首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The antigen I/II (AgI/II) family polypeptides, ranging from 1310 to 1653 amino acid (aa) residues, are cell wall anchored adhesins expressed by most indigenous species of oral streptococci. The polypeptides interact with a wide range of host molecules, in particular salivary agglutinin glycoprotein (SAG or gp340), and with ligands on other oral bacteria. To determine the receptor recognition properties of six different AgI/II family polypeptides from strains of Streptococcus gordonii, Streptococcus intermedius and Streptococcus mutans, the genes were cloned and expressed on the surface of the surrogate host Lactococcus lactis. The S. gordonii SspA and SspB polypeptides mediated higher binding levels of L. lactis cells to surface immobilized gp340 than did S. intermedius Pas protein, or S. mutans SpaP or PAc proteins. However, the AgI/II proteins were all similar in their abilities to mediate aggregation of lactococci by fluid phase gp340. The SpaP(I) polypeptide from S. mutans Ingbritt, which was C-terminally truncated by approximately 400 aa residues, did not bind gp340. Lactococci expressing AgI/II proteins, including SpaP(I), were aggregated by a synthetic 16 aa residue peptide SRCRP2 derived from the aa repeat block sequences within gp340. In coaggregation assays, SspB from S. gordonii was unique in mediating coaggregation with only group A and group E strains of Actinomyces naeslundii. All the other AgI/II polypeptides mediated coaggregation with group C and group D strains of A. naeslundii. Analysis of chimeric protein constructs revealed that coaggregation specificity was determined by sequences within the N-terminal half of AgI/II protein. A synthetic peptide (20 aa residues), which defines a putative adhesion epitope within the C-terminal region of polypeptide, inhibited AgI/II-mediated aggregation by gp340 but did not affect coaggregation with A. naeslundii. These results suggest that different mechanisms operate in interactions of AgI/II family polypeptides with native gp340, gp340 SRCR domain peptide, and A. naeslundii. Specificity of these interactions appears to be determined by discontinuous but interacting regions of the polypeptides, thus providing flexibility in receptor recognition for streptococcal colonization of the human host.  相似文献   

2.
Streptococcus gordonii is a commensal bacterium that colonizes the hard and soft tissues present in the human mouth and nasopharynx. The cell wall-anchored polypeptides SspA and SspB expressed by S. gordonii mediate a wide range of interactions with host proteins and other bacteria. In this article we have determined the role of SspA and SspB proteins, which are members of the streptococcal antigen I/II (AgI/II) adhesin family, in S. gordonii adherence and internalization by epithelial cells. Wild-type S. gordonii DL1 expressing AgI/II polypeptides attached to and was internalized by HEp-2 cells, whereas an isogenic AgI/II- mutant was reduced in adherence and was not internalized. Association of S. gordonii DL1 with HEp-2 cells triggered protein tyrosine phosphorylation but no significant actin rearrangement. By contrast, Streptococcus pyogenes A40 showed 50-fold higher levels of internalization and this was associated with actin polymerization and interleukin-8 upregulation. Adherence and internalization of S. gordonii by HEp-2 cells involved beta1 integrin recognition but was not fibronectin-dependent. Recombinant SspA and SspB polypeptides bound to purified human alpha5beta1 integrin through sequences present within the NAV (N-terminal) region of AgI/II polypeptide. AgI/II polypeptides blocked interactions of S. gordonii and S. pyogenes with HEp-2 cells, and S. gordonii DL1 cells expressing AgI/II proteins inhibited adherence and internalization of S. pyogenes by HEp-2 cells. Conversely, S. gordonii AgI/II- mutant cells did not inhibit internalization of S. pyogenes. The results suggest that AgI/II proteins not only promote integrin-mediated internalization of oral commensal streptococci by host cells, but also potentially influence susceptibility of host tissues to more pathogenic bacteria.  相似文献   

3.
Glycoprotein gp-340 aggregates bacteria in saliva as part of innate defence at mucosal surfaces. We have detected size- and glycoforms of gp-340 between human saliva samples (n = 7) and lung gp-340 from a proteinosis patient using antibodies and lectins in Western blots and ELISA measurements. Western blots of saliva samples, and of gp-340 purified, from the seven donors using a gp-340 specific antibody distinguished four gp-340 size variants, designated I to IV (n = 2,2,2 and 1). While saliva gp-340 variants I to III had single bands of increasing sizes, variant IV and lung gp-340 had double bands. Purified I to IV proteins all revealed a N-terminal sequence TGGWIP upon Edman degradation. Moreover, purified gp-340 from the seven donors and lung gp-340 shared N-glycans, sialylated Galβ1-3GalNAc and (poly)lactosamine structures. However, the larger size gp-340 grouping II/III (n = 4) and smaller size grouping I/IV correlated with a secretor, Se(+), and a non secretor, Se(−), dependent glycoform of gp-340, respectively (p = 0.03). The Se(+) glycoforms contained ABH, Leb, Ley and polylactosamine structures, while the Se(−) glycoforms lacked ABH antigens but expressed Lea, Lex and lactosamine structures. By contrast, lung gp-340 completely lacked ABH, Lea/b, Lex/y or sLex structures. Gp-340 and secretor typing of saliva from additional donors (n = 29) showed gp-340 glycoforms I to IV for 6, 16, 4 and 0 donors, respectively, and 3 non-typeable donors, and verified that gp-340 glycoforms I and II/III correlate with Se(−) and Se(+) phenotypes, respectively (p < 0.0001). The glycoforms of saliva and lung gp-340 mediated differential aggregation of Leb- (Helicobacter pylori), sialylpolylactosamine- (Streptococcus suis) or sialic acid- (Streptococcus mutans) binding bacteria. In conclusion, variant size- and glycoforms of gp-340 are expressed by different individuals and may modulate the biological properties of gp-340 pertinent to health and disease.  相似文献   

4.
Streptococcus pyogenes (GAS) is a human pathogen that causes pharyngitis and invasive diseases such as toxic shock syndrome and sepsis. The upper respiratory tract is the primary reservoir from which GAS can infect new hosts and cause disease. The factors involved in colonisation are incompletely known however. Previous evidence in oral streptococci has shown that the AgI/II family proteins are involved. We hypothesized that the AspA member of this family might be involved in GAS colonization. We describe a novel mouse model of GAS colonization of the nasopharynx and lower respiratory tract to elucidate these interactions. We used two clinical M serotypes expressing AspA, and their aspA gene deletant isogenic mutants in experiments using adherence assays to respiratory epithelium, macrophage phagocytosis and neutrophil killing assays and in vivo models of respiratory tract colonisation and infection. We demonstrated the requirement for AspA in colonization of the respiratory tract. AspA mutants were cleared from the respiratory tract and were deficient in adherence to epithelial cells, and susceptible to phagocytosis. Expression of AspA in the surrogate host Lactococcus lactis protected bacteria from phagocytosis. Our results suggest that AspA has an essential role in respiratory infection, and may function as a novel anti-phagocytic factor.  相似文献   

5.
In the molecular interplay between pathogenic microorganisms and their host, proteolytic mechanisms are believed to play a crucial role. Here we find that the important human pathogen Streptococcus pyogenes (group A Streptococcus) expresses a surface protein with high affinity (Ka = 2.0 x 10(8) M-1) for alpha2-macroglobulin (alpha2M), the dominating proteinase inhibitor of human plasma. The immunoglobulin-binding protein G of group C and G streptococci also contains an alpha2M-binding domain and a gene encoding protein GRAB (protein G-related alpha2M-binding protein) was identified in the S. pyogenes Genome Sequencing data base. The grab gene is present in most S. pyogenes strains and is well conserved. Protein GRAB has typical features of a surface-attached protein of Gram-positive bacteria. It also contains a region homologous to parts of the alpha2M-binding domain of protein G and a variable number of a unique 28-amino acid-long repeat. Using Escherichia coli-produced protein GRAB and synthetic GRAB peptides, the alpha2M-binding region was mapped to the NH2-terminal part of protein GRAB, which is the region with homology to protein G. An isogenic S. pyogenes mutant lacking surface-associated protein GRAB showed no alpha2M binding activity and was attenuated in virulence when injected intraperitoneally in mice. Finally, alpha2M bound to the bacterial surface via protein GRAB was found to entrap and inhibit the activity of both S. pyogenes and host proteinases, thereby protecting important virulence determinants from proteolytic degradation. This regulation of proteolytic activity at the bacterial surface should affect the host-microbe relation during S. pyogenes infections.  相似文献   

6.
The Antigen I/II (AgI/II) family of proteins are cell wall anchored adhesins expressed on the surface of oral streptococci. The AgI/II proteins interact with molecules on other bacteria, on the surface of host cells, and with salivary proteins. Streptococcus gordonii is a commensal bacterium, and one of the primary colonizers that initiate the formation of the oral biofilm. S. gordonii expresses two AgI/II proteins, SspA and SspB that are closely related. One of the domains of SspB, called the variable (V‐) domain, is significantly different from corresponding domains in SspA and all other AgI/II proteins. As a first step to elucidate the differences among these proteins, we have determined the crystal structure of the V‐domain from S. gordonii SspB at 2.3 Å resolution. The domain comprises a β‐supersandwich with a putative binding cleft stabilized by a metal ion. The overall structure of the SspB V‐domain is similar to the previously reported V‐domain of the Streptococcus mutans protein SpaP, despite their low sequence similarity. In spite of the conserved architecture of the binding cleft, the cavity is significantly smaller in SspB, which may provide clues about the difference in ligand specificity. We also verified that the metal in the binding cleft is a calcium ion, in concurrence with previous biological data. It was previously suggested that AgI/II V‐domains are carbohydrate binding. However, we tested that hypothesis by screening the SspB V‐domain for binding to over 400 glycoconjucates and found that the domain does not interact with any of the carbohydrates.  相似文献   

7.
Some of the variety of Streptococcus pyogenes and Streptococcus dysgalactiae ssp. equisimilis (SDSE) M proteins act as collagen-binding adhesins that facilitate acute infection. Moreover, their potential to trigger collagen autoimmunity has been implicated in the pathogenesis of acute rheumatic fever and attributed to a collagen-binding motif called PARF (peptide associated with rheumatic fever). For the first time we determine the rate of clinical isolates with collagen-binding M proteins that use a PARF motif (A/T/E)XYLXX(L/F)N in a defined geographic region, Vellore in South India. In this region both, incidence of streptococcal infections and prevalence of acute rheumatic fever are high. M proteins with PARF motif conferred collagen-binding activity to 3.9% of 153 S. pyogenes and 10.6% of 255 SDSE clinical isolates from Vellore. The PARF motif occurred in three S. pyogenes and 22 SDSE M protein types. In one of the S. pyogenes and five of the SDSE M proteins that contained the motif, collagen-binding was impaired, due to influences of other parts of the M protein molecule. The accumulated data on the collagen binding activity of certain M protein types allowed a reanalysis of published worldwide emm-typing data with the aim to estimate the rates of isolates that bind collagen via PARF. The results indicate that M proteins, which bind collagen via a PARF motif, are epidemiologically relevant in human infections, not only in Vellore. It is imperative to include the most relevant collagen-binding M types in vaccines. But when designing M protein based vaccines it should be considered that collagen binding motifs within the vaccine antigen remain potential risk factors.  相似文献   

8.
With L-aspartate (L-Asp) as the amino donor, L-phenylalanine (L-Phe) can be prepared from phenylpyruvate (PPA) via an amination reaction mediated by aminotransferase (encoded by aspC). On the other hand, L-Asp can be produced by an aspartase (encoded by aspA) -catalyzed reaction using fumaric acid as substrate. To overproduce aspartase in Escherichia coli, the aspA gene was cloned and overexpressed 180 times over the wild-type level. The use of AspA-overproducing E. coli strain for L-Asp production exhibited an 83% conversion, approaching to the theoretical yield, whereas the wild-type strain obtained scarcely L-Asp. Furthermore, the recombinant strain overproducing both AspA and AspC was able to produce L-Asp and L-Phe simultaneously by using fumaric acid and PPA as substrates. As a result, the conversion yields obtained for L-Asp and L-Phe were 78% and 85%, respectively. In sharp contrast, the wild-type strain attained a conversion of L-Phe less than 15% and an undetectable level of L-Asp. This result illustrates a potential and attractive process to yield both L-Asp and L-Phe by coupling AspA and AspC. A further study on the repeated use of the recombinant strain immobilized with calcium alginate showed that after eight batch runs L-Asp conversion maintained roughly constant (around 75%), whereas L-Phe conversion dropped to 65% from 81%. This result indicates the stability of AspA being superior to AspC.  相似文献   

9.
Production of cholera toxin B subunit in Lactobacillus   总被引:2,自引:0,他引:2  
The intracellular expression of the B subunit of cholera toxin (CTB) was first achieved in Lactobacillus paracasei LbTGS1.4 with an expression cassette including the P25 promoter of Streptococcus thermophilus combined with the translation initiation region from the strongly expressed L. pentosus d-lactate dehydrogenase gene (ldhD). Secretion of CTB was next attempted in L. paracasei LbTGS1.4 and L. plantarum NCIMB8826 with four different signal sequences from exported proteins of lactic acid bacteria (Lactococcus lactis Usp45 and PrtP, Enterococcus faecalis unknown protein and S. pyogenes M6 protein). Host-dependent secretion of CTB was clearly observed: whereas none of the secretion cassettes led to detectable CTB in the extracellular fraction of L. paracasei LbTGS1.4, secretion of CTB molecules was clearly achieved with three of the selected signal sequences in L. plantarum NCIMB8826.  相似文献   

10.
Scavenger receptor gp340 aggregates group A streptococci by binding pili   总被引:1,自引:0,他引:1  
Group A streptococci (GAS) are the most frequent cause of bacterial pharyngitis. The first obstacle to GAS colonization of the pharynx is saliva. As well as forming a physical barrier, saliva contains components of innate and acquired immunity. Previous work has shown that saliva induces bacterial aggregation, which may serve as a clearance mechanism. As the aggregation of some oral streptococci in saliva is mediated by long proteinaceous appendages, we hypothesized that pili of GAS might behave similarly. Wild-type GAS M1 strain SF370 aggregated in saliva, while pilus-defective mutants did not. Similarly, heterologous expression of diverse GAS pili on the surface of Lactococcus lactis induced aggregation in saliva, while control strains were unaffected. Further studies revealed that aggregating bacteria bound salivary component gp340. Purified gp340 aggregated wild-type GAS and L. lactis expressing GAS pili, but not control strains. GAS pilus-defective mutants were abrogated in gp340 binding and aggregation. Furthermore, gp340-mediated aggregation reduced bacterial adhesion to human epithelial cells, suggesting a role in host defence.  相似文献   

11.
The Streptococcus mutans antigen I/II (AgI/II) is a cell surface-localized protein that adheres to salivary components and extracellular matrix molecules. Here we report the 2.5 Å resolution crystal structure of the complete C-terminal region of AgI/II. The C-terminal region is comprised of three major domains: C1, C2, and C3. Each domain adopts a DE-variant IgG fold, with two β-sheets whose A and F strands are linked through an intramolecular isopeptide bond. The adherence of the C-terminal AgI/II fragments to the putative tooth surface receptor salivary agglutinin (SAG), as monitored by surface plasmon resonance, indicated that the minimal region of binding was contained within the first and second DE-variant-IgG domains (C1 and C2) of the C terminus. The minimal C-terminal region that could inhibit S. mutans adherence to SAG was also confirmed to be within the C1 and C2 domains. Competition experiments demonstrated that the C- and N-terminal regions of AgI/II adhere to distinct sites on SAG. A cleft formed at the intersection between these C1 and C2 domains bound glucose molecules from the cryo-protectant solution, revealing a putative binding site for its highly glycosylated receptor SAG. Finally, electron microscopy images confirmed the elongated structure of AgI/II and enabled building a composite tertiary model that encompasses its two distinct binding regions.  相似文献   

12.
Brucella abortus is a facultative intracellular gram-negative bacterial pathogen that infects humans and animals by entry mainly through the digestive tract. B. abortus causes abortion in pregnant cattle and undulant fever in humans. The immunogenic B. abortus ribosomal protein L7/L12 is a promising candidate antigen for the development of oral live vaccines against brucellosis, using food-grade lactic acid bacteria (LAB) as a carrier. The L7/L12 gene was expressed in Lactococcus lactis, the model LAB, under the nisin-inducible promoter. Using different signals, L7/L12 was produced in cytoplasmic, cell-wall-anchored, and secreted forms. Cytoplasmic production of L7/L12 gave a low yield, estimated at 0.5 mg/liter. Interestingly, a secretable form of this normally cytoplasmic protein via fusion with a signal peptide resulted in increased yield of L7/L12 to 3 mg/liter; secretion efficiency (SE) was 35%. A fusion between the mature moiety of the staphylococcal nuclease (Nuc) and L7/L12 further increased yield to 8 mg/liter. Fusion with a synthetic propeptide (LEISSTCDA) previously described as an enhancer for heterologous protein secretion in L. lactis (Y. Le Loir, A. Gruss, S. D. Ehrlich, and P. Langella, J. Bacteriol. 180:1895-1903, 1998) raised the yield to 8 mg/liter and SE to 50%. A surface-anchored L7/L12 form in L. lactis was obtained by fusing the cell wall anchor of Streptococcus pyogenes M6 protein to the C-terminal end of L7/L12. The fusions described allow the production and targeting of L7/L12 in three different locations in L. lactis. This is the first example of a B. abortus antigen produced in a food-grade bacterium and opens new perspectives for alternative vaccine strategies against brucellosis.  相似文献   

13.
Binding of alpha 2-macroglobulin (alpha 2M) to streptococci and its effects on phagocytosis were investigated. Two types of streptococcal binding sites for alpha 2M were observed: Streptococcus pyogenes from human infections interacted only with native alpha 2M whereas S. dysgalactiae from bovine and S. equi from equine infections bound only a complex of alpha 2M with trypsin (alpha 2M-T). Preincubation of S. pyogenes with native alpha 2M substantially enhanced their phagocytosis by human polymorphonuclear neutrophils (PMN) whereas preincubation with alpha 2M-T was without any effect. On the other hand, incubation of S. dysgalactiae and S. equi with alpha 2M-T markedly reduced their phagocytosis by PMN from the respective host species. Native alpha 2M did not affect the phagocytosis of these streptococci. Digestion of the streptococcal binding sites for alpha 2M and alpha 2M-T pronase abolished the enhancement of phagocytosis of S. pyogenes by native alpha 2M as well as the inhibition of phagocytosis of S. dysgalactiae and S. equi by alpha 2M-T. Thus, binding of alpha 2M or its complexes appeared to play a role in streptococcal pathogenicity.  相似文献   

14.
15.
Lactic acid-producing bacteria survive in distinct environments, but show common metabolic characteristics. Here we studied the dynamic interactions of the central metabolism in Lactococcus lactis, extensively used as a starter culture in the dairy industry, and Streptococcus pyogenes, a human pathogen. Glucose-pulse experiments and enzymatic measurements were performed to parameterize kinetic models of glycolysis. Significant improvements were made to existing kinetic models for L. lactis, which subsequently accelerated the development of the first kinetic model of S. pyogenes glycolysis. The models revealed an important role for extracellular phosphate in the regulation of central metabolism and the efficient use of glucose. Thus, phosphate, which is rarely taken into account as an independent species in models of central metabolism, should be considered more thoroughly in the analysis of metabolic systems in the future. Insufficient phosphate supply can lead to a strong inhibition of glycolysis at high glucose concentrations in both species, but this was more severe in S. pyogenes. S. pyogenes is more efficient at converting glucose to ATP, showing a higher tendency towards heterofermentative energy metabolism than L. lactis. Our comparative systems biology approach revealed that the glycolysis of L. lactis and S. pyogenes have similar characteristics, but are adapted to their individual natural habitats with respect to phosphate regulation.  相似文献   

16.
Oral streptococci adhere to tooth-immobilized glycoprotein 340 (GP340) via the surface protein antigen I/II (AgI/II) and its homologs as the first step in pathogenesis. Studying this interaction using recombinant proteins, we observed that calcium increases the conformational stability of the scavenger-rich cysteine repeat (SRCRs) domains of GP340. Our results also show that AgI/II adheres specifically with nanomolar affinity to the calcium-induced SRCR conformation in an immobilized state and not in solution. This interaction is significantly dependent on the O-linked carbohydrates present on the SRCRs. This study also establishes that a single SRCR domain of GP340 contains the two surfaces to which the apical and C-terminal regions of AgI/II noncompetitively adhere. Compared with the single SRCR domain, the three tandem SRCR domains displayed a collective/cooperative increase in their bacterial adherence and aggregation. The previously described SRCRP2 peptide that was shown to aggregate several oral streptococci displayed limited aggregation and also nonspecific adherence compared to SRCR domains. Finally, we show distinct species-specific adherence/aggregation between Streptococcus mutans AgI/II and Streptococcus gordonii SspB in their interaction with the SRCRs. This study concludes that identification of the metal ion and carbohydrate adherence motifs on both SRCRs and AgI/II homologs could lead to the development of anti-adhesive inhibitors that could deter the adherence of pathogenic oral streptococci and thereby prevent the onset of infections.  相似文献   

17.
The antigen I/II (AgI/II) protein is a major surface protein that mediates the attachment of Streptococcus mutans (S. mutans) to the saliva-coated pellicle. Numerous studies have investigated not only the mechanisms by which AgI/II signaling is transduced within cells, but have also attempted to use AgI/II-specific antibodies to treat dental caries and host immune responses. However, little information is available about the effects of AgI/II on basic cellular events in bone cells. In this study, we examined the effects of the His-tagged recombinant N-terminal half of the AgI/II protein (rAgI/II-N) generated from S. mutans GS-5 on the viability, proliferation, and cell cycle progression of primary calvarial osteoblasts. We also investigated the mechanisms involved in the rAgI/II-N-mediated survival of serum-starved osteoblasts. We found that rAgI/II treatment attenuated the serum deprivation-induced decrease in cell viability and proliferation of osteoblasts. rAgI/II-N also prevented the loss of mitochondrial membrane potential (MMP), alterations in levels of two key mitochondrial Bcl-2 family proteins, and the accumulation of numerous cells into the sub-G(1) phase that were observed in serum-starved osteoblasts. Pharmacological inhibitors of phosphoinositide 3-kinase (PI3K), but not of extracellular signal-regulated kinase or Ras, blocked the rAgI/II-N-mediated protection against serum deprivation-induced cell death. Additional experiments revealed that the integrin α5β1-mediated PI3K pathway is required for rAgI/II-N-mediated Akt phosphorylation in osteoblasts. Collectively, these results suggest that rAgI/II-N induces survival signals in serum-starved osteoblasts through integrin-induced PI3K/Akt signaling pathways.  相似文献   

18.
Frequent oligonucleotide motifs in genomes of three streptococci   总被引:4,自引:0,他引:4  
  相似文献   

19.
Streptococcus mutans antigen I/II (AgI/II) protein was one of the first cell wall‐anchored adhesins identified in Gram‐positive bacteria. It mediates attachment of S. mutans to tooth surfaces and has been a focus for immunization studies against dental caries. The AgI/II family polypeptides recognize salivary glycoproteins, and are also involved in biofilm formation, platelet aggregation, tissue invasion and immune modulation. The genes encoding AgI/II family polypeptides are found among Streptococcus species indigenous to the human mouth, as well as in Streptococcus pyogenes, S. agalactiae and S. suis. Evidence of functionalities for different regions of the AgI/II proteins has emerged. A sequence motif within the C‐terminal portion of Streptococcus gordonii SspB (AgI/II) is bound by Porphyromonas gingivalis, thus promoting oral colonization by this anaerobic pathogen. The significance of other epitopes is now clearer following resolution of regional crystal structures. A new picture emerges of the central V (variable) region, predicted to contain a carbohydrate‐binding trench, being projected from the cell surface by a stalk formed by an unusual association between an N‐terminal α‐helix and a C‐terminal polyproline helix. This presentation mode might be important in determining functional conformations of other Gram‐positive surface proteins that have adhesin domains flanked by α‐helical and proline‐rich regions.  相似文献   

20.
Adherence of F18 fimbrial Escherichia coli to porcine intestinal epithelial cells is mediated by the adhesin (FedF) of F18 fimbriae. In a previous study, we demonstrated the specificity of the amino acid residues between 60 and 109 as the receptor binding domain of FedF. In this study, different expression, secretion, and anchoring systems for the receptor binding domain of the FedF adhesin in Lactococcus lactis were evaluated. Two partially overlapping receptor binding domains (42 and 62 amino acid residues) were expressed as fusions with L. lactis subsp. cremoris protein PrtP for evaluation of secretion efficiency. To evaluate the cell surface display of these FedF-PrtP fusions, they were further combined with different lengths of PrtP spacers fused with either the L. lactis AcmA anchor or the PrtP cell wall binding domain. An HtrA-defective L. lactis NZ9000 mutant was constructed to determine its effect on the level of secreted or anchored fusion proteins. Recombinant L. lactis clones secreting the receptor binding domain of F18 fimbriae as a fusion with the H domains of L. lactis protein PrtP were first constructed by using two different signal peptides. FedF-PrtP fusions, directed by the signal sequence of L. brevis SlpA, were throughout found to be secreted at significantly higher quantities than corresponding fusions with the signal peptide of L. lactis Usp45. In the surface display systems tested, the L. lactis AcmA anchor performed significantly better, particularly in the L. lactis NZ9000DeltahtrA strain, compared to the L. lactis PrtP anchor region. Of the cell surface display constructs with the AcmA anchor, only those with the longest PrtP spacer regions resulted in efficient binding of recombinant L. lactis cells to porcine intestinal epithelial cells. These results confirmed that it is possible to efficiently produce the receptor binding domain of the F18 adhesin in a functionally active form in L. lactis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号