首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The poly(dA) dependent T4 polynucleotide ligase catalyzed polymerization of oligodeoxythymidylates is dependent upon duplex stability. The antibiotics ethidium bromide, netropsin and Hoechst 33258 stabilize the duplex poly(dA) . P(dT)n (n = 6-10) to thermal denaturation. Ethidium bromide to DNA ratio of 1.25 and netropsin or Hoechst 33258 to DNA ratio of 0.1 the Tm of d(pT) 10 . poly (dA) was increased by 10 degrees and 25 degrees C respectively. The T4 polynucleotide ligase activity was not inhibited under these conditions and temperature optimum of joining of d(pT) 10 . poly(dA) was increased 5 degrees to 10 degrees by the binding of the antibiotics. Duplexes containing shorter oligodeoxythymidylates required lower concentrations of the antibiotics netropsin or Hoechst 33258 to show no inhibition of T4 polynucleotide ligase. The temperature optima of joining the duplexes d(pT)6 . POLY(DA) and d(pT) 8 . poly(dA) were increased by 5 degrees C upon binding of the antibiotics. Polyacrylamide gel analysis of the T4 polynucleotide ligase catalyzed joining of the oligodeoxythymidylates showed that the presence of antibiotics affected the product distribution of the polymerized oligomers.  相似文献   

2.
The self-complementary octanucleotide dT-A-G-T-A-C-T-A has been synthesized and its sequence confirmed by two-dimensional fingerprinting. Under conditions used for the T4 polynucleotide ligase reaction, this oligonucleotide forms a dimeric duplex which shows a Tm of 18 degrees C. The optimal rate of joining of the 32P-labeled duplex occurs between 12 and 15 degrees C. The rate is highly concentration dependent, as expected for a bimolecular process. Polyacrylamide gel electrophoretic analysis of this reaction shows the presence of products up to 120 nucleotides in length. In a denaturing gel, each product appears as a double band due to the presence of its 5'-adenylylated activated intermediate. Substrates larger than eight base pairs are utilized more rapidly than the eight base pair duplex, indicating that the T4 ligase has a higher affinity for longer substrates. The low level of nicked intermediates suggests that the joining of both strands requires two steps, the rates of which must be similar.  相似文献   

3.
4.
1. Trypsin digestion of Micrococcus lysodeikticus polynucleotide phosphorylase (nucleoside diphosphate-polynucleotide nucleotidyltransferase) causes a progressive increase in electrophoretic mobility in polyacrylamide gels of the single active degradation product. 2. A marked increase in primer requirement for CDP polymerization occurs before a more mobile product is formed. 3. alpha-Chymotrypsin digestion yields a product that separates into several active species on polyacrylamide-gel electrophoretograms. 4. No separation of ADP-and CDP-polymerization activities occurs during electrophoresis after either trypsin or alpha-chymotrypsin treatment.  相似文献   

5.
The kinetics of T4 polynucleotide ligase has been investigated at pH 8,20 degrees C and using the double-stranded DNA substrate (dA)n - [(dT)10]n/10. Double-reciprocal plots of initial rates vs substrate concentrations as well as product inhibition studies have indicated that the enzyme reacts according to a ping-pong mechanism. The overall mechanism was found to be non-processive. The true Km for the DNA substrate was 0.6 muM and that of ATP 100 muM. Several attempts were made to reverse the T4 polynucleotide ligase joining reaction using 32-p-labelled (dA)n - [(DT)40]n/40 as substrate. No breakdown of this DNA could be detected. The joining reaction was inhibited by high concentrations, i.e. above approximately 70mM, of salts such as KCl, NaCl, NH4Cl and CsCl. At a concentration of 200 mM almost 100% inhibition was observed. Polyamines also caused inhibition of the enzyme, the most efficient inhibitor being spermine followed by spermidine. At a concentration of 1 mM spermine, virtually no joining took place. Addition of salts or polyamines resulted in a large increase in the apparent Km for the DNA substrate whereas the apparent Km for ATP remained unchanged. It is suggested that the affinity of the enzyme for the DNA substrate is decreased in the presence of inhibiting agents.  相似文献   

6.
The stereochemical course of the phosphoryl transfer reaction catalyzed by T4 polynucleotide kinase has been determined using the chiral ATP analog, (Sp)-adenosine-5'-(3-thio-3-[18O]triphosphate). T4 polynucleotide kinase catalyzes the transfer of the gamma-thiophosphoryl group of (Sp)-adenosine-5'-(3-thio-3-[18O]triphosphate) to the 5'-hydroxyl group of ApA to give the thiophosphorylated dinucleotide adenyl-5'-[18O]phosphorothioate-(3'-5')adenosine. A sample of adenyl-5'-[18O]phosphorothioate-(3'-5')adenosine was subjected to venom phosphodiesterase digestion. The resulting adenosine-5'-[18O]phosphorothioate was shown to have the Rp configuration, thus indicating that the thiophosphoryl transfer reaction occurs with overall inversion of configuration of phosphorus.  相似文献   

7.
A technique is described in which the incorporation of a polynucleotide substrate into the matrix of a polyacrylamide gel allows the use of electrophoresis for the detection of polycationic ribonuclease activity rather than simply the presence of protein. Because use is made of the catalytic properties of ribonucleases, polynucleotide/polyacrylamide-gel electrophoresis is apparoximately 10(5) times more sensitive for the detection of these enzymes than conventional gel electrophoresis with the use of protein-staining dyes. Initial studies showed that the poor migration, in the gels, of highly charged polycationic ribonucleases in the presence of negatively charged synthetic polynucleotides could be overcome by high concentrations of spermine. The positively charged polyamine, by neutralizing the polyanionic polynucleotide, enabled these basic enzymes to migrate considerable distances in the gel. Electrophoresis of the RNAases under conditions of low pH, and incubation of the gel at neutral pH followed by staining for polynucleotide, resulted in coloured gels containing clear bands that define regions of enzyme activity. Alterations in spermine concentration or substrate identity caused changes in the positions of these bands, suggesting a dynamic interaction among the enzyme, polyamine and polynucleotide. Because of the advantages, in terms of selectivity and sensitivity of polynucleotide/polyacrylamide-gel electrophoresis, this technique was used to demonstrate the nuclease homogenity of three purified bovine muscle enzymes, and to compare these enzymes with each other, as well as with bovine pancreatic ribonuclease A.  相似文献   

8.
A novel DNA joining activity catalyzed by T4 DNA ligase.   总被引:2,自引:1,他引:1       下载免费PDF全文
The use of T4 and E. coli DNA ligases in genetic engineering technology is usually associated with nick-closing activity in double stranded DNA or ligation of 'sticky-ends' to produce recombinant DNA molecules. We describe in this communication the ability of T4 DNA ligase to catalyze intramolecular loop formation between annealed oligodeoxyribonucleotides wherein Watson-Crick base pairing is absent on one side of the ligation site. Enzyme concentration, loop size, substrate specificity, and base composition were explored in an effort to maximize yield. Amounts of T4 DNA ligase in large molar excess to DNA template and ligated product are necessary to achieve high yields.  相似文献   

9.
RNA ligase catalyzed the joining of pC-C-Ap with C-A-A in the synthesis of C-A-A-C-C-Ap, which has the sequence of the Escherichia coli tRNAfMet 3'-end. pC-C-A was also shown to be joined to C-A-A without any undesired self-polymerization. Joining of pC-C-A to various synthetic ribotriplets, such as C-C-A, A-A-A, C-C-C, U-U-U, U-A-G, C-C-G and U-U-C, was performed as well as joining to the partially substituted trimers with a photolabile o-nitrobenzyl group, C-Anbzl-A and C-C-Anbzl. The yields were C-A-A-C-C-A (69%), C-C-A-C-C-A (38%), A-A-A-C-C-A (66%), C-C-C-C-C-A (71%), U-U-U-C-C-A (50%), U-A-G-C-C-A (23%), C-C-G-C-C-A (43%) and U-U-C-C-C-A (46%). C-Anbzl-A was a slightly poorer acceptor than C-A-A and C-C-Anbzl did not serve as an acceptor. Recognition of acceptor molecules by RNA ligase is discussed in terms of affinity of oligonucleotides for the enzyme.  相似文献   

10.
11.
12.
Oxanine (Oxa), generated from guanine (Gua) by NO- or HNO2-induced nitrosative oxidation, has been thought to cause mutagenic problems in cellular systems. In this study, the response of Oxa to different enzymatic functions was explored to understand how similarly it can participate in biomolecular reactions compared to the natural base, Gua. The phosphorylation efficiency of the T4 polynucleotide kinase was highest when Oxa was located on the 5′-end of single stranded DNAs compared to when other nucleobases were in this position. The order of phosphorylation efficiency was as follows; Oxa > Gua > adenine (Ade) ∼ thymine (Thy) > cytosine (Cyt). Base-pairing of Oxa and Cyt (Oxa:Cyt) between the ligation fragment and template was found to influence the ligation performance of the T4 DNA ligase to a lesser degree compared to Gua:Cyt. In addition, EcoRI and BglII showed higher cleavage activities on DNA substrates containing Oxa:Cyt than those containing Gua:Cyt, while BamHI, HindIII and EcoRV showed lower cleavage activity; however, this decrease in activity was relatively small.  相似文献   

13.
Self-complementary oligodeoxyribonucleotides containing the base analogues 2-aminopurine, 2,6-diaminopurine, N6-methyladenine, uracil, and 5-bromouracil were synthesized by a general method that allows incorporation of the analogues at specific positions. The method uses chemically synthesized partial sequences but circumvents the need for protected base analogues by incorporating their unprotected 3',5'-bisphosphate derivatives enzymatically. T4 RNA ligase was used to add the analogues to the oligodeoxyribonucleotides with yields from 54 to greater than 95 percent. Oligodeoxyribonucleotides were joined to the oligodeoxyribonucleotides containing the analogues at their 3'-termini in yields from 22 to 81 percent. The high yields obtained in these joinings suggest that RNA ligase should be of general use for the specific incorporation of other deoxyribonucleotide analogues into oligodeoxyribonucleotides. The oligodeoxyribonucleotides containing the base analogues were characterized by their mobilities during HPLC, nucleoside compositions, sequences, and thermal stabilities.  相似文献   

14.
Double-stranded DNA segments with completely base-paired ends were obtained by the action of various restriction endonucleases on phage and plasmid DNAs. These segments were joined covalently by the T4 polynucleotide ligase. The joining was monitored by the electron microscopy count of intramolecularly circularized segments. The highest extent of joining, close to 75%, was observed at 15-25 degrees C with the segments resulting from the action of the Bacillus subtilis (strain R) restriction endonuclease Bsu on the DNA of bacteriophage SPPI or of the plasmid pSC 101. The joining of double-stranded termini required about 10 times more enzyme than the short single-stranded termini produced by the Escherichia coli restriction endonuclease EcoRI. A shortened purification of the T4 ligase was found to give an enzyme devoid of interfacing nucleases.  相似文献   

15.
16.
Kinetic properties of polynucleotide kinase (EC 2.7.1.78) isolated from Escherichia coli cells infected with phage T4 were investigated. The reaction depends on the concentration of MgATP, while free ATP or free Mg2+ have neither inhibitory nor accelerating effect. The initial reaction velocity was plotted against variable concentrations of ATP as the phosphate donor at various fixed concentrations of 5′-hydroxyl-DNA or oligo(rA) as the phosphate acceptor in the presence or absence of products. The double reciprocal plot analysis of the data suggested that the reaction obeys the random sequential mechanism. Various constants were determined and the reaction mechanism was discussed.  相似文献   

17.
The dependence of initial rate v0 of ATP--PPi exchange reaction catalyzed by RNA-ligase of bacteriophage T4 on the concentration of ATP(s), pyrophosphate (z) and Mgcl2 has been determined. The dependence of v0 on s and z described by the equation v0 = k-1k2E0/(k-1 + K2) (1 + K1/s + k2/z) has been obtained for the reaction of E + S in equilibrium ES in equilibrium E1 + Z, where E--enzyme, E1--adenylylenzyme, S--ATP, Z--pyrophosphate, K1 and K2--constants of equilibrium, k-1, k2--velocity constants of transition of ES to E + S and E1 + Z, E0--complete concentration of enzyme. The low inhibition of the ATP--PPi exchange by the acceptor A(pA)2 and donors pAp, p(Ap)3, pCp has been shown. The dependence of v0 on the concentration of MgCl2 is consent with the incorporation of only dimagnesium salts of substrates in the isotope-exchange reaction.  相似文献   

18.
19.
20.
Kinetic properties of polynucleotide kinase (EC 2.7.1.78) isolated from Escherichia coli cells infected with phage T4 were investigated. The reaction depends on the concentration of MgATP, while free ATP or free Mg2+ have neither inhibitory nor accelerating effect. The initial reaction velocity was plotted against variable concentrations of ATP as the phosphate donor at various fixed concentrations of 5'-hydroxyl-DNA or -oligo(rA) as the phosphate acceptor in the presence or absence of products. The double reciprocal plot analysis of the data suggested that the reaction obeys the random sequential mechanism. Various constants were determined and the reaction mechanism was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号