首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isoniazid (INH) remains one of the key drugs used to control tuberculosis, with the enoyl-AcpM reductase InhA being the primary target. However, based on the observation that INH-treated Mycobacterium tuberculosis overproduces KasA, an enzyme involved in the biosynthesis of mycolic acids, and induces the formation of a covalent complex consisting of AcpM, KasA, and INH, it has been proposed that KasA represents the primary target of INH. However, the relevance of this complex to INH action remains obscure. This study was aimed at clarifying the role of InhA and KasA in relation to INH activity. By using anti-KasA antibodies we detected the KasA-containing complex in INH-treated Mycobacterium smegmatis. In addition, INH-treated cells also produced constant levels of KasA that were not sequestered in the complex and presumably were sufficient to ensure mycolic acid biosynthesis. Interestingly, a furA-lacking strain induced the complex at lower concentrations of INH compared with the control strain, whereas higher INH concentrations were necessary to induce the complex in a strain that lacks katG, suggesting that INH needs to be activated by KatG to induce the KasA-containing complex. The InhA inhibitors ethionamide and diazaborine also induced the complex; thus, its formation was not specifically relevant to INH action but was because of InhA inhibition. In addition, in vitro assays using purified InhA and KasA demonstrated that KatG-activated INH, triclosan, and diazaborine inhibited InhA but not KasA activity. Moreover, several thermosensitive InhA mutant strains of M. smegmatis constitutively expressed the KasA-containing complex. This study provides the biochemical and genetic evidence. 1) Only inhibition of InhA, but not KasA, induces the KasA-containing complex. 2) INH is not part of the complex. 3) INH does not target KasA, consistent with InhA being the primary target of INH.  相似文献   

2.
Prevention efforts and control of tuberculosis are seriously hampered by the appearance of multidrug-resistant strains of Mycobacterium tuberculosis, dictating new approaches to the treatment of the disease. Thiolactomycin (TLM) is a unique thiolactone that has been shown to exhibit anti-mycobacterial activity by specifically inhibiting fatty acid and mycolic acid biosynthesis. In this study, we present evidence that TLM targets two beta-ketoacyl-acyl-carrier protein synthases, KasA and KasB, consistent with the fact that both enzymes belong to the fatty-acid synthase type II system involved in fatty acid and mycolic acid biosynthesis. Overexpression of KasA, KasB, and KasAB in Mycobacterium bovis BCG increased in vivo and in vitro resistance against TLM. In addition, a multidrug-resistant clinical isolate was also found to be highly sensitive to TLM, indicating promise in counteracting multidrug-resistant strains of M. tuberculosis. The design and synthesis of several TLM derivatives have led to compounds more potent both in vitro against fatty acid and mycolic acid biosynthesis and in vivo against M. tuberculosis. Finally, a three-dimensional structural model of KasA has also been generated to improve understanding of the catalytic site of mycobacterial Kas proteins and to provide a more rational approach to the design of new drugs.  相似文献   

3.
Inhibition or inactivation of InhA, a fatty acid synthase II (FASII) enzyme, leads to mycobacterial cell lysis. To determine whether inactivation of other enzymes of the mycolic acid-synthesizing FASII complex also leads to lysis, we characterized the essentiality of two beta-ketoacyl-acyl carrier protein synthases, KasA and KasB, in Mycobacterium smegmatis. Using specialized transduction for allelic exchange, null kasB mutants, but not kasA mutants, could be generated in Mycobacterium smegmatis, suggesting that unlike kasB, kasA is essential. To confirm the essentiality of kasA, and to detail the molecular events that occur following depletion of KasA, we developed CESTET (conditional expression specialized transduction essentiality test), a genetic tool that combines conditional gene expression and specialized transduction. Using CESTET, we were able to generate conditional null inhA and kasA mutants. We studied the effects of depletion of KasA in M. smegmatis using the former strain as a reference. Depletion of either InhA or KasA led to cell lysis, but with different biochemical and morphological events prior to lysis. While InhA depletion led to the induction of an 80-kDa complex containing both KasA and AcpM, the mycobacterial acyl carrier protein, KasA depletion did not induce the same complex. Depletion of either InhA or KasA led to inhibition of alpha and epoxy mycolate biosynthesis and to accumulation of alpha'-mycolates. Furthermore, scanning electron micrographs revealed that KasA depletion resulted in the cell surface having a "crumpled" appearance, in contrast to the blebs observed on InhA depletion. Thus, our studies support the further exploration of KasA as a target for mycobacterial-drug development.  相似文献   

4.
The inhA and kasA genes of Mycobacterium tuberculosis have each been proposed to encode the primary target of the antibiotic isoniazid (INH). Previous studies investigating whether overexpressed inhA or kasA could confer resistance to INH yielded disparate results. In this work, multicopy plasmids expressing either inhA or kasA genes were transformed into M. smegmatis, M. bovis BCG and three different M. tuberculosis strains. The resulting transformants, as well as previously published M. tuberculosis strains with multicopy inhA or kasAB plasmids, were tested for their resistance to INH, ethionamide (ETH) or thiolactomycin (TLM). Mycobacteria containing inhA plasmids uniformly exhibited 20-fold or greater increased resistance to INH and 10-fold or greater increased resistance to ETH. In contrast, the kasA plasmid conferred no increased resistance to INH or ETH in any of the five strains, but it did confer resistance to thiolactomycin, a known KasA inhibitor. INH is known to increase the expression of kasA in INH-susceptible M. tuberculosis strains. Using molecular beacons, quantified inhA and kasA mRNA levels showed that increased inhA mRNA levels corre--lated with INH resistance, whereas kasA mRNA levels did not. In summary, analysis of strains harbouring inhA or kasA plasmids yielded the same conclusion: overexpressed inhA, but not kasA, confers INH and ETH resistance to M. smegmatis, M. bovis BCG and M. tuberculosis. Therefore, InhA is the primary target of action of INH and ETH in all three species.  相似文献   

5.
InhA, the NADH-dependent 2-trans-enoyl-ACP reductase enzyme from Mycobacterium tuberculosis (MTB), is involved in the biosynthesis of mycolic acids, the hallmark of mycobacterial cell wall. InhA has been shown to be the primary target of isoniazid (INH), one of the oldest synthetic antitubercular drugs. INH is a prodrug which is biologically activated by the MTB catalase-peroxidase KatG enzyme. The activation reaction promotes the formation of an isonicotinyl-NAD adduct which inhibits the InhA enzyme, resulting in reduction of mycolic acid biosynthesis. As a result of rational drug design efforts to design alternative drugs capable of inhibiting MTB’s InhA, the inorganic complex pentacyano(isoniazid)ferrate(II) (PIF) was developed. PIF inhibited both wild-type and INH-resistant Ile21Val mutants of InhA and this inactivation did not require activation by KatG. Since no three-dimensional structure of the InhA-PIF complex is available to confirm the binding mode and to assess the molecular interactions with the protein active site residues, here we report the results of molecular dynamics simulations of PIF interaction with InhA. We found that PIF strongly interacts with InhA and that these interactions lead to macromolecular instabilities reflected in the long time necessary for simulation convergence. These instabilities were mainly due to perturbation of the substrate binding loop, particularly the partial denaturation of helices α6 and α7. We were also able to correlate the changes in the SASAs of Trp residues with the recent spectrofluorimetric investigation of the InhA-PIF complex and confirm their suggestion that the changes in fluorescence are due to InhA conformational changes upon PIF binding. The InhA-PIF association is very strong in the first 20.0 ns, but becomes very week at the end of the simulation, suggesting that the PIF binding mode we simulated may not reflect that of the actual InhA-PIF complex.  相似文献   

6.
The resumption of tuberculosis led to an increased need to understand the molecular mechanisms of drug action and drug resistance, which should provide significant insight into the development of newer compounds. Isoniazid (INH), the most prescribed drug to treat TB, inhibits an NADH-dependent enoyl-acyl carrier protein reductase (InhA) that provides precursors of mycolic acids, which are components of the mycobacterial cell wall. InhA is the major target of the mode of action of isoniazid. INH is a pro-drug that needs activation to form the inhibitory INH-NAD adduct. Missense mutations in the inhA structural gene have been identified in clinical isolates of Mycobacterium tuberculosis resistant to INH. To understand the mechanism of resistance to INH, we have solved the structure of two InhA mutants (I21V and S94A), identified in INH-resistant clinical isolates, and compare them to INH-sensitive WT InhA structure in complex with the INH-NAD adduct. We also solved the structure of unliganded INH-resistant S94A protein, which is the first report on apo form of InhA. The salient features of these structures are discussed and should provide structural information to improve our understanding of the mechanism of action of, and resistance to, INH in M. tuberculosis. The unliganded structure of InhA allows identification of conformational changes upon ligand binding and should help structure-based drug design of more potent antimycobacterial agents.  相似文献   

7.
The frontline tuberculosis drug isoniazid (INH) inhibits InhA, the NADH-dependent fatty acid biosynthesis (FAS-II) enoyl reductase from Mycobacterium tuberculosis (MTB), via formation of a covalent adduct with NAD(+) (the INH-NAD adduct). Resistance to INH can be correlated with many mutations in MTB, some of which are localized in the InhA cofactor binding site. While the InhA mutations cause a substantial decrease in the affinity of InhA for NADH, surprisingly the same mutations result in only a small impact on binding of the INH-NAD adduct. Based on the knowledge that InhA interacts in vivo with other components of the FAS-II pathway, we have initiated experiments to determine whether enzyme inhibition results in structural changes that could affect protein-protein interactions involving InhA and how these ligand-induced conformational changes are modulated in the InhA mutants. Significantly, while NADH binding to wild-type InhA is hyperbolic, the InhA mutants bind the cofactor with positive cooperativity, suggesting that the mutations permit access to a second conformational state of the protein. While cross-linking studies indicate that enzyme inhibition causes dissociation of the InhA tetramer into dimers, analytical ultracentrifugation and size exclusion chromatography reveal that ligand binding causes a conformational change in the protein that prevents cross-linking across one of the dimer-dimer interfaces in the InhA tetramer. Interestingly, a similar ligand-induced conformational change is also observed for the InhA mutants, indicating that the mutations modulate communication between the subunits without affecting the two conformational states of the protein that are present.  相似文献   

8.
Tuberculosis kills about two million people every year and remains one of the leading causes of mortality worldwide. As a result of the increasing antibiotic resistance of Mycobacterium tuberculosis (Mtb) strains, there is an urgent need for new antitubercular drugs. Several efficient antibiotics, including isoniazid, specifically target the fatty acid synthase-II (FAS-II) complex of mycolic acid biosynthesis. We have previously shown that there are protein-protein interactions between the components of FAS-II that are essential for mycobacterial survival. We have now looked at the potential partners of FAS-II, mtFabD, the methyltransferases MmaAs, and Pks13. A combination of yeast two-hybrid and co-immunoprecipitation experiments showed that mtFabD interacts with each beta-ketoacyl-synthase (KasA, KasB and mtFabH) and with the core of FAS-II (InhA and MabA). The methyltransferases have a greater affinity for KasA and KasB than for mtFabH, suggesting that modifications on the meromycolic chains may occur during their elongation. Finally, Pks13, which catalyzes the final Claisen condensation of mycolic acids, interacts specifically with KasB. These data allowed us to determine the architecture of the multiple specialized FAS-II complexes, giving us insights into the organization of the complete mycolic acids biosynthesis. Our studies suggest a new and crucial interaction (KasB-Pks13) as a putative target for peptidomimetic antibiotics.  相似文献   

9.
The mechanism of action of isoniazid (INH), a first-line antituberculosis drug, is complex, as mutations in at least five different genes (katG, inhA, ahpC, kasA, and ndh) have been found to correlate with isoniazid resistance. Despite this complexity, a preponderance of evidence implicates inhA, which codes for an enoyl-acyl carrier protein reductase of the fatty acid synthase II (FASII), as the primary target of INH. However, INH treatment of Mycobacterium tuberculosis causes the accumulation of hexacosanoic acid (C(26:0)), a result unexpected for the blocking of an enoyl-reductase. To test whether inactivation of InhA is identical to INH treatment of mycobacteria, we isolated a temperature-sensitive mutation in the inhA gene of Mycobacterium smegmatis that rendered InhA inactive at 42 degrees C. Thermal inactivation of InhA in M. smegmatis resulted in the inhibition of mycolic acid biosynthesis, a decrease in hexadecanoic acid (C(16:0)) and a concomitant increase of tetracosanoic acid (C(24:0)) in a manner equivalent to that seen in INH-treated cells. Similarly, INH treatment of Mycobacterium bovis BCG caused an inhibition of mycolic acid biosynthesis, a decrease in C(16:0), and a concomitant accumulation of C(26:0). Moreover, the InhA-inactivated cells, like INH-treated cells, underwent a drastic morphological change, leading to cell lysis. These data show that InhA inactivation, alone, is sufficient to induce the accumulation of saturated fatty acids, cell wall alterations, and cell lysis and are consistent with InhA being a primary target of INH.  相似文献   

10.
Isoniazid (INH) is a key agent in the treatment of tuberculosis. In Mycobacterium tuberculosis, INH is converted to its active form by KatG, a catalase-peroxidase, and attacks InhA, which is essential for the synthesis of mycolic acids. We sequenced furA-katG and fabG1-inhA in 108 INH-resistant (INH(r) ) and 51 INH-susceptible (INH(s) ) isolates, and found three mutations in the furA-katG intergenic region (Int(g-7a) , Int(a-10c) and Int(g-12a) ) in four of 108 INH(r) isolates (4%), and the furA(c41t) mutation with an amino acid substitution in 18 INH(r) isolates (17%). These mutations were not found in any of 51 INH(s) isolates tested. We reconstructed these mutations in isogenic strains to determine whether they conferred INH resistance. We found that the Int(g-7a) , Int(a-10c) and Int(g-12a) single mutations in the furA-katG intergenic region decreased katG expression and conferred INH resistance. In contrast, the furA(c41t) mutation was not sufficient to confer INH resistance. These results suggested that downregulation of katG is a mechanism of INH resistance in M. tuberculosis and that mutations in the furA-katG intergenic region play a role in this resistance mechanism.  相似文献   

11.
Thiolactomycin [(4S)(2E,5E)-2,4,6-trimethyl-3-hydroxy-2,5,7-octatriene- 4-thiolide] (TLM) is a unique antibiotic structure that inhibits dissociated type II fatty acid synthase systems but not the multifunctional type I fatty acid synthases found in mammals. We screened an Escherichia coli genomic library for recombinant plasmids that impart TLM resistance to a TLM-sensitive strain of E. coli K-12. Nine independent plasmids were isolated, and all possessed a functional beta-ketoacyl-acyl carrier protein synthase I gene (fabB) based on their restriction enzyme maps and complementation of the temperature-sensitive growth of a fabB15(Ts) mutant. A plasmid (pJTB3) was constructed that contained only the fabB open reading frame. This plasmid conferred TLM resistance, complemented the fabB(Ts) mutation, and directed the overproduction of synthase I activity. TLM selectively inhibited unsaturated fatty acid synthesis in vivo; however, synthase I was not the only TLM target, since supplementation with oleate to circumvent the cellular requirement for an active synthase I did not confer TLM resistance. Overproduction of the FabB protein resulted in TLM-resistant fatty acid biosynthesis in vivo and in vitro. These data show that beta-ketoacyl-acyl carrier protein synthase I is a major target for TLM and that increased expression of this condensing enzyme is one mechanism for acquiring TLM resistance. However, extracts from a TLM-resistant mutant (strain CDM5) contained normal levels of TLM-sensitive synthase I activity, illustrating that there are other mechanisms of TLM resistance.  相似文献   

12.
Rhodococcus equi is a close relative of Mycobacterium spp. and a facultative intracellular pathogen which arrests phagosome maturation in macrophages before the late endocytic stage. We have screened a transposon mutant library of R. equi for mutants with decreased capability to prevent phagolysosome formation. This screen yielded a mutant in the gene for β‐ketoacyl‐(acyl carrier protein)‐synthase A (KasA), a key enzyme of the long‐chain mycolic acid synthesizing FAS‐II system. The longest kasA mutant mycolic acid chains were 10 carbon units shorter than those of wild‐type bacteria. Coating of non‐pathogenic E. coli with purified wild‐type trehalose dimycolate reduced phagolysosome formation substantially which was not the case with shorter kasA mutant‐derived trehalose dimycolate. The mutant was moderately attenuated in macrophages and in a mouse infection model, but was fully cytotoxic.Whereas loss of KasA is lethal in mycobacteria, R. equi kasA mutant multiplication in broth was normal proving that long‐chain mycolic acid compounds are not necessarily required for cellular integrity and viability of the bacteria that typically produce them. This study demonstrates a central role of mycolic acid chain length in diversion of trafficking by R. equi.  相似文献   

13.
We describe the physiological function of heterologously expressed Mycobacterium tuberculosis InhA during de novo lipoic acid synthesis in yeast (Saccharomyces cerevisiae) mitochondria. InhA, representing 2-trans-enoyl-acyl carrier protein reductase and the target for the front-line antituberculous drug isoniazid, is involved in the activity of dissociative type 2 fatty acid synthase (FASII) that extends associative type 1 fatty acid synthase (FASI)-derived C20 fatty acids to form C60-to-C90 mycolic acids. Mycolic acids are major constituents of the protective layer around the pathogen that contribute to virulence and resistance to certain antimicrobials. Unlike FASI, FASII is thought to be incapable of de novo biosynthesis of fatty acids. Here, the genes for InhA (Rv1484) and four similar proteins (Rv0927c, Rv3485c, Rv3530c, and Rv3559c) were expressed in S. cerevisiae etr1Δ cells lacking mitochondrial 2-trans-enoyl-thioester reductase activity. The phenotype of the yeast mutants includes the inability to produce sufficient levels of lipoic acid, form mitochondrial cytochromes, respire, or grow on nonfermentable carbon sources. Yeast etr1Δ cells expressing mitochondrial InhA were able to respire, grow on glycerol, and produce lipoic acid. Commensurate with a role in mitochondrial de novo fatty acid biosynthesis, InhA could accept in vivo much shorter acyl-thioesters (C4 to C8) than was previously thought (>C12). Moreover, InhA functioned in the absence of AcpM or protein-protein interactions with its native FASII partners KasA, KasB, FabD, and FabH. None of the four proteins similar to InhA complemented the yeast mutant phenotype. We discuss the implications of our findings with reference to lipoic acid synthesis in M. tuberculosis and the potential use of yeast FASII mutants for investigating the physiological function of drug-targeted pathogen enzymes involved in fatty acid biosynthesis.  相似文献   

14.
Mycolic acids are vital components of the Mycobacterium tuberculosis cell wall, and enzymes involved in their formation represent attractive targets for the discovery of novel anti-tuberculosis agents. Biosynthesis of the fatty acyl chains of mycolic acids involves two fatty acid synthetic systems, the multifunctional polypeptide fatty acid synthase I (FASI), which performs de novo fatty acid synthesis, and the dissociated FASII system, which consists of monofunctional enzymes, and acyl carrier protein (ACP) and elongates FASI products to long chain mycolic acid precursors. In this study, we present the initial characterization of purified KasA and KasB, two beta-ketoacyl-ACP synthase (KAS) enzymes of the M. tuberculosis FASII system. KasA and KasB were expressed in E. coli and purified by affinity chromatography. Both enzymes showed activity typical of bacterial KASs, condensing an acyl-ACP with malonyl-ACP. Consistent with the proposed role of FASII in mycolic acid synthesis, analysis of various acyl-ACP substrates indicated KasA and KasB had higher specificity for long chain acyl-ACPs containing at least 16 carbons. Activity of KasA and KasB increased with use of M. tuberculosis AcpM, suggesting that structural differences between AcpM and E. coli ACP may affect their recognition by the enzymes. Both enzymes were sensitive to KAS inhibitors cerulenin and thiolactomycin. These results represent important steps in characterizing KasA and KasB as targets for antimycobacterial drug discovery.  相似文献   

15.
The increasing prevalence of tuberculosis in many areas of the world, associated with the rise in drug-resistant Mycobacterium tuberculosis (MTB) strains, presents a major threat to global health. InhA, the enoyl-ACP reductase from MTB, catalyzes the nicotinamide adenine dinucleotide (NADH)-dependent reduction of long-chain trans-2-enoyl-ACP fatty acids, an intermediate in mycolic acid biosynthesis. Mutations in the structural gene for InhA are associated with isoniazid resistance in vivo due to a reduced affinity for NADH, suggesting that the mechanism of drug resistance may be related to specific interactions between enzyme and cofactor within the NADH binding site. To compare the molecular events underlying ligand affinity in the wild-type, I21V, and I16T mutant enzymes and to identify the molecular aspects related to resistance, molecular dynamics simulations of fully solvated NADH-InhA (wild-type and mutants) were performed. Although very flexible, in the wild-type InhA-NADH complex, the NADH molecule keeps its extended conformation firmly bound to the enzyme's binding site. In the mutant complexes, the NADH pyrophosphate moiety undergoes considerable conformational changes, reducing its interactions with its binding site and probably indicating the initial phase of ligand expulsion from the cavity. This study should contribute to our understanding of specific molecular mechanisms of drug resistance, which is central to the design of more potent antimycobacterial agents for controlling tuberculosis.  相似文献   

16.
Ojha A  Anand M  Bhatt A  Kremer L  Jacobs WR  Hatfull GF 《Cell》2005,123(5):861-873
Mycobacteria are unusual in encoding two GroEL paralogs, GroEL1 and GroEL2. GroEL2 is essential--presumably providing the housekeeping chaperone functions--while groEL1 is nonessential, contains the attB site for phage Bxb1 integration, and encodes a putative chaperone with unusual structural features. Inactivation of the Mycobacterium smegmatis groEL1 gene by phage Bxb1 integration allows normal planktonic growth but prevents the formation of mature biofilms. GroEL1 modulates synthesis of mycolates--long-chain fatty acid components of the mycobacterial cell wall--specifically during biofilm formation and physically associates with KasA, a key component of the type II Fatty Acid Synthase involved in mycolic acid synthesis. Biofilm formation is associated with elevated synthesis of short-chain (C56-C68) fatty acids, and strains with altered mycolate profiles--including an InhA mutant resistant to the antituberculosis drug isoniazid and a strain overexpressing KasA--are defective in biofilm formation.  相似文献   

17.
The mycobacterial FASII multi-enzyme complex has been identified to be a target of Ser/Thr protein kinases (STPKs) of Mycobacterium tuberculosis (MTB), with substrates, including the malonyl-CoA:ACP transacylase (FabD) and the β-ketoacyl-ACP synthases KasA and KasB. These proteins are phosphorylated by various kinases in vitro. The present study links the correlation of FASII pathway with serine threonine protein kinase of MTB. In the preliminary finding, we have shown that mycobacterial protein Rv3080c (PknK) phosphorylates FabD and the knockdown of PknK protein in mycobacteria down regulates FabD expression. This event leads to the differential inhibition of mycobacteria in the presence of isoniazid (INH), as the inhibition of growth of mycobacteria in the presence of INH is enhanced in PknK deficient mycobacteria.  相似文献   

18.
Thiolactomycin (TLM), a natural product thiolactone antibiotic produced by species of Nocardia and Streptomyces, is an inhibitor of the β-ketoacyl-acyl carrier protein synthase (KAS) enzymes in the bacterial fatty acid synthase pathway. Using enzyme kinetics and direct binding studies, TLM has been shown to bind preferentially to the acyl-enzyme intermediates of the KASI and KASII enzymes from Mycobacterium tuberculosis and Escherichia coli. These studies, which utilized acyl-enzyme mimics in which the active site cysteine was replaced by a glutamine, also revealed that TLM is a slow onset inhibitor of the KASI enzymes KasA and ecFabB but not of the KASII enzymes KasB and ecFabF. The differential affinity of TLM for the acyl-KAS enzymes is proposed to result from structural change involving the movement of helices α5 and α6 that prepare the enzyme to bind malonyl-AcpM or TLM and that is initiated by formation of hydrogen bonds between the acyl-enzyme thioester and the oxyanion hole. The finding that TLM is a slow onset inhibitor of ecFabB supports the proposal that the long residence time of TLM on the ecFabB homologues in Serratia marcescens and Klebsiella pneumonia is an important factor for the in vivo antibacterial activity of TLM against these two organisms despite the fact that the in vitro MIC values are only 100–200 μg/ml. The mechanistic data on the interaction of TLM with KasA will provide an important foundation for the rational development of high affinity KasA inhibitors based on the thiolactone skeleton.  相似文献   

19.
Despite the existence of efficient chemotherapy, tuberculosis remains a leading cause of mortality worldwide. New drugs are urgently needed to reduce the potential impact of the emergence of multidrug-resistant strains of the causative agent Mycobacterium tuberculosis (Mtb). The front-line antibiotic isoniazid (INH), and several other drugs, target the biosynthesis of mycolic acids and especially the Fatty Acid Synthase-II (FAS-II) elongation system. This biosynthetic pathway is essential and specific for mycobacteria and still represents a valuable system for the search of new anti-tuberculous agents. Several data, in the literature, suggest the existence of protein-protein interactions within the FAS-II system. These interactions themselves might serve as targets for a new generation of drugs directed against Mtb. By using an extensive in vivo yeast two-hybrid approach and in vitro co-immunoprecipitation, we have demonstrated the existence of both homotypic and heterotypic interactions between the known components of FAS-II. The condensing enzymes KasA, KasB and mtFabH interact with each other and with the reductases MabA and InhA. Furthermore, we have designed and constructed point mutations of the FAS-II reductase MabA, able to disrupt its homotypic interactions and perturb the interaction pattern of this protein within FAS-II. Finally, we showed by a transdominant genetic approach that these mutants are dominant negative in both non-pathogenic and pathogenic mycobacteria. These data allowed us to draw a dynamic model of the organization of FAS-II. They also represent an important step towards the design of a new generation of anti-tuberculous agents, as being inhibitors of essential protein-protein interactions.  相似文献   

20.
An understanding of isoniazid (INH) drug resistance mechanism in Mycobacterium tuberculosis should provide significant insight for the development of newer anti-tubercular agents able to control INH-resistant tuberculosis (TB). The inhA-encoded 2-trans enoyl-acyl carrier protein reductase enzyme (InhA) has been shown through biochemical and genetic studies to be the primary target for INH. In agreement with these results, mutations in the inhA structural gene have been found in INH-resistant clinical isolates of M.tuberculosis, the causative agent of TB. In addition, the InhA mutants were shown to have higher dissociation constant values for NADH and lower values for the apparent first-order rate constant for INH inactivation as compared to wild-type InhA. Here, in trying to identify structural changes between wild-type and INH-resistant InhA enzymes, we have solved the crystal structures of wild-type and of S94A, I47T and I21V InhA proteins in complex with NADH to resolutions of, respectively, 2.3A, 2.2A, 2.0 A, and 1.9A. The more prominent structural differences are located in, and appear to indirectly affect, the dinucleotide binding loop structure. Moreover, studies on pre-steady-state kinetics of NADH binding have been carried out. The results showed that the limiting rate constant values for NADH dissociation from the InhA-NADH binary complexes (k(off)) were eleven, five, and tenfold higher for, respectively, I21V, I47T, and S94A INH-resistant mutants of InhA as compared to INH-sensitive wild-type InhA. Accordingly, these results are proposed to be able to account for the reduction in affinity for NADH for the INH-resistant InhA enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号