首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P Argos  M G Rossmann 《Biochemistry》1979,18(22):4951-4960
Of the 82 three dimensionally characterized residues of cytochrome c551, 49 are found to be structurally and topologically equivalent to the globin fold and 41 are equivalent to the cytochrome b5 fold, with a respective root mean square separation of 3.5 and 4.9 A between equivalenced Calpha atoms. The common fold represents a central heme binding core, corresponding to the middle exon of certain globin genes. After superposition of the protein folds, the heme irons are found to be separated by 5.4 and 1.6 A, while their heme normals are inclined by 6 degrees and 32 degrees, respectively. Furthermore, the heme "face", determined by the asymmetric attachment of the vinyl and propionyl side chains, is directed similarly in all three heme proteins. The heme itself is rotated by 72 degrees and 116 degrees about its normal, respectively. The minimum base change per codon for the three pairwise comparisons corresponds to the expected value of random sequence comparisons. While all three heme proteins may have diverged from a common ancestor, their similarity may have arisen from the requirements of heme binding or the utilization of a particularly stable fold. Known structures within commonly accepted divergent families were superimposed in order to discriminate better between convergence and divergence. Minimum base changes per codon, number of deletions and insertions, percentage of equivalenced residues, precision of heme superposition, and root mean square separation of equivalenced Calpha atoms were tested as measures of evolutionary relationships.  相似文献   

2.
Phenomena occurring in the heme pocket after photolysis of carbonmonoxymyoglobin (MbCO) below about 100 K are investigated using temperature-derivative spectroscopy of the infrared absorption bands of CO. MbCO exists in three conformations (A substrates) that are distinguished by the stretch bands of the bound CO. We establish connections among the A substates and the substates of the photoproduct (B substates) using Fourier-transform infrared spectroscopy together with kinetic experiments on MbCO solution samples at different pH and on orthorhombic crystals. There is no one-to-one mapping between the A and B substates; in some cases, more than one B substate corresponds to a particular A substate. Rebinding is not simply a reversal of dissociation; transitions between B substates occur before rebinding. We measure the nonequilibrium populations of the B substates after photolysis below 25 K and determine the kinetics of B substate transitions leading to equilibrium. Transitions between B substates occur even at 4 K, whereas those between A substates have only been observed above about 160 K. The transitions between the B substates are nonexponential in time, providing evidence for a distribution of substates. The temperature dependence of the B substate transitions implies that they occur mainly by quantum-mechanical tunneling below 10 K. Taken together, the observations suggest that the transitions between the B substates within the same A substate reflect motions of the CO in the heme pocket and not conformational changes. Geminate rebinding of CO to Mb, monitored in the Soret band, depends on pH. Observation of geminate rebinding to the A substates in the infrared indicates that the pH dependence results from a population shift among the substates and not from a change of the rebinding to an individual A substate.  相似文献   

3.
Dynamics of ligand binding to heme proteins   总被引:23,自引:0,他引:23  
  相似文献   

4.
Using fast flash photolysis, we have measured the binding of CO to carboxymethylated cytochrome c and to heme c octapeptide as a function of temperature (5 degrees-350 degreesK) over an extended time range (100 ns(-1) ks). Experiments used a microsecond dye laser (lambda = 540 nm), and a mode-locked frequency-doubled Nd-glass laser (lambda = 530 nm). At low temperatures (5 degrees-120 degreesK) the rebinding exhibits two components. The slower component (I) is nonexponential in time and has an optical spectrum corresponding to rebiding from an S = 2, CO-free deoxy state. The fast component (I*) is exponential in time with a lifetime shorter than 10 mus and an optical spectrum different from the slow component. In myoglobin and the separated alpha and beta chains of hemoglobin, only process I is visible. The optical absorption spectrum of I* and its time dependence suggest that it may correspond to recombination from an excited state in which the iron has not yet moved out of the heme plane. The temperature dependences of both processes have been measured. Both occur via quantum mechanical tunneling at the lowest temperatures and via over-the-barrier motion at higher temperatures.  相似文献   

5.
Potential toxicity of transition metals like Hg, Cu and Cd are well known and their affinity toward proteins is of great concern. This work explores the selective nature of interactions of Cu2+, Hg2+ and Cd2+ with the heme proteins leghemoglobin, myoglobin and cytochrome C. The binding profiles were analyzed using absorbance spectrum and steady-state fluorescence spectroscopy. Thermodynamic parameters like enthalpy, entropy and free energy changes were derived by isothermal calorimetry and consequent binding parameters were compared for these heme proteins. Free energy (DG) values revealed Cu2+ binding toward myoglobin and leghemoglobin to be specific and facile in contrast to weak binding for Hg2+ or Cd2+. Time correlated single photon counting indicated significant alteration in excited state lifetimes for metal complexed myoglobin and leghemoglobin suggesting bimolecular collisions to be involved. Interestingly, none of these cations showed significant affinity for cytochrome c pointing that, presence of conserved sequences or heme group is not the only criteria for cation binding toward heme proteins, but the microenvironment of the residues or a specific folding pattern may be responsible for these differential conjugation profile. Binding of these cations may modulate the conformation and functions of these biologically important proteins.  相似文献   

6.
Equilibrium constants for the binding of azide to the ferric heme c octapeptide in 50% ethylene glycol 50% buffer were measured spectrophotometrically. The equilibrium constant for azide binding at 20 degrees C and pH* 7.4 is 29.2, which is approximately 3 to 4 orders of magnitude lower than that observed for azide binding to various ferric hemeproteins. The equilibrium constant was indepent of pH* in the range from 7 to 8. Equilibrium constants at several temperatures exhibited an apparent van't Hoff relationship yielding thermodynamic values of delta H0 = -26,100 J/mol (-6240 cal/mol) and delta S0 = -61.5 J/0K mol (-14.7 e.u.). Comparison of these values to the values for the heme proteins enables one to explain the differences in equiliberium constants in terms of differences in the polarity of the heme environments. The results are consistent with the concept that the oxygen affinity of heme complexes increases with the polarity of the heme environment. The data also suggest that an increase in the polarity of the heme environment should result in a corresponding increase in the susceptibility of ferrous heme dioxygen complexes toward oxidation by the dioxygen.  相似文献   

7.
Kinetics of the interaction of hemin liposomes with heme binding proteins   总被引:1,自引:0,他引:1  
As a model for the transport of hemin across biological membranes, sonicated phosphatidylcholine liposomes with incorporated hemin were characterized. The interaction of the hemin liposomes with the heme binding proteins albumin, apomyoglobin, and hemopexin was examined as a function of liposome charge and cholesterol content. In all cases, there was an almost complete transfer of hemin from liposome to protein; a rapid phase and a slow phase were observed for the transfer. For negatively charged liposomes (with 11% dicetyl phosphate), the rapid and slow phases showed observed rates of transfer of ca. 2 and 0.01 s-1, respectively, for all three proteins. The presence of cholesterol in the liposomes decreased the observed rates by a factor of 2, and positively charged liposomes (with 11% stearylamine) showed about one-fifth the observed rates of negatively charged liposomes. The observed rates were independent of protein concentration, indicating that the rate-determining step is hemin efflux from the lipid bilayer. The hemin interaction with the phospholipid bilayer is suggested to be primarily hydrophobic with some electrostatic character. The two phases are suggested to arise from two different populations of hemin within the liposomes and are interpreted as arising from two different orientations of hemin within the bilayer.  相似文献   

8.
Equilibrium constants for the binding of cyanide to the ferric heme c octapeptide in 20% ethylene glycol, 50% buffer were measured spectrophotometrically. The equilibrium constant for cyanide binding at 20 degrees C and pH 7.4 is 3.47 X 10(7), which is approximately 15-fold lower than that observed for cyanide binding to methemoglobin or metmyoglobin. Equilibrium constants at several temperatures exhibited an apparent van't Hoff relationship, yielding thermodynamic values of delta H degrees = -79,000 J/mol (-18,900 cal/mol) and delta S degrees = J/degrees K mol (-30.1 e.u.). Comparison of the ratio of equilibrium constants for cyanide ligation to methemoglobin the heme octapeptide with the ratio of equilibrium constants for azide ligation to methemoglobin and the heme octapeptide suggests that cyanide binding to the methemoproteins is much smaller than expected by comparison to azide binding. The differences in the ratios, the thermodynamic values, and the preferred binding geometries suggest that CN- ligation, like CO ligation, is sterically hindered. A comparison of these ratios to similar ratios for CO, O2, and NO binding suggests that the Fe-CN bond angle is less subject to distortion than the Fe-CO bond and/or additional binding interactions contribute to N3- but not to CN-binding to the protein.  相似文献   

9.
The kinetic properties of the three taxonomic A substates of sperm whale carbonmonoxy myoglobin in 75% glycerol/buffer are studied by flash photolysis with monitoring in the infrared stretch bands of bound CO at nu(A0) approximately 1967 cm-1, nu(A1) approximately 1947 cm-1, and nu(A3) approximately 1929 cm-1 between 60 and 300 K. Below 160 K the photodissociated CO rebinds from the heme pocket, no interconversion among the A substates is observed, and rebinding in each A substate is nonexponential in time and described by a different temperature-independent distribution of enthalpy barriers with a different preexponential. Measurements in the electronic bands, e.g., the Soret, contain contributions of all three A substates and can, therefore, be only approximately modeled with a single enthalpy distribution and a single preexponential. The bond formation step at the heme is fastest for the A0 substate, intermediate for the A1 substate, and slowest for A3. Rebinding between 200 and 300 K displays several processes, including geminate rebinding, rebinding after ligand escape to the solvent, and interconversion among the A substates. Different kinetics are measured in each of the A bands for times shorter than the characteristic time of fluctuations among the A substates. At longer times, fluctuational averaging yields the same kinetics in all three A substates. The interconversion rates between A1 and A3 are determined from the time when the scaled kinetic traces of the two substates merge. Fluctuations between A1 and A3 are much faster than those between A0 and either A1 or A3, so A1 and A3 appear as one kinetic species in the exchange with A0. The maximum-entropy method is used to extract the distribution of rate coefficients for the interconversion process A0 <--> A1 + A3 from the flash photolysis data. The temperature dependencies of the A substate interconversion processes are fitted with a non-Arrhenius expression similar to that used to describe relaxation processes in glasses. At 300 K the interconversion time for A0 <--> A1 + A3 is 10 microseconds, and extrapolation yields approximately 1 ns for A1 <--> A3. The pronounced kinetic differences imply different structural rearrangements. Crystallographic data support this conclusion: They show that formation of the A0 substate involves a major change of the protein structure; the distal histidine rotates about the C(alpha)-C(beta) bond, and its imidazole sidechain swings out of the heme pocket into the solvent, whereas it remains in the heme pocket in the A1 <--> A3 interconversion. The fast A1 <--> A3 exchange is inconsistent with structural models that involve differences in the protonation between A1 and A3.  相似文献   

10.
BackgroundHeme is an important nutritional iron source for almost all bacteria. Elevated heme concentrations, in contrast, are toxic e.g. due to the generation of reactive oxygen species. The cellular heme concentration thus requires tight regulation. The observation of heme acting as an effector molecule in heme-uptake and -utilization processes is rather new and many of these processes are unknown or rarely understood on the molecular level.Scope of reviewWe describe processes involving transient heme-protein interaction in bacteria and highlight the regulatory function of heme at key steps during heme uptake and utilization. We furthermore focus on essential structural aspects of heme binding to respective proteins.Major conclusionsThe structural and functional basis for heme-regulated processes in bacteria is diverse and ranges from increased degradation to extended half-life and from inhibition to activation of the respective heme-regulated protein. The large variety of effects is attributed to the versatile ability of heme to interact with proteins in different ways.General significanceKnowledge of the molecular mechanism of transient heme-protein interaction is central to understand the heme-regulated processes in bacteria. The heme-binding proteins involved in these processes represent potential targets for the development of novel antibacterial drugs. New antibacterial strategies are urgently needed to combat antibiotic resistance.  相似文献   

11.
Liu M  Su JG  Kong R  Sun TG  Tan JJ  Chen WZ  Wang CX 《Biophysical chemistry》2008,138(1-2):42-49
ShuT and PhuT are two periplasmic heme binding proteins that shuttle heme between the outer and inner membranes of the Gram-negative bacteria. Periplasmic binding proteins (PBPs) generally exhibit considerable conformational changes during the ligand binding process, whereas ShuT and PhuT belong to a class of PBPs that do not show such behavior based on their apo and holo crystal structures. By employing a series of molecular dynamic simulations on the ShuT and the PhuT, the dynamics and functions of the two PBPs were investigated. Through monitoring the distance changes between the two conserved glutamates of ShuT and PhuT, it was found the two PBPs were more flexible than previously assumed, exhibiting obvious opening-closing motions which were more remarkable in the apo runs of ShuT. Based on the results of the domain motion analysis, large scale conformational transitions were found in all apo runs of ShuT and PhuT, hinting that the domain motions of the two PBPs may be intrinsic. On the basis of the results of the principle component analysis, distinct opening-closing and twisting motion tendencies were observed not only in the apo, but also in the holo simulations of the two PBPs. The Gaussian network model was applied in order to analyze the hinge bending regions. The most important bending regions of ShuT and PhuT are located around the midpoints of their respective connecting helixes. Finally, the flexibilities and the details of the simulations of ShuT and PhuT were discussed. Characterized by the remarkably large flexibilities, the loop constituted by Ala 169, Gly170 and Gly171 of ShuT and the beta-turn constituted by Ala176, Gly177 and Gly178 of PhuT may be important for the functions of the two PBPs. Furthermore, the Asn254 of ShuT and the Arg228 of PhuT may be indispensable for the binding or unbinding of heme, since it is involved in the important hydrogen bonding to the propionate side-chains of heme.  相似文献   

12.
Ligand binding to heme proteins: relevance of low-temperature data   总被引:8,自引:0,他引:8  
Binding of carbon monoxide to the beta chain of adult human hemoglobin has been studied by flash photolysis over the time range from about 100 ps to seconds and the temperature range from 40 to 300 K. Below about 180 K, binding occurs directly from the pocket (process I) and is nonexponential in time. Above about 180 K, some carbon monoxide molecules escape from the pocket into the protein matrix. Above about 240 K, escape into the solvent becomes measurable. Process I can be observed up to 300 K. The low-temperature data extrapolate smoothly to 300 K, proving that the results obtained below 180 K provide functionally relevant information. The experiments show again that the binding process even at physiological temperatures is regulated by the final binding step at the heme iron and that measurements at high temperatures are not sufficient to fully understand the association process.  相似文献   

13.
For almost a decade heme model compounds have been designed to test the influence of proximal base restraint or of distal steric hindrance upon the ligand affinity of hemoglobins. Despite the variety of molecular structures which have been successively proposed, the evaluation of the reported data is rendered difficult because of the small number of examples available within each series. In this paper we report on the kinetics of binding of oxygen and carbon monoxide with a series of nine closely related heme models. The 'basket-handle porphyrins' allow one to modify the constraints exerted upon a chelated proximal base as well as the chemical environment of the distal side of the heme. One salient feature of these models is the possibility of introducing a hydrogen-bond stabilization of the oxygen by incorporating an amide group in the vicinity of the iron centre. The structural changes among models are sufficiently 'soft' to cause an almost continuous variation of the binding constants and rate parameters. The latter are found to obey a definite linear free energy relationship which proves that the series is homogenous from a thermodynamic viewpoint. This suggests an alternative way for comparing the trends in ligand binding in different heme model families with those of heme proteins, which is developed in the discussion using literature data.  相似文献   

14.
Ligand binding to heme proteins: connection between dynamics and function   总被引:18,自引:0,他引:18  
Ligand binding to heme proteins is studied by using flash photolysis over wide ranges in time (100 ns-1 ks) and temperature (10-320 K). Below about 200 K in 75% glycerol/water solvent, ligand rebinding occurs from the heme pocket and is nonexponential in time. The kinetics is explained by a distribution, g(H), of the enthalpic barrier of height H between the pocket and the bound state. Above 170 K rebinding slows markedly. Previously we interpreted the slowing as a "matrix process" resulting from the ligand entering the protein matrix before rebinding. Experiments on band III, an inhomogeneously broadened charge-transfer band near 760 nm (approximately 13,000 cm-1) in the photolyzed state (Mb*) of (carbonmonoxy)myoglobin (MbCO), force us to reinterpret the data. Kinetic hole-burning measurements on band III in Mb* establish a relation between the position of a homogeneous component of band III and the barrier H. Since band III is red-shifted by 116 cm-1 in Mb* compared with Mb, the relation implies that the barrier in relaxed Mb is 12 kJ/mol higher than in Mb*. The slowing of the rebinding kinetics above 170 K hence is caused by the relaxation Mb*----Mb, as suggested by Agmon and Hopfield [(1983) J. Chem. Phys. 79, 2042-2053]. This conclusion is supported by a fit to the rebinding data between 160 and 290 K which indicates that the entire distribution g(H) shifts. Above about 200 K, equilibrium fluctuations among conformational substates open pathways for the ligands through the protein matrix and also narrow the rate distribution. The protein relaxations and fluctuations are nonexponential in time and non-Arrhenius in temperature, suggesting a collective nature for these protein motions. The relaxation Mb*----Mb is essentially independent of the solvent viscosity, implying that this motion involves internal parts of the protein. The protein fluctuations responsible for the opening of the pathways, however, depend strongly on the solvent viscosity, suggesting that a large part of the protein participates. While the detailed studies concern MbCO, similar data have been obtained for MbO2 and CO binding to the beta chains of human hemoglobin and hemoglobin Zürich. The results show that protein dynamics is essential for protein function and that the association coefficient for binding from the solvent at physiological temperatures in all these heme proteins is governed by the barrier at the heme.  相似文献   

15.
Summary It is known that globin genes contain three exons with the middle exon coding for a four-helical supersecondary structure responsible for heme binding. Since this portion of the globin peptide chain can be structurally superimposed onto the cytochromec and cytochromeb 5 chains (Argos and Rossmann 1979), it can be inferred that the cytochromec gene will contain only one coding sequence while the cytochromeb 5 gene will be composed of three exons as found in the globin gene.  相似文献   

16.
We have reported that low levels of peroxynitrite (PN) can cause inactivation of the heme-thiolate protein prostacyclin (PGI2)-synthase by nitration of a tyrosine residue. To prove that iron catalysis is involved we studied the interaction of PN with microperoxidase and P450nor, a heme-thiolate protein of known structure. Spectral and kinetic analyses allow to conclude on a ferryl nitrogen dioxide complex as an intermediate which decomposes in the presence of an excess of PN under formation of dioxygen, nitrite, and nitrate. This occurs in a catalytic cycle which was more efficient with P450nor than with microperoxidase. If phenol was added to the reaction mixtures of PN and the ferric complexes the ratio of hydroxylated to nitrated phenols decreased compared to the metal-free system. Phenol competed with the formation of dioxygen indicating that the ferryl intermediate was involved in both pathways. One therefore can postulate that the ferryl complex reacts with phenol to give the phenoxyradical which is nitrated in the presence of nitrogen dioxide but does not give hydroxylated products as with metal-free PN. Alternately, the ferryl nitrogen dioxide complex can oxidize a second PN molecule to the radical, *OONO, which can decompose to dioxygen and NO. The latter forms N2O3, with the remaining *NO2 radical. A third pathway consists in the isomerization to nitrate which also is catalyzed by the heme proteins since the ratio of nitrite/nitrate does not change significantly during the catalytic reaction with excess of PN. Our data explain the mechanism of nitration of PGI2-synthase, suggest a role of P450nor as a PN scavenger, and favor heme-thiolate complexes for trapping PN.  相似文献   

17.
18.
The kinetics of ligand binding to heme proteins studied by flash photolysis display an algebraic time dependence at low temperatures in contrast exponential recombination observed under physiological conditions. This result shows that protein structures should be viewed as a time average of interconverting microstates which are frozen in at low temperatures. We propose a quasi-one-dimensional model of heterogeneous structural diffusion coupled to ligand binding which describes freezing transition as an inherent property of protein fluctuations. The structural hopping rates are derived from a temperature invariant spectrum of activation energies. The model predicts power law kinetics of the form t - at long times. The exponent is constant (0.5) at high temperatures but decreases below a critical temperature in the frozen regime. These results are compared to experiments performed with myoglobin and -chains of hemoglobin.  相似文献   

19.
Carbon monoxide-driven reduction of ferric heme and heme proteins   总被引:4,自引:0,他引:4  
Oxidized cytochrome c oxidase in a carbon monoxide atmosphere slowly becomes reduced as shown by changes in its visible spectra and its reactivity toward oxygen. The "auto-reduction" of cytochrome c oxidase by this procedure has been used to prepare mixed valence hybrids. We have found that this process is a general phenomenon for oxygen-binding heme proteins, and even for isolated hemin in basic aqueous solution. This reductive reaction may have physiological significance. It also explains why oxygen-binding heme proteins become oxidized much more slowly and appear to be more stable when they are kept under a CO atmosphere. Oxidized alpha and beta chains of human hemoglobin become reduced under CO much more slowly than does cytochrome c oxidase, where the CO-binding heme is coupled with another electron accepting metal center. By observing the reaction in both the forward and reverse direction, we have concluded that the heme is reduced by an equivalent of the water-gas shift reaction (CO + H2O----CO2 + 2e- + 2H+). The reaction does not require molecular oxygen. However, when the CO-driven reduction of cytochrome c oxidase occurs in the presence of oxygen, there is a competition between CO and oxygen for the reduced heme and copper of cytochrome alpha 3. Under certain conditions when both CO and oxygen are present, a peroxide adduct derived from oxygen reduction can be observed. This "607 nm complex," described in 1981 by Nicholls and Chanady (Nicholls, P., and Chanady, G. (1981) Biochim. Biophys. Acta 634, 256-265), forms and decays with kinetics in accord with the rate constants for CO dissociation, oxygen association and reduction, and dissociation of the peroxide adduct. In the absence of oxygen, if a mixture of cytochrome c and cytochrome c oxidase is incubated under a CO atmosphere, auto-reduction of the cytochrome c as well as of the cytochrome c oxidase occurs. By our proposed mechanism this involves a redistribution of electrons from cytochrome alpha 3 to cytochrome alpha and cytochrome c.  相似文献   

20.
Five ADP-ribosylating bacterial toxins, pertussis toxin, cholera toxin, diphtheria toxin, Escherichia LT toxin and Pseudomonas exotoxin A, show significant homology in selected segments of their sequence. Site-directed mutagenesis and chemical modification of residues within these regions cause loss of catalytic activity and of NAD binding. On the basis of these results and of molecular modelling based on the three-dimensional structure of exotoxin A, the geometry of an NAD binding site common to all the toxins is deduced and described in the paper. For diphtheria toxin, sequence similarity with exotoxin A is such that its preliminary structure can be computed by molecular modelling, whereas for the other toxins similarity appears to be restricted to the NAD binding site. Moreover, an analysis of molecular fitting of the NAD molecule into its binding cavity suggests a new model for the conformation of the bound NAD that better accounts for all available experimental information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号