首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using the whole cell voltage-clamp technique and a Cl free and Na free Ba methane sulfonate solution, stage V and VI Xenopus oocytes demonstrated a Ba current (endogenous component) with a peak amplitude average of 6 nA (6 ± 2 nA). When oocytes were injected with crustacean skeletal muscle mRNA, an additional component of IBa could be detected (exogenous IBa). The latter current could be distinguished from the native one by several electrophysiological means: a peak amplitude average of 90 nA (90 ± 4 nA), activation potential threshold, steady state inactivation properties and sensitivity to Ca blockers. As shown by Jdaïâa and Guilbault in crustacean skeletal muscle fibres, exogenous IBa could be divided into two components: a “fast component” and a “slow component” probably passing through two types of Ca channels (fast and slow) since the peak Ba current voltage relationship was biphasic and the fast component of exogenous IBa was less sensitive than the slow to nifedipine. The features of the newly synthesized channels incorporated in the Xenopus oocyte membrane suggest that they may be associated with fast and slow channels, previously described in many preparations, particularly in crustacean skeletal muscle fibres.  相似文献   

2.
Summary— Using the whole cell voltage-clamp technique and a Cl free and Na free Ba methane sulfonate solution, stage V and VI Xenopus oocytes demonstrated a Ba current (endogenous component) with a peak amplitude average of 6 nA (6 ± 2 nA). When oocytes were injected with crustacean skeletal muscle mRNA, an additional component of IBa could be detected (exogenous IBa). The latter current could be distinguished from the native one by several electrophysiological means: a peak amplitude average of 90 nA (90 ± 4 nA), activation potential threshold, steady state inactivation properties and sensitivity to Ca blockers. As shown by Jdaïâa and Guilbault in crustacean skeletal muscle fibres, exogenous IBa could be divided into two components: a “fast component” and a “slow component” probably passing through two types of Ca channels (fast and slow) since the peak Ba current voltage relationship was biphasic and the fast component of exogenous IBa was less sensitive than the slow to nifedipine. The features of the newly synthesized channels incorporated in the Xenopus oocyte membrane suggest that they may be associated with fast and slow channels, previously described in many preparations, particularly in crustacean skeletal muscle fibres.  相似文献   

3.
Standard models for carrier-mediated nonelectrolyte transport across cell membranes do not explain sugar uptake by human red blood cells. This means that either (1) the models for sugar transport are incorrect or (2) measurements of sugar transport are flawed. Most measurements of red cell sugar transport have been made over intervals of 10 s or greater, a range which may be too long to measure transport accurately. In the present study, we examine the time course of sugar uptake over intervals as short as 5 ms to periods as long as 8 h. Using conditions where transport by a uniform population of cells is expected to be monophasic (use of subsaturating concentrations of a nonmetabolizable but transported sugar, 3-O-methylglucose), our studies demonstrate that red cell sugar uptake is comprised of three sequential, protein-mediated events (rapid, fast, and slow). The rapid phase is more strongly temperature-dependent than the fast and slow phases. All three phases are inhibited by extracellular (maltose or phloretin) or intracellular (cytochalasin B) sugar-transport inhibitors. The rate constant for the rapid phase of uptake is independent of the 3-O-methylglucose concentration. The magnitude (moles of sugar associated with cells) of the rapid phase increases in a saturable manner with [3-O-methylglucose] and is similar to (1) the amount of sugar that is retained by red cell membrane proteins upon addition of cytochalasin B and phloretin and (2) the d-glucose inhibitable cytochalasin B binding capacity of red cell membranes. These results are consistent with the hypothesis that previous studies have both under- and overestimated the rate of erythrocyte sugar transport. These data support a transport mechanism in which newly bound sugars are transiently sequestered within the translocation pathway where they become inaccessible to extra- and intracellular water.  相似文献   

4.
In several organisms solute transport is mediated by the simultaneous operation of saturable and non-saturable (diffusion-like) uptake, but often the nature of the diffusive component remains elusive. The present work investigates the nature of the diffusive glucose transport in Olea europaea cell cultures. In this system, glucose uptake is mediated by a glucose-repressible, H(+) -dependent active saturable transport system that is superimposed on a diffusional component. The latter represents the major mode of uptake when high external glucose concentrations are provided. In glucose-sufficient cells, initial velocities of D- and L-[U-(14)C]glucose uptake were equal and obeyed linear concentration dependence up to 100 mM sugar. In sugar starved cells, where glucose transport is mediated by the saturable system, countertransport of the sugar pairs 3-O-methyl-D-glucose/D-[U-(14)C]glucose and 3-O-methyl-D-glucose/3-O-methyl-D-[U-(14)C]glucose was demonstrated. This countertransport was completely absent in glucose-sufficient cells, indicating that linear glucose uptake is not mediated by a typical sugar permease. The endocytic inhibitors wortmannin-A and NH(4)Cl inhibited neither the linear component of D- and L-glucose uptake nor the absorption of the nonmetabolizable glucose analog 3-O-methyl-D-[U-(14)C]glucose, thus excluding the involvement of endocytic mediated glucose uptake. Furthermore, the formation of endocytic vesicles assessed with the marker FM1-43 proceeded at a very slow rate. Activation energies for glucose transport in glucose sufficient cells and plasma membrane vesicles were 7 and 4 kcal mol(-1), respectively, lower than the value estimated for diffusion of glucose through the lipid bilayer of phosphatidylethanolamine liposomes (12 kcal mol(-1)). Mercury chloride inhibited both the linear component of sugar uptake in sugar sufficient cells and plasma membrane vesicles, and the incorporation of the fluorescent glucose analog 2-NBDG, suggesting protein-mediated transport. Diffusive uptake of glucose was inhibited by a drop in cytosolic pH and stimulated by the protein kinase inhibitor staurosporine. The data demonstrate that the low-affinity, high-capacity, diffusional component of glucose uptake occurs through a channel-like structure whose transport capacity may be regulated by intracellular protonation and phosphorylation/dephosphorylation.  相似文献   

5.
We have purified two different electrophoretic forms of Post-γ-globulin defined by electrophoresis as “native slow” form and “fast” form respectively. Amino acid sequences of the first fifty-two residues of the “native slow” form and twenty-nine of the “fast” form were determined. The sequence shows that the “fast” form lacks the first nine amino acids of the “native slow” form.This observation is consistent with the existence of a “native slow” form that is degraded into other more acidic forms of Post-γ-globulin by loss of basic amino acids.  相似文献   

6.
In several organisms solute transport is mediated by the simultaneous operation of saturable and non-saturable (diffusion-like) uptake, but often the nature of the diffusive component remains elusive. The present work investigates the nature of the diffusive glucose transport in Olea europaea cell cultures. In this system, glucose uptake is mediated by a glucose-repressible, H+-dependent active saturable transport system that is superimposed on a diffusional component. The latter represents the major mode of uptake when high external glucose concentrations are provided. In glucose-sufficient cells, initial velocities of d- and l-[U-14C]glucose uptake were equal and obeyed linear concentration dependence up to 100 mM sugar. In sugar starved cells, where glucose transport is mediated by the saturable system, countertransport of the sugar pairs 3-O-methyl-d-glucose/d-[U-14C]glucose and 3-O-methyl-d-glucose/3-O-methyl-d-[U-14C]glucose was demonstrated. This countertransport was completely absent in glucose-sufficient cells, indicating that linear glucose uptake is not mediated by a typical sugar permease. The endocytic inhibitors wortmannin-A and NH4Cl inhibited neither the linear component of d- and l-glucose uptake nor the absorption of the nonmetabolizable glucose analog 3-O-methyl-d-[U-14C]glucose, thus excluding the involvement of endocytic mediated glucose uptake. Furthermore, the formation of endocytic vesicles assessed with the marker FM1-43 proceeded at a very slow rate. Activation energies for glucose transport in glucose sufficient cells and plasma membrane vesicles were 7 and 4 kcal mol− 1, respectively, lower than the value estimated for diffusion of glucose through the lipid bilayer of phosphatidylethanolamine liposomes (12 kcal mol− 1). Mercury chloride inhibited both the linear component of sugar uptake in sugar sufficient cells and plasma membrane vesicles, and the incorporation of the fluorescent glucose analog 2-NBDG, suggesting protein-mediated transport. Diffusive uptake of glucose was inhibited by a drop in cytosolic pH and stimulated by the protein kinase inhibitor staurosporine. The data demonstrate that the low-affinity, high-capacity, diffusional component of glucose uptake occurs through a channel-like structure whose transport capacity may be regulated by intracellular protonation and phosphorylation/dephosphorylation.  相似文献   

7.
The time course of creatine influx or efflux as measured in populations of red cells or red cell ghosts with normal age distribution does not follow simple two-compartment kinetics. This suggests that the contributions of individual cells to transport as measured in the populations as a whole are not uniform. In agreement with this inference, fractionation of red cell populations with respect to cell age shows that transport in young cells is considerably faster than in old cells.The dependence of creatine transport on creatine concentration in the medium follows an equation that can be interpreted to represent a super-imposition of a saturable component (apparent Km = 0.02 mM) and another component that cannot be saturated up to a creatine concentration of 5.0 mM. In contrast to the non-saturable component, the saturable component depends on the energy metabolism of the cell and can be inhibited by β-guanidinopropionic acid and the proteolytic enzyme pronase. This latter finding suggests that the saturable component represents active transport that is mediated by a transport protein. The non-saturable component is little, if at all, dependent on cell age while the saturable component is higher in young cells than in old cells. Phloretin inhibits both components of creatine flux, but the maximal inhibition that can be achieved at high concentration is only 70–80%.Under the experimental conditions used for the study of creatine transport, creatinine equilibration between cells and medium follows the kinetics expected for a steady-state two-compartment system. Creatinine flux is proportional to creatine concentration over the concentration range studied (up to 5 mM). It cannot be inhibited by β-guanidinopropionic acid or pronase.  相似文献   

8.
The resolving ability of the SIPP program operating on the regularzation principle was studied in computer experiments and in real experiments on a mixture of particles was two different dimensions as well as on tobacco mosaic virus. It has been shown that the limit of resolution in real dynamic light scattering experiments is achieved when the ratio of the characteristic times of the components is 1:2, provided that the contribution of the “slow” component to scattering is about twice that of the “fast” component. Some practical rules that serve to obtain the best resolution of the two compnoents have been formulated.  相似文献   

9.
The characteristics of chloride absorption by the tap root of citrus (Citrus spp.) seedlings were compared in isolated disks of the bark and in segments of the wood. Analysis of elution curves of the isotope following saturation of the tissue shows that there are at least two components of the chloride absorption system: one typical of the free space (“passive”) and the other of the non-free space (“active”). These two components are present in the bark only, while the wood has essentially the characteristics of a free space absorption (the slow component of the efflux being less evident). The nature of the bark as an actively collecting tissue for chloride from 10 mM Na36Cl, in contrast to the wood, was established on the basis of uptake curves. Examination of the uptake in the bark of 3 citrus varieties revealed considerable differences with regard to the magnitude of the two components of chloride absorption. These findings are discussed in relation to the role of the cortex and the stele in the transport of ions.  相似文献   

10.
Kinetic analysis of [14C]sucrose loading into sugar beet leaf discs revealed the presence of two transport components. At low exogenous sucrose concentrations, a saturable component, which exhibited Michaelis-Menten characteristics, was the main mode of transport. At concentrations greater than 50 millimolar, phloem loading was dominated by a linear component which appeared to operate as a first order kinetic transport process. Over the exogenous sucrose concentrations employed, influx could be described by the equation v = VmaxS/(S + Km) + kS. Influx via both processes was strongly pH-dependent. Evidence is presented that the linear component was not explicable in terms of simple diffusion, or exchange diffusion, into either mesophyll or minor vein phloem tissue. Extensive metabolic conversion of sucrose was not a factor contributing to influx at high external sucrose concentrations. At present, it is believed that both components operate in parallel at the membrane bounding the sieve element-companion cell complex. The saturable component is identified with sucrose-H+ cotransport. While the significance of the linear component has been established, its nature remains to be elucidated.  相似文献   

11.
Cells of Distyostelium discoideum representing four developmental stages were atuo-analysed for constituent monosaccharides and their compositions compared. Rhamnose, ribose, fucose, glucose, mannose, galactose, glucosamine, galactosamine and an unidentified sugar were recovered after hydrolysis in 2 M HCl for 2 h at 100°C. The relative proportions of the individual sugars were found to vary as a function of development. The largest variations were in the proportions contributed by galactose (from 2% of vegetative cell carbohydrate to 12% of the carbohydrate of fruiting bodies) and galactosamine (present in measurable quantity only in fruiting bodies).Plasma membrane “ghosts” were found to have the same monosccharide constituents as whole cells, but in different proportions. Mannose contributed over 24% of the total carbohydrate recovered from aggregating cell “ghosts”, but only 13% of carbohydrate recovered from “ghosts” prepared from vegetative cells. Galactose was the most abundant sugar recovered from vegetative “ghosts”, and was second only to mannose in aggregating “ghosts”.  相似文献   

12.
Shmuel Malkin  Jim Barber 《BBA》1978,502(3):524-541
1. Using a phosphoroscope, delayed luminescence and prompt chlorophyll fluorescence from isolated chloroplasts have been compared during the induction period.2. Two distinct decay components of delayed luminescence were measured a “fast” component (from ≈1 ms to ≈6 ms) and a “slow” component (at ≈6 ms).3. The fast luminescence component often did not correlate with the fluorescence changes while the slow component significantly changed its intensity during the induction period in a manner which could usually be linearly correlated with variable portion of the fluorescence yield change.4. This correlation was evident after preillumination with far-red light or after allowing a considerable time for dark relaxation.5. The close relationship between the slow luminescence component and variable fluorescence yield was observed with a large range of light intensities and also in the presence of 3(3,4-dichlorophenyl)-1,1-dimethylurea which considerably changes the fluorescence induction kinetics.6. Valinomycin and other antibiotics reduced the amplitude of the 6 ms (slow) luminescence without affecting its relation with the fluorescence induction suggesting possibly that a constant electrical gradient exist in the dark or formed very rapidly in the light, which effects the emission intensity.7. Changes in salt levels of suspending media equally affected the amplitude of both delayed luminescence and variable fluorescence under conditions when the reduction of Q is maximal and constant.8. The results are discussed in terms of several models. It is concluded that the model of independent Photosystem II units together with photosynthetic back reaction concept is incompatible with the data. Other alternative models (the “lake” model and photosynthetic back reaction; recombination of charges in the antenna chlorophyll; the “W” hypothesis) were in closer agreement with the results.  相似文献   

13.
14.
Microtubule proteins, isolated by cycles of assembly, will undergo ATP-dependent gelation-contraction in vitro. A particulate component is present in these preparations, which is required for the gelation-contraction of microtubules assembled from purified tubulin. These particulates contain tubulin, neurofilament, spectrin, MAP2, and other as yet unidentified proteins. The particulates have a microtubule-stimulated ATPase that may be unique and is the likely motor for microtubule gelation-contraction. The basic structural unit of these particulates appears to be a crescent-shaped, or hemispherical, granule about 20 nm in diameter. The particles move along microtubule walls at a rate of about 1 micron. When compared to known physiological phenomena, microtubule gelation-contraction has striking similarities to component a of slow axonal transport (SCa), but displays no relationship to slow component b or to fast transport. On the basis of their similarities in composition, solubility, and rate of movement, we have proposed that the particulates responsible for microtubule gelation-contraction are the insoluble protein complexes, which have been suggested to be the transported component of SCa. We have termed these structures "slow component a particulates" or "SCAPs." It is probable that similar motile protein complexes exist in cells other than neurons, and we propose the term "dynasome" to describe such structures in general.  相似文献   

15.
How carnivorous plants outsmart their prey The non‐muscular movements of plants, especially the fast traps of carnivorous plants, might appear as natural “wonders”, but they are all evoked by the interplay of functional morphological structures developed during evolution with well‐described biophysical and chemical processes. Hydraulic “motors”, which are based on water displacement in the respective cells and tissues, entail rather slow motions. Large and fast structures, as e.g., the snap‐traps of the carnivorous Venus flytrap, often depend on the release of stored elastic energy (relaxation) which acts as a speed boost and significantly speeds up the motion. The fast traps presented here and the deformation principles involved, including some mechanical “tricks”, can be rebuild in simple and low‐cost physical models which are especially useful for an application in teaching.  相似文献   

16.
The neuron uses two families of microtubule-based motors for fast axonal transport, kinesin, and cytoplasmic dynein. Cytoplasmic dynein moves membranous organelles from the distal regions of the axon to the cell body. Because dynein is synthesized in the cell body, it must first be delivered to the axon tip. It has recently been shown that cytoplasmic dynein is moved from the cell body along the axon by two different mechanisms. A small amount is associated with fast anterograde transport, the membranous organelles moved by kinesin. Most of the dynein is transported in slow component b, the actin-based transport compartment. Dynactin, a protein complex that binds dynein, is also transported in slow component b. The dynein in slow component b binds to microtubules in an ATP-dependent manner in vitro, suggesting that this dynein is enzymatically active. The finding that functionally active dynein, and dynactin, are associated with the actin-based transport compartment suggests a mechanism whereby dynein anchored to the actin cytoskeleton via dynactin provides the motive force for microtubule movement in the axon.  相似文献   

17.
Cellular quiescence is a reversible cell growth arrest that is often assumed to require a persistence of non-permissive external growth conditions for its maintenance. In this work, we showed that androgen could induce a quiescent state that is self-sustained in a cell-autonomous manner through a “hit and run” mechanism in androgen receptor-expressing prostate cancer cells. This phenomenon required the set-up of a sustained redox imbalance and TGFβ/BMP signaling that were dependent on culturing cells at low density. At medium cell density, androgens failed to induce such a self-sustained quiescent state, which correlated with a lesser induction of cell redox imbalance and oxidative stress markers like CDKN1A. These effects of androgens could be mimicked by transient overexpression of CDKN1A that triggered its own expression and a sustained SMAD phosphorylation in cells cultured at low cell density. Overall, our data suggest that self-sustained but fully reversible quiescent states might constitute a general response of dispersed cancer cells to stress conditions.  相似文献   

18.
Well-perfused adult DA kidneys were enzymatically dispersed under conditions which do not affect the expression of cell surface major histocompatibility antigens. The kidney cell suspensions were separated via sedimentation at unit gravity into three fractions: I, rapidly sedimenting (>6.5 mm/hr) enriched for kidney tubular and glomerular cells and depleted of passenger leukocytes (76 and 8%, respectively); II, intermediate (5.1–6.0 mm/hr) mixed population equivalent to the unseparated kidney cell suspension (52% tubular and glomerular cells, 20% endothelial cells, and 28% passenger leukocytes); and III, slow sedimenting (<5.0 mm/hr) enriched for passenger leukocytes (63%). The three isolated fractions were analyzed for their ability to accelerate allograft rejection in the “primed heart rejection assay.” The cells in fraction I were unable to reduce heart allograft survival, while the cells from fraction III reduced it significantly. Cells from fraction II were intermediary effective. The results are in agreement with the hypothesis that the urine-producing apparatus of rat kidney is relatively nonimmunogenic, while the main stimulus for graft rejection is provided by the “passenger” cell component.  相似文献   

19.
The growth of an epithelial canine kidney line (MDCK) was reversibly arrested by gradually lowering the serum concentration in the medium over a 3-day period. The cells were demonstrably quiescent by autoradiography after an additional 24 hours in serum-free media. Addition of fresh serum produced DNA synthesis after an 18-hour lag period. The quiescent cells then grew to confluency retaining their transport capacities as seen by the formation of “domes”. This system allows for measurement of monovalent ion fluxes and its relationship to growth regulation. The addition of fresh serum to quiescent MDCK cells increased the uptake of 86Rb, a measure of Na-K pump activity. This stimulation was mediated by increased uptake of Na into the cells. Serum-stimulated DNA synthesis was blocked by the addition of ouabain in concentrations that inhibit the Na-K pump. Serum appears to stimulate growth in epithelial cells by increasing the amount of intracellular Na available to the Na-K pump. Monovalent ion transport may play a role in the regulation of epithelial cell proliferation.  相似文献   

20.
Cells from pigmented retina of 8- to 9-day-old chick embryos were cultured under two different conditions: on noncoated (NS) or collagen-coated (CS) substrates. Although cells on CS seemed to start dividing 2 to 3 days earlier than those on NS, their early growth rates were basically similar. Cells on CS stopped growing after attaining confluency and formed a monolayer, while cells on NS continued to grow after confluency and overlapped each other. In early growth phase, cells on both substrates became depigmented. Cells became repigmented earlier on CS than on NS. The average melanin content of cells in confluent cultures on CS was two to three times higher than that of cells on NS. By Day 30 “lentoid bodies” were formed only in cultures on NS. Immunoelectrophoretic tests showed the presence of all crystallins (α-, β-, and δ) in cultures on NS but not in cultures on CS. It is concluded that a collagen substrate inhibits “transdifferentiation” of pigmented retinal cells into lens during cell culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号