the PtdIns(3,5)P2-binding site is on the beta-propeller. It is likely that many of the Svp1p-related proteins that are ubiquitous throughout the eukaryotes are PtdIns(3,5)P2 effectors. Svp1p is not involved in the contributions of FAB1/PtdIns(3,5)P2 to MVB sorting or to vacuole acidification and so additional PtdIns(3,5)P2 effectors must exist.  相似文献   

17.
Ins and Ins phospholipids are present in and are made by most Archaea and all eukaryotes. Relatively few bacteria possess Ins phospholipids: and only one major grouping, the Actinobacteria, is known to have evolved multiple functions for Ins derivatives. The Ins phospholipids of all organisms, whether they have diradylglycerol or ceramide backbones, seem to use the same Ins1P headgroup stereochemistry, so they are probably made by evolutionarily conserved pathways. It seems likely that an early member of the Archaea made the first phospholipid with an Ins1P headgroup -maybe three billionyears ago – and that amuchlater archaeal descendentwas the ancestral contributor that brought these molecules into the common ancestor of all eukaryotes – maybe two billionyears ago (Michell, 2007, 2008). It will only be possible to infer the likely details of these processes when we have learned much more about the Ins lipid biochemistry of modern archaeons. All eukaryotes make substantial amounts of PtdIns, both as a ‘bulk’ membrane phospholipid and as the precursor of seven phosphorylated derivatives of PtdIns (the polyphosphoinositides; PPIn) and of the ‘GPI anchors’ of cell surface ectoproteins. PtdIns(4,5)P2 – with its many functions – and its precursor PtdIns4P are found in all in eukaryotes. So are PtdIns3P and PtdIns(3,5)P2, which have ubiquitous roles in the regulation of membrane trafficking events. However, synthesis of and signalling by PtdIns(3,4,5) P 3 appears to be confined to a later-evolved group of eukaryotes.  相似文献   

18.
Inositol lipids play key roles in many fundamental cellular processes that include growth, cell survival, motility, and membrane trafficking. Recent studies on the PTEN and Myotubularin proteins have underscored the importance of inositol lipid 3-phosphatases in cell function. Inactivating mutations in the genes encoding PTEN and Myotubularin are key steps in the progression of some cancers and in the onset of X-linked myotubular myopathy, respectively. Myotubularin-related protein 3 (MTMR3) shows extensive homology to Myotubularin, including the catalytic domain, but additionally possesses a C-terminal extension that includes a FYVE domain. We show that MTMR3 is an inositol lipid 3-phosphatase, with a so-far-unique substrate specificity. It is able to hydrolyze PtdIns3P and PtdIns3,5P2, both in vitro and when heterologously expressed in S. cerevisiae, and to thereby provide the first clearly defined route for the cellular production of PtdIns5P. Overexpression of a catalytically dead MTMR3 (C413S) in mammalian cells induces a striking formation of vacuolar compartments that enclose membranous structures that are highly concentrated in mutant proteins.  相似文献   

19.
Phosphatidylinositol 3,5-bisphosphate (PtdIns[3,5]P(2)) was first identified as a non-abundant phospholipid whose levels increase in response to osmotic stress. In yeast, Fab1p catalyzes formation of PtdIns(3,5)P(2) via phosphorylation of PtdIns(3)P. We have identified Vac14p, a novel vacuolar protein that regulates PtdIns(3,5)P(2) synthesis by modulating Fab1p activity in both the absence and presence of osmotic stress. We find that PtdIns(3)P levels are also elevated in response to osmotic stress, yet, only the elevation of PtdIns(3,5)P(2) levels are regulated by Vac14p. Under basal conditions the levels of PtdIns(3,5)P(2) are 18-28-fold lower than the levels of PtdIns(3)P, PtdIns(4)P, and PtdIns(4,5)P(2). After a 10 min exposure to hyperosmotic stress the levels of PtdIns(3,5)P(2) rise 20-fold, bringing it to a cellular concentration that is similar to the other phosphoinositides. This suggests that PtdIns(3,5)P(2) plays a major role in osmotic stress, perhaps via regulation of vacuolar volume. In fact, during hyperosmotic stress the vacuole morphology of wild-type cells changes dramatically, to smaller, more highly fragmented vacuoles, whereas mutants unable to synthesize PtdIns(3,5)P(2) continue to maintain a single large vacuole. These findings demonstrate that Vac14p regulates the levels of PtdIns(3,5)P(2) and provide insight into why PtdIns(3,5)P(2) levels rise in response to osmotic stress.  相似文献   

20.
BACKGROUND: The PtdIns3P 5-kinase Fab1 makes PtdIns(3,5)P(2), a phosphoinositide essential for retrograde trafficking between the vacuole/lysosome and the late endosome and also for trafficking of some proteins into the vacuole via multivesicular bodies (MVB). No regulators of Fab1 were identified until recently. RESULTS: Visual screening of the Eurofan II panel of S. cerevisiae deletion mutants identified YLR386w as a novel regulator of vacuolar function. Others recently identified this ORF as encoding the vacuolar inheritance gene VAC14. Like fab1 mutants, yeast lacking Vac14 have enlarged vacuoles that do not acidify correctly. FAB1 overexpression corrects these defects. vac14Delta cells make very little PtdIns(3,5)P(2), and hyperosmotic shock does not stimulate PtdIns(3,5)P(2) synthesis in the normal manner, implicating Vac14 in Fab1 regulation. We also show that, like fab1Delta mutants, vac14Delta cells fail to sort GFP-Phm5 to the MVB and thence to the vacuole: irreversible ubiquitination of GFP-Phm5 overcomes this defect. In the BY4742 genetic background, loss of Vac14 causes much more penetrant effects on phosphoinositide metabolism and vacuolar trafficking than does loss of Vac7, another regulator of Fab1. Vac14 contains motifs suggestive of a role in protein trafficking and interacts with several proteins involved in clathrin-mediated membrane sorting and phosphoinositide metabolism. CONCLUSIONS: Vac14 and Vac7 are both upstream activators of Fab1-catalysed PtdIns(3,5)P(2) synthesis, with Vac14 the dominant contributor to the hierarchy of control. Vac14 is essential for the regulated synthesis of PtdIns(3,5)P(2), for control of trafficking of some proteins to the vacuole lumen via the MVB, and for maintenance of vacuole size and acidity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号