首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Location and time of appearance of serotonin and FM RFamide in ontogenesis of the bivalve mollusc Mytilus adulis L. has been studied. Serotonin first appears at a transfer from the last trochophore stage to the early veliger stage, 30–32 h after fertilization and is detected in a large cell located immediately at the base of the apical plume. FMRFamide appears 14–15 h after fertilization, during the transfer from the conchostoma stage to the early trochophore stage before the turning out of the shell gland and is a marker of the future shell site. It is located as a transverse stretch on the back of the larva in the area of the future shell. After the turning out of the shell gland the stretch is markedly shortened, while its processes approach the larval surface and are located under the shell. A suggestion is made about a morphogenetic function of FMRFamide.  相似文献   

2.
The appearance of muscle proteins in the contractile apparatus of the mussel Mytilus trossulus was subjected to comparative analysis during ontogenesis. It was established, with the use of Western blot analysis and electrophoresis in polyacrylamid gel in the presence of sodium dodecylsulfate, that proteins of the contractile apparatus of mussel muscles express long before the formation of the first functionally active muscle system of the veliger larvae. Paramyosin is present in egg cells; twitchin, myorod, and actin appear at the stage of blastula (12 h after fertilization), and myosin appears at the trochophore stage (17 h after fertilization). The quantitative relation of muscle proteins was studied in actomyosin extracts of larvae obtained from different developmental stages. It was shown that the ratios actin/myosin and paramyosin/myosin at the veliger stage (96 h after fertilization) were found to be similar to those in the striated muscles of invertebrates.  相似文献   

3.
Location and time of appearance of serotonin and FMRFamide in ontogenesis of the bivalve mollusc Mytilus adulis L.has been studied. Serotonin first appears at a transfer from the last trochophore stage to the early veliger stage, 30–32 h after fertilization and is detected in a large cell located immediately at the base of the apical plume. FMRFamide appears 14—15 h after fertilization, during the transfer from the conchostoma stage to the early trochophore stage before the turning out of the shell gland and is a marker of the future shell site. It is located as a transverse stretch on the back of the larva in the area of the future shell. After the turning out of the shell gland the stretch is markedly shortened, while its processes approach the larval surface and are located under the shell. A suggestion is made about a morphogenetic function of FMRF-amide.  相似文献   

4.
 Recent reports indicate that neuronal elements develop in early larval stages of some Gastropoda from the Pulmonata and Opisthobranchia prior to the appearance of any ganglia of the future adult central nervous system (CNS). The present study describes similar early neuronal elements in Crepidula fornicata. A posterior FMRFamide-like immunoreactive (LIR) cell with anteriorly projected fibers was observed in the trochophore stage. Additional FMRFamide-LIR and serotonin-LIR cells and fibers were found in the apical organ in the trochophore and early veliger stages. FMRFamide-LIR and serotonin-LIR projections to the velum and foot were also detected at this time. As the veliger developed, peripheral FMRFamide-LIR and later catecholaminergic cells were located in the foot region. Also during this stage, catecholaminergic cells and processes were observed near the mouth. In addition, this study tentatively identified the first serotonin- and FMRFamide-LIR cells and fibers within the developing ganglia of the adult CNS, which appeared in close proximity to the earlier developing elements. These observations are consistent with the hypothesis that, in addition to its presumed role in the control of larval behaviors, the larval nervous system guides the development of the adult CNS. Larvae from the class Bivalvia and other invertebrate phyla also have neuronal elements marked by the presence of FMRFamide, serotonin, and catecholamines, and, therefore, this study may provide additional insights into phylogenetic relationships of the Gastropoda with other representatives of the Mollusca and different invertebrate phyla. Accepted: 10 February 1999  相似文献   

5.
The development of contractile apparatus was subjected to comparative analysis during ontogenesis of the mussel Mytilus trossulus. Indirect immunofluorescence with the polyclonal antibody against mussel twitchin, a protein of thick filaments, and fluorescent phalloidin as a marker of filamentous cell actin were used to monitor changes in the developing muscle system at different larval stages. The first definitive muscle structures were found at the late trochophore stage (36 h after fertilization) and starting from the midveliger stage (96h), striated muscles, which are never present in adult mussels, were distinctly seen. The striated muscle periodicity was 1.25 μm in both mussel larvae and adult scallop. The contractile activities of veliger and adult muscles were measured using an electronic signal-processing video workstation. This work is the first complex study of morphological, biochemical, and physiological characteristics of the muscle system in the larvae and adult molluscs.  相似文献   

6.
7.
During the early development of Pecten maximus, the prototrochof the trochophore becomes the rim of the velum of the veliger.The prototroch consists of a tract of randomly-distributed cilia,but in the veliger an ordered pattern of ciliation with somecompound cilia develops. The thin epithelium connecting thevelum to the body of the larva bears no cilia, nor does theupper surface of the velum (except for an apical tuft); themuch thicker epithelium of the velum rim, however, is profuselyciliated. The cilia are arranged in five bands or rings eachextending round the rim of the velum. The ring closest to theupper (i.e. ventral) surface of the velum is the inner preoralring of single cilia. Below this are two rings of much longercilia grouped to form blade-shaped cirri, which each consistof 2 or 3 rows of 10-15 cilia. The cilia substructures indicatethat the direction of active beat of the cirrus is along theaxis of the rows. This beating generates the main swimming current.The energy demands of beating are reflected in the numerouslarge mitochondria in the cells bearing the cirri. Nerve processesin the velum may control beating. Below the cirri are an adoraltract of shorter cilia and then a ring of postoral cilia. Thevelum anatomy is that of a typical bivalve veliger, but somefeatures distinguish Pecten maximus from other bivalves. Theonfiguration of the bands of cilia and the orientation of theirbeating suggest that the veliger captures food particles bythe ‘opposed band’ method. This configuration islikely to be homologous with those of other spiralian larvae. *Present address: School of Biological Scrences, PortsmouthPolytechnic, King Henry I Street, Portsmouth, PO1 2DY, U.K. (Received 30 September 1988; accepted 1 December 1988)  相似文献   

8.
The larval development of the Brachiopod Coptothyris grayi (Davidson, 1852) from the Sea of Japan is described for the first time. Ciliated blastula proved to represent the first free-swimming stage. The blastopore is initially formed as a rounded hole stretching later along the anteroposterior axis. The larva is first divided into two lobes (the apical lobe and the trunk); the mantle lobe is formed later as two lateral folds. Two pairs of seta bundles appear in the late stage larvae. The apical larval lobe in brachiopods is supposed to match the pre-oral lobe and anterior part of the trunk with tentacles in phoronids.  相似文献   

9.
扁玉螺早期发育的实验观察   总被引:2,自引:0,他引:2  
刘庆  孙振兴 《动物学杂志》2008,43(5):99-103
在实验室条件下人工孵化扁玉螺(Neverita didyma)的卵块,观察了其胚胎发育和幼虫发育过程.扁玉螺的早期发育属间接发生型,其胚胎发育包括卵裂期、囊胚期、原肠胚、膜内担轮幼虫、膜内面盘幼虫;幼虫发育包括面盘幼虫、后期面盘幼虫和匍匐幼虫;匍匐幼虫经变态后发育为稚螺.在水温25~26℃条件下,受精卵发育至膜内面盘幼虫约需38h,5~6d后面盘幼虫冲破卵膜而孵化.扁玉螺面盘幼虫的显著特点是具有1对眼点和1对平衡囊,面盘呈双叶状;后期面盘幼虫的面盘为4叶,呈蝴蝶状,足发达,幼虫既能浮游,又能爬行.后期面盘幼虫进一步生长发育,逐渐转入匍匐生活.  相似文献   

10.
Dinoflagellates in the genus Symbiodinium (zooxanthellae) provide the photosynthesis that sustains the majority of primary production in coral reefs. They occur symbiotically with several phyla, including mollusks such as giant clams (Tridacna spp.). This mutualistic association is obligatory for the giant clams, but the exact point in which this symbiosis is established and the main translocated photosynthate are unknown. In this study, we tracked the expression of specific genes for symbiosis and glycerol synthesis during a time course experiment. Giant clam larvae were raised until 75 h post-fertilization and then infected with cultured isolates of Symbiodinium clade A3. Expression of symbiosis-specific and housekeeping genes was monitored at four time points. The expression of H+-ATPase, a symbiosis-specific gene in Symbiodinium, was observed at 24 h after symbiont acquisition by the clam larvae. The expression of an enzyme responsible for glycerol synthesis was also observed. Together, these results show that the symbiotic relationship was already in place 24 h after Symbiodinium acquisition, during veliger larval stage. This is the first report using a molecular symbiosis-specific marker that supports symbiotic activity between Symbiodinium and a metazoan larva of an organism that acquires symbionts horizontally. From the expression of the glycerol-synthesizing gene, it was qualitatively determined that Symbiodinium cells may produce glycerol regardless of whether they are free-living or in symbiosis.  相似文献   

11.
Integrins play a key role in the intermediation and coordination between cells and extracellular matrix components. In this study, we first determined the presence of the β integrin‐like protein and its presumptive ligand, fibronectin‐like protein, during development and in some adult tissues of the bivalve mollusc Mytilus trossulus. We found that β integrin‐like protein expression correlated with the development and differentiation of the digestive system in larvae. Besides the presence of β integrin‐like protein in the digestive epithelial larval cells, this protein was detected in the hemocytes and some adult tissues of M. trossulus. The fibronectin‐like protein was detected firstly at the blastula stage and later, the FN‐LP‐immunoreactive cells were scattered in the trochophore larvae. The fibronectin‐like protein was not expressed in the β integrin‐positive cells of either the veliger stage larvae or the adult mussel tissues and the primary hemocyte cell culture. Despite the β integrin‐ and fibronectin‐like proteins being expressed in different cell types of mussel larvae, we do not exclude the possibility of direct interaction between these two proteins during M. trossulus development or in adult tissues.  相似文献   

12.
13.
Trigger and toxic effects of Mytilus edulis (Bivalvia) hemolymph on encystment of cercariae Himasthla elongata obtained from infestated Littorina littorea (Prosobranchia) was evaluated as a result of 24-h experiments in vitro. The contact of H. elongata larvae with the whole hemolymph or mussel acellular plasma led to an intensive transformation of cercariae into metacercariae. In both tested media, the cercariae had to complete the encystment phase as fast as for 2 h, otherwise the risk of the larvae injury by humoral and cellular components of the mussel hemolymph would increase dramatically. The cercaria mortality after 24 h in the whole hemolymph was twice higher than in plasma (40% and 20%, respectively) and much higher than in the control medium (sea water). Both toxic and trigger effects of plasma was revealed to depend on its concentration, with the maximal larva mortality in the undiluted medium and with the highest number of successful transformations in the medium diluted more than 4 times. There is shown both the strong individual variability of toxicity of the individual mussel hemolymph for cercariae and the variability of the resistance to the toxic factors of the cercariae obtained from various L. littorea individuals. These experiments not only offer a method of the massive encystment of H. elongata cercariae, but also propose a perspective model for the study of the systemic defensive response of Bivalvia to invasion of multicellular parasite.  相似文献   

14.

Background

The shipworm Lyrodus pedicellatus is a wood-boring bivalve with an unusual vermiform body. Although its larvae are brooded, they retain the general appearance of a typical bivalve veliger-type larva. Here, we describe myogenesis of L. pedicellatus revealed by filamentous actin labelling and discuss the data in a comparative framework in order to test for homologous structures that might be part of the bivalve (larval) muscular ground pattern.

Results

Five major muscle systems were identified: a velum retractor, foot retractor, larval retractor, a distinct mantle musculature and an adductor system. For a short period of larval life, an additional ventral larval retractor is present. Early in development, a velum muscle ring and an oral velum musculature emerge. In late stages the lateral and dorsal mantle musculature, paired finger-shaped muscles, an accessory adductor and a pedal plexus are formed. Similar to other bivalve larvae, L. pedicellatus exhibits three velum retractor muscles, but in contrast to other species, one of them disappears in early stages of L. pedicellatus. The remaining two velum retractors are considerably remodelled during late larval development and are most likely incorporated into the elaborate mantle musculature of the adult.

Conclusions

To our knowledge, this is the first account of any larval retractor system that might contribute to the adult bodyplan of a (conchiferan) mollusk. A comparative analysis shows that a pedal plexus, adductors, a larval velum ring, velum retractors and a ventral larval retractor are commonly found among bivalve larvae, and thus most likely belong to the ground pattern of the bivalve larval musculature.
  相似文献   

15.
Developmental and free-living stages of the chordoid larva of the cycliophoran species, Symbion pandora Funch and Kristensen 1995, were studied using light and electron microscopy. In the free-living stage of the larva, about 200 μm long, four ciliated areas are found: two anterior bands, a ventral ciliated field, and a posterior unit on the ventral side of the foot. The nervous system consists of a dorsal brain and a pair of ventral longitudinal nerves. A gut is absent. A pair of protonephridia, each with a single multiciliated terminal cell and at least one duct cell, is present. Nephridiopores are not localized. A pair of corsal ciliated organs is posterior to the brain. The homology between these and the apical organ of a trochophore larva is discussed. A distinctive longitudinal rod, the chordoid organ, consists of vacuolized cells with circular myofilaments. The organ is comparable to a similar structure in gastrotrichs. In the discussion of the phylogenetic position of Cycliophora among protostomians, important morphological observations that are described in the present study indicate that, despite some dissimilarities, the chordoid larva is a modified trochophore. © 1996 Wiley-Liss, Inc.  相似文献   

16.
17.
This study demonstrates the presence of a relatively extensive but previously unrecognized nervous system in embryonic stages of the opisthobranch mollusc Aplysia californica. During the trochophore stage, two pairs of cells were observed to be reactive to antibodies raised against the neuropeptides FMRFamide and EFLRIamide. These cells were located in the posterior region of the embryo, and their anterior projections terminated under the apical tuft. As the embryos developed into veliger stages, serotonin-like immunoreactive (LIR) cells appeared in the apical organ and were later observed to innervate the velum. Also, aldehyde-induced fluorescence indicative of catecholamines was present in cells in the foot, oral, and possibly apical regions during late embryonic veliger stages. Just before the embryo hatches as a free-swimming veliger, additional FMRFamide-LIR and catecholamine-containing cells appeared in regions that correspond to the ganglia of what will become the adult central nervous system (CNS). Neurons and connectives that will contribute to the adult CNS appear to develop along the pathways that are pioneered by the earliest posterior FMRFamide-LIR cells. These observations are consistent with the hypothesis that, besides their presumed roles in the control of embryonic behaviors, some elements may also guide the development of the CNS. Embryonic nervous systems that develop prior to and outside of the adult CNS have also been reported in pulmonate and prosobranch species of molluscs. Therefore, the demonstration of early developing neurons and their transmitter phenotypes in A. californica presents new opportunities for a better understanding of the ontogeny and phylogeny of both behavioral and neuronal function in this important model species.  相似文献   

18.
Summarized data on the fauna composition, distribution, and ecology of gastropod and bivalve mollusks of the Utlyuk Liman in the northwestern part of the Sea of Azov is presented. The total number of mollusk species identified was 63; 43 species belonged to the class Gastropoda, and 20 species, to the class Bivalvia. The distribution of mollusks in the liman has extremely irregular character, whereas the distribution of species along the marine shore of Biryuchii Ostrov spit is more homogeneous. Euryhaline Mediterranean species represent the core of liman malacofauna; some taxa of the Ponto-Caspian zoogeographical complex (Dreissena polymorpha and species of the genus Theodoxus) and invader species from distant sea basins (Mya arenaria and Anadara inaequivalvis) were also identified.  相似文献   

19.
We have earlier found that freshwater pond snails Helisoma trivolvis and Lymnaea stagnalis, when reared under conditions of starvation, release chemical signals that reversibly suppress larval development of conspecific embryos. Here, we report that (i) these signals are not strictly conspecific and affect also the embryos of a closely related species, which occupies a similar environmental niche; (ii) besides the development of embryos, the signals also affect the release of main motor programs, such as locomotion, feeding, and cardiac activity; (iii) action of the signals is bidirectional: they retard the development and release of motor programs at the early larval stages (trochophore to veliger) and accelerate them at later stages (late veliger to hatching). A possible adaptive significance of the described phenomena is discussed.  相似文献   

20.
Although our understanding of neuronal development in Trochozoa has progressed substantially in recent years, relatively little attention has been paid to the bivalve molluscs in this regard. In the present study, the development of FMRFamide-, serotonin- and catecholamine-containing cells in the mussel, Mytilus trossulus, was examined using immunocytochemical and histofluorescent techniques. Neurogenesis starts during the trochophore stage at the apical extreme with the appearance of one FMRFamide-like immunoreactive (lir) and one serotonin-lir sensory cell. Later, five FMRFamide-lir and five serotonin-lir apical sensory cells appear, and their basal fibres form an apical neuropil. Fibres of two lateral FMRFamide-lir apical cells grow posteriorly and at the time that they reach the developing foot, the first FMRFamide-lir neurons of the pedal ganglia also appear. Subsequently, FMRFamide-lir fibres grow further posteriorly and reach the caudal region where neurons of the developing visceral ganglia then begin to appear. In contrast, the five apical serotonin-lir neurons do not appear to project outside the apical neuropil until the late veliger stage. Catecholamine-containing cells are first detected in the veliger stage where they appear above the oesophagus, and subsequently in the velum, foot, and posterior regions. Though neural development in M. trossulus partly resembles that of polyplacophorans in the appearance of the early FMRFamidergic elements, and of scaphopods in the appearance of the early serotonergic elements, the scenario of neural development in M. trossulus differs considerably from that of other Trochozoa (bivalves, gastropods, polyplacophorans, scaphopods and polychaetes) studied to date. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号