首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To become invasive, exotic species have to succeed in the consecutive phases of introduction, naturalization, and invasion. Each of these phases leaves traces in genetic structure, which may affect the species’ success in subsequent phases. We examined this interplay of genetic structure and invasion dynamics in the South African Ragwort (Senecio inaequidens), one of Europe’s fastest plant invaders. We used AFLP and microsatellite markers to analyze 19 native African and 32 invasive European populations. In combination with historic data, we distinguished invasion routes and traced them back to the native source areas. This revealed that different introduction sites had markedly different success in the three invasion phases. Notably, an observed lag‐phase in Northern Germany was evidently not terminated by factors increasing the invasiveness of the resident population but by invasive spread from another introduction centre. The lineage invading Central Europe was introduced to sites in which winters are more benign than in the native source region. Subsequently, this lineage spread into areas in which winter temperatures match the native climate more closely. Genetic diversity clearly increases with population age in Europe and less clearly decreases with spread rate up to population establishment. This indicates that gene flow along well‐connected invasion routes counteracted losses of genetic diversity during rapid spread. In summary, this study suggests that multiple introductions, environmental preadaptation and high gene flow along invasion routes contributed to the success of this rapid invader. More generally, it demonstrates the benefit of combining genetic, historical, and climatic data for understanding biological invasions.  相似文献   

2.
3.
Theoretical studies of adaptation to sink environments (with conditions outside the niche requirements of a species) have shown that immigration from source habitats can either facilitate or inhibit local adaptation. Here, we examine the influence of immigration on the evolution of local adaptation, given an Allee effect (i.e., at low densities, absolute fitness increases with population density). We consider a deterministic model for evolution at a haploid locus, and a stochastic individual-based model for evolution of a quantitative trait, and several kinds of Allee effects. We demonstrate that increased immigration can greatly facilitate adaptive evolution in the sink; with greater immigration, local population sizes rise, and because of the Allee effect, there is a positive indirect effect of immigration on local fitness. This makes it easier for alleles of modest effect to be captured by natural selection, transforming the sink into a locally adapted population that can persist without immigration.  相似文献   

4.
Abstract. Senecio inaequidens DC. (Asteraceae) is an invasive alien plant introduced to Europe from South Africa in around 1896. It contains pyrrolizidine alkaloids that are toxic to livestock and humans. S. inaequidens would therefore be an economic and ecological problem if it became established and abundant in natural or farmed grassland ecosystems. We conducted field experiments using a split‐plot design to determine the effects of rabbit grazing, interspecific plant competition, mollusc and insect herbivory on growth, survival and reproduction of S. inaequidens. Plants were grown from seeds of three different ecotypes under standardized greenhouse conditions and transplanted into field plots. Rabbits (Oryctolagus cuniculus L.) were excluded from experimental plots using rabbit fences. Competition was manipulated by either creating subplots with bare ground or leaving the vegetation cover intact. Data were recorded between June and August 2002. Ecotypes differed significantly in morphological parameters, and in their responses to invertebrate herbivory. Interspecific plant competition and rabbit grazing significantly reduced growth and reproduction of S. inaequidens. Regrowth shoots of S. inaequidens produced after rabbit grazing were not subsequently eaten by rabbits. Unpalatability of regrowth shoots may be attributable to changes in pyrrolizidine alkaloid composition with plant age. Mollusc herbivory significantly reduced the number of capitulae produced. We found adults of Longitarsus jacobaeae Waterhouse (Coleoptera: Chrysomelidae), a specialist herbivore of European Senecio jacobaea L. (Asteraceae), feeding on 79% of S. inaequidens plants. 320 larvae of Tyria jacobaeae L. (Lepidoptera: Arctiidae) did not feed on S. inaequidens under free‐choice field conditions. We conclude that S. inaequidens is able to survive and reproduce in disturbed grassland ecosystems. L. jacobaeae might be a suitable agent for biological control of S. inaequidens in European introduced populations in the future.  相似文献   

5.
Social interactions can give rise to indirect genetic effects (IGEs), which occur when genes expressed in one individual affect the phenotype of another individual. The evolutionary dynamics of traits can be altered when there are IGEs. Sex often involves indirect effects arising from first‐order (current) or second‐order (prior) social interactions, yet IGEs are infrequently quantified for reproductive behaviors. Here, we use experimental populations of burying beetles that have experienced bidirectional selection on mating rate to test for social plasticity and IGEs associated with focal males mating with a female either without (first‐order effect) or with (second‐order effect) prior exposure to a competitor, and resource defense behavior (first‐order effect). Additive IGEs were detected for mating rate arising from (first‐order) interactions with females. For resource defense behavior, a standard variance partitioning analysis provided no evidence of additive genetic variance—either direct or indirect. However, behavior was predicted by focal size relative to that of the competitor, and size is also heritable. Assuming that behavior is causally dependent on relative size, this implies that both DGEs and IGEs do occur (and may potentially interact). The relative contribution of IGEs may differ among social behaviors related to mating which has consequences for the evolutionary trajectories of multivariate traits.  相似文献   

6.
Invasive species are predicted to suffer from reductions in genetic diversity during founding events, reducing adaptive potential. Integrating evidence from two literature reviews and two case studies, we address the following questions: How much genetic diversity is lost in invasions? Do multiple introductions ameliorate this loss? Is there evidence for loss of diversity in quantitative traits? Do invaders that have experienced strong bottlenecks show adaptive evolution? How do multiple introductions influence adaptation on a landscape scale? We reviewed studies of 80 species of animals, plants, and fungi that quantified nuclear molecular diversity within introduced and source populations. Overall, there were significant losses of both allelic richness and heterozygosity in introduced populations, and large gains in diversity were rare. Evidence for multiple introductions was associated with increased diversity, and allelic variation appeared to increase over long timescales (~100 years), suggesting a role for gene flow in augmenting diversity over the long‐term. We then reviewed the literature on quantitative trait diversity and found that broad‐sense variation rarely declines in introductions, but direct comparisons of additive variance were lacking. Our studies of Hypericum canariense invasions illustrate how populations with diminished diversity may still evolve rapidly. Given the prevalence of genetic bottlenecks in successful invading populations and the potential for adaptive evolution in quantitative traits, we suggest that the disadvantages associated with founding events may have been overstated. However, our work on the successful invader Verbascum thapsus illustrates how multiple introductions may take time to commingle, instead persisting as a ‘mosaic of maladaptation’ where traits are not distributed in a pattern consistent with adaptation. We conclude that management limiting gene flow among introduced populations may reduce adaptive potential but is unlikely to prevent expansion or the evolution of novel invasive behaviour.  相似文献   

7.
Theory suggests that range edge populations of invading plants and animals may experience runaway selection for increased dispersal ability. This theory has been supported by field data for cane toads in Australia, and for Senecio inaequidens in Europe. In this study, we asked whether range edge populations of Senecio madagascariensis (Asteraceae), an invasive plant in eastern Australia, displayed higher dispersal ability that did populations from the established range. We measured 1363 diaspores from 33 populations. There was no significant difference in dispersal potential between populations from the range edge, and those from the established range (P = 0.19). We also used a glasshouse study to determine whether the range edge populations differed from populations in the established range in three critical life history traits: germination success, plant size and time to first reproduction. The only significant difference was for higher germination in range edge populations. The null result for dispersal ability is excellent news for land managers, as this is the first published evidence that selection for ever‐increasing dispersal rates is not ubiquitous in invading populations.  相似文献   

8.
Several theories argue that large changes in allele frequencies through genetic drift after a small founding population becomes allopatrically isolated can lead to significant changes in reproductive isolation and thus trigger the origin of new species. For this reason, founder speciation has been proposed as a potent force in the generation of new species. Nonetheless, the relative importance of such ‘founder effects’ remains largely untested. In this report, I used experimental evolution to create one thousand replicates that underwent an extreme bottleneck and to study whether founder effects can lead to an increase in reproductive isolation in Drosophila yakuba. Even though the most common outcome of inbreeding is extinction, founder effects can lead to increased premating reproductive isolation in a very small proportion of cases. Changes in reproductive isolation after a founding population bottleneck are similar to changes in other phenotypic traits, in which inbreeding might displace the mean phenotypic value and substantially increase the phenotypic variance. This increase in phenotypic variance does not confer an increase in the response to selection for reproductive isolation in artificial selection experiments, indicating that the increased phenotypic variance is not caused by increases in additive genetic variance. These results also demonstrate that, similar to morphological and life‐history traits, behavioural traits can be affected by inbreeding and genetic drift.  相似文献   

9.
Female Drosophila melanogaster frequently mate with multiple males, and the success of a given male depends not only on his genotype but also on the genotype of his competitor. Here, we assess how natural genetic variation affects male–male interactions for traits influencing pre‐ and postcopulatory sexual selection. Males from a set of 66 chromosome substitution lines were competed against each other in a ‘round‐robin’ design, and paternity was scored using bulk genotyping. We observed significant effects of the genotype of the first male to mate, the second male to mate and an interaction between the males for measures of male mating rate and sperm utilization. We also identified specific combinations of males who show nontransitive patterns of reproductive success and engage in ‘rock‐paper‐scissors’ games. We then tested for associations between 245 polymorphisms in 32 candidate male reproductive genes and male reproductive success. We identified eight polymorphisms in six reproductive genes that associate with male reproductive success independent of the competitor (experimentwise < 0.05). We also identified four SNPs in four different genes where the relative reproductive success of the alternative alleles changes depending on the competing males' genetic background (experimentwise < 0.05); two of these associations include premature stop codons. This may be the first study that identifies the genes contributing to nontransitivity among males and further highlights that ‘rock‐paper‐scissors’ games could be an important evolutionary force maintaining genetic variation in natural populations.  相似文献   

10.
11.
Identifying linkages between life-history traits and small population processes is essential to effective multispecies conservation. Reproductive asynchrony, which occurs when individuals are reproductively active for only a portion of the population-level breeding period, may provide one such link. Traditionally, reproductive asynchrony has been considered from evolutionary perspectives as an advantageous bet-hedging strategy in temporally unpredictable environments. Here, we explore the dynamic consequences of reproductive asynchrony as a density-dependent life-history trait. To examine how asynchrony affects population growth rate and extinction risk, we used a general model of reproductive timing to quantify the temporal overlap of opposite-sex individuals and to simulate population dynamics over a range of initial densities and empirical estimates of reproductive asynchrony. We also considered how protandry, a sexually selected life-history strategy that often accompanies asynchrony, modulates the population-level effects of reproductive asynchrony. We found that asynchrony decreases the number of males a female overlaps with, decreases the average probability of mating per male/female pair that does overlap, and leaves some females completely isolated in time. This loss of reproductive potential, which is exacerbated by protandry, reduces population growth rate at low density and can lead to extinction via an Allee effect. Thus reproductive asynchrony and protandry, both of which can be evolutionarily advantageous at higher population densities, may prove detrimental when population density declines.  相似文献   

12.
Synchronous breeding in animals and plants has stimulated both a theoretical and empirical examination of the possible benefits of active synchronization. The selective pressures of predation and infanticide are the strongest candidates proposed to explain the evolution of reproductive synchrony. Alternatively, breeding asynchronously with conspecifics may ensure a greater availability of resources per breeder. However, the possible fitness benefits resulting from active asynchronization have not yet received attention in evolutionary ecology. Here we present a hypothesis, based on a graphical model, illustrating the costs and benefits of the two modes of reproduction. We tested the hypothesis empirically using a 2 x 2 full factorial study design, where reproductive synchrony and infanticide tactics were manipulated in enclosed populations of the bank vole. The results reveal a relationship between infanticide tactics and breeding synchrony as illustrated by our hypothesis. In general, female reproductive success (number and size of offspring surviving to weaning) was significantly lower in infanticidal populations. Moreover, an asynchronous breeding pattern proved to be advantageous in the noninfanticidal population but this advantage of asynchrony was lost as infanticide became common in the population. Our findings support the idea that synchronous reproduction could have evolved as a counterstrategy against infanticide.  相似文献   

13.
We modeled the distribution of the South African alien Senecio inaequidens DC. in the Aosta Valley, Western Italian Alps, using data extracted from the Regional floristic database and from an intensive field survey carried out in years 2009–2010. The aims of the work were (1) to evaluate whether the species is in the introduction, colonization, or establishment stage of invasion, (2) to detect the environmental factors that drive the invasion process, and (3) to highlight the potential range of distribution of the alien species. The modeling framework was a stepwise generalized linear model (GLM), using gridded presence/absence data and environmental predictors such as topography, climate, land use, and anthropogenic and natural disturbances. GLM were fit both with and without an additional independent variable to take into account current dispersal limitations. S. inaequidens displayed a very fast spread in the Aosta Valley in the years 1990–2010. The species was positively associated with roads and rivers, southern slopes, and negatively with elevation. However, it was found at an elevation of 1600 m, showing the ability to reach higher elevations than those observed for other invasive alien species, and confirming to be pre-adapted to mountain conditions. The difference between the species distribution models, with and without dispersal constraints, suggested that the availability of seed sources still limits the potential distribution of the species, rather than the environmental variables, and that the realized regional niche differs to a great extent from the equilibrium niche. When limitations to the seed source cease (i.e., in the establishment stage), the species will likely invade large areas that are currently characterized by pastures and grasslands with native species of high agricultural importance. The invasion of S. inaequidens should therefore be considered a serious threat, due to its potential to invade mountain regions, and in particular to colonize habitats used for grazing and forage, thus leading to a high risk for cattle and human health. We discuss the relevance of the results both concerning communication with the public and to support local eradication and control activities. The inclusion of S. inaequidens in the “black list” of the regional law for the conservation of alpine flora (L.R. 45/2009) will help to transfer the information and support invasion control, in particular at medium elevations.  相似文献   

14.
Question: Plant invasions result from complex interactions between species traits, community characteristics and environmental variations. We examined the effect of these interactions on the invasion potential of two invasive Senecio species, S. inaequidens and S. pterophorus, across three Mediterranean plant communities in a natural park. Location: Catalonia, NE Spain. Methods: We carried out two series of experimental seedling transplantations, in the spring and fall of 2003, in grassland, shrubland and Quercus ilex forest. Competition with neighbouring plants and water availability were manipulated. We evaluated the survival, growth and reproduction with respect to each treatment combination. Results: Any habitat can be colonised if disturbance occurs. In the absence of disturbance, shrubland enhanced the survival of seedlings. Competition with resident vegetation dramatically reduced survival in grassland and forest when establishment occurred in the spring. However, establishment in the fall promoted invasion in grassland and shrubland, even in the undisturbed treatment. Grassland allowed the highest growth and reproductive performance of both species while forest was the most resistant habitat to invasion. S. inaequidens had a higher growth rate and a shorter pre‐reproductive period than S. pterophorus. S. pterophorus produced more biomass and was more dependent on water availability than S. inaequidens. Conclusions: In the light of our results, we recommend surveying open shrublands and grasslands after periods of rainfall. Special attention should be paid to S. pterophorus, which is currently spreading. A preliminary assessment of the invasive‐ness of this plant is given in this study.  相似文献   

15.
An ongoing new synthesis in evolutionary theory is expanding our view of the sources of heritable variation beyond point mutations of fixed phenotypic effects to include environmentally sensitive changes in gene regulation. This expansion of the paradigm is necessary given ample evidence for a heritable ability to alter gene expression in response to environmental cues. In consequence, single genotypes are often capable of adaptively expressing different phenotypes in different environments, i.e. are adaptively plastic. We present an individual-based heuristic model to compare the adaptive dynamics of populations composed of plastic or non-plastic genotypes under a wide range of scenarios where we modify environmental variation, mutation rate and costs of plasticity. The model shows that adaptive plasticity contributes to the maintenance of genetic variation within populations, reduces bottlenecks when facing rapid environmental changes and confers an overall faster rate of adaptation. In fluctuating environments, plasticity is favoured by selection and maintained in the population. However, if the environment stabilizes and costs of plasticity are high, plasticity is reduced by selection, leading to genetic assimilation, which could result in species diversification. More broadly, our model shows that adaptive plasticity is a common consequence of selection under environmental heterogeneity, and hence a potentially common phenomenon in nature. Thus, taking adaptive plasticity into account substantially extends our view of adaptive evolution.  相似文献   

16.
Abstract.— Offspring of close relatives often suffer severe fitness consequences. Previous studies have demonstrated that females, when given a choice, will choose to avoid mating with closely related males. But where opportunities for mate choice are limited or kin recognition is absent, precopulatory mechanisms may not work. In this case, either sex could reduce the risks of inbreeding through mechanisms that occur during or after copulation. During mating, males or females could commit fewer gametes when mating with a close relative. After mating, females could offset the effects of mating with a closely related male through cryptic choice. Few prior studies of sperm competition have examined the effect of genetic similarity, however, and what studies do exist have yielded equivocal results. In an effort to resolve this issue, we measured the outcome of sperm competition when female Drosophila melanogaster were mated to males of four different degrees of genetic relatedness and then to a standardized competitor. We provide the strongest evidence to date that sperm competitive ability is negatively correlated with relatedness, even after controlling for inbreeding depression.  相似文献   

17.
18.
Allee effects, positive effects of population size or density on per-capita fitness, are of broad interest in ecology and conservation due to their importance to the persistence of small populations and to range boundary dynamics. A number of recent studies have highlighted the importance of spatiotemporal variation in Allee effects and the resulting impacts on population dynamics. These advances challenge conventional understanding of Allee effects by reframing them as a dynamic factor affecting populations instead of a static condition. First, we synthesize evidence for variation in Allee effects and highlight potential mechanisms. Second, we emphasize the “Allee slope,” i.e., the magnitude of the positive effect of density on the per-capita growth rate, as a metric for demographic Allee effects. The more commonly used quantitative metric, the Allee threshold, provides only a partial picture of the underlying forces acting on population growth despite its implications for population extinction. Third, we identify remaining unknowns and strategies for addressing them. Outstanding questions about variation in Allee effects fall broadly under three categories: (1) characterizing patterns of natural variability; (2) understanding mechanisms of variation; and (3) implications for populations, including applications to conservation and management. Future insights are best achieved through robust interactions between theory and empiricism, especially through mechanistic models. Understanding spatiotemporal variation in the demographic processes contributing to the dynamics of small populations is a critical step in the advancement of population ecology.  相似文献   

19.
Invasive species stand accused of a familiar litany of offences, including displacing native species, disrupting ecological processes and causing billions of dollars in ecological damage (Cox 1999 ). Despite these transgressions, invasive species have at least one redeeming virtue – they offer us an unparalleled opportunity to investigate colonization and responses of populations to novel conditions in the invaded habitat (Elton 1958 ; Sakai et al. 2001 ). Invasive species are by definition colonists that have arrived and thrived in a new location. How they are able to thrive is of great interest, especially considering a paradox of invasion (Sax & Brown 2000 ): if many populations are locally adapted (Leimu & Fischer 2008 ), how could species introduced into new locations become so successful? One possibility is that populations adjust to the new conditions through plasticity – increasing production of allelopathic compounds (novel weapons), or taking advantage of new prey, for example. Alternatively, evolution could play a role, with the populations adapting to the novel conditions of the new habitat. There is increasing evidence, based on phenotypic data, for rapid adaptive evolution in invasive species (Franks et al. 2012 ; Colautti & Barrett 2013 ; Sultan et al. 2013 ). Prior studies have also demonstrated genetic changes in introduced populations using neutral markers, which generally do not provide information on adaptation. Thus, the genetic basis of adaptive evolution in invasive species has largely remained unknown. In this issue of Molecular Ecology, Vandepitte et al. ( 2014 ) provide some of the first evidence in invasive populations for molecular genetic changes directly linked to adaptation.  相似文献   

20.
Unlike unconditionally advantageous "Fisherian" variants that tend to spread throughout a species range once introduced anywhere, "bistable" variants, such as chromosome translocations, have two alternative stable frequencies, absence and (near) fixation. Analogous to populations with Allee effects, bistable variants tend to increase locally only once they become sufficiently common, and their spread depends on their rate of increase averaged over all frequencies. Several proposed manipulations of insect populations, such as using Wolbachia or "engineered underdominance" to suppress vector-borne diseases, produce bistable rather than Fisherian dynamics. We synthesize and extend theoretical analyses concerning three features of their spatial behavior: rate of spread, conditions to initiate spread from a localized introduction, and wave stopping caused by variation in population densities or dispersal rates. Unlike Fisherian variants, bistable variants tend to spread spatially only for particular parameter combinations and initial conditions. Wave initiation requires introduction over an extended region, while subsequent spatial spread is slower than for Fisherian waves and can easily be halted by local spatial inhomogeneities. We present several new results, including robust sufficient conditions to initiate (and stop) spread, using a one-parameter cubic approximation applicable to several models. The results have both basic and applied implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号