首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many nucleus-encoded mitochondrial enzymes differ in physical and chemical properties from analogous cytoplasmic enzymes, and it is therefore generally assumed that different genes encode analogous mitochondrial and cytoplasmic enzymes. However, our genetic studies show that for at least two different tRNA modifications, mutations in nuclear genes affect cytoplasmic as well as mitochondrial tRNAs. These studies utilize two yeast genes: TRM1 and TRM2. trm1 cells do not have the enzyme activity necessary to methylate guanosine to N2,N2-dimethylguanosine. trm2 is a new mutation that we describe here. trm2 cells are deficient in tRNA(uridine-5)methyltransferase, and hence contain tRNA lacking 5-methyluridine or ribothymidine. Other than lacking 5-methyluridine trm2 cells have no obvious physiological defect. These studies also show that the N2,N2-dimethylguanosine and 5-methyluridine modifications are not added to tRNA in an obligatory order, and that 5-methyluridine is not required for removal of intervening sequences from precursor tRNA.  相似文献   

2.
THERE are two biochemical systems which probably evolved before the development of accurate polynucleotide-specified protein synthesis: these are the system for polynucleotide replication and the machinery of protein synthesis itself1, 2. Before accurately specified proteins became available, these processes were perhaps catalysed by polynucleotide enzymes. Both tRNA and rRNA, which can be viewed as polynucleotide enzymes, have persisted as indispensable components of the contemporary apparatus. This has led me to wonder whether polynucleotide enzymes might still be operative in DNA replication. Moreover, in view of the complexity which would have been required for even a rudimentary form of protein synthesis, it seems unlikely that tRNA and rRNA arose by chance in a single evolutionary step1. More probably they have evolved from the replicative machinery for polynucleotides and thus it seems likely that the machinery of DNA replication may have many features in common with the polynucleotide components of protein synthesis.  相似文献   

3.
N1-methylation of adenosine to m1A occurs in several different positions in tRNAs from various organisms. A methyl group at position N1 prevents Watson–Crick-type base pairing by adenosine and is therefore important for regulation of structure and stability of tRNA molecules. Thus far, only one family of genes encoding enzymes responsible for m1A methylation at position 58 has been identified, while other m1A methyltransferases (MTases) remain elusive. Here, we show that Bacillus subtilis open reading frame yqfN is necessary and sufficient for N1-adenosine methylation at position 22 of bacterial tRNA. Thus, we propose to rename YqfN as TrmK, according to the traditional nomenclature for bacterial tRNA MTases, or TrMet(m1A22) according to the nomenclature from the MODOMICS database of RNA modification enzymes. tRNAs purified from a ΔtrmK strain are a good substrate in vitro for the recombinant TrmK protein, which is sufficient for m1A methylation at position 22 as are tRNAs from Escherichia coli, which natively lacks m1A22. TrmK is conserved in Gram-positive bacteria and present in some Gram-negative bacteria, but its orthologs are apparently absent from archaea and eukaryota. Protein structure prediction indicates that the active site of TrmK does not resemble the active site of the m1A58 MTase TrmI, suggesting that these two enzymatic activities evolved independently.  相似文献   

4.
Two enzymes (methylases) that catalyze the transfer of methyl groups from S-adenosyl-l-methionine to tRNA (prepared from Escherichia coli) have been partially purified from extracts of HeLa cells. One catalyzes the methylation of adenine residues of the tRNA to give 1-methyladenine units and the other is responsible for the conversion of guanine residues to N2-methylguanine and N2,N2-dimethylguanine (and may be a mixture of two enzymes). Activities of these relatively unstable enzymes could be maintained by storage at ?20 °C in the presence of 50% glycerol. Substrate specificity studies have revealed that bacterial tRNA (E. coli, Bacillus subtilis) can be used as substrate, whereas tRNA of animal origin (HeLa cells, rat liver) cannot be used. Of the specific tRNA's tested, E. coli tRNAfMet was used as substrate by both enzymes. E. coli tRNATyr was used by the adenine-1-methylase but not by the guanine-N2-methylase. The adenine-1-methylase catalyzed the transfer of approximately one methyl group per mole of either tRNAfMet or tRNATyr offered as substrate; in the presence of the guanine-N2-methylase 1 mole of E. coli tRNAfMet accepted 1 mole of methyl. Studies with the use of both enzymes established that enzymic methylation of the guanine site of E. coli tRNAfMet did not interfere with subsequent methylation of an adenine residue and neither did prior methylation of adenine interfere with the subsequent methylation of a guanine residue. In the presence of both enzymes, approximately 2 moles of methyl groups were accepted by 1 mole of the E. coli tRNAfMet.  相似文献   

5.
In the ribosome-independent biosynthesis of peptide natural products, amino acid building blocks are generally activated in the form of phosphoesters, esters, or thioesters prior to amide bond formation. Following the recent discovery of bacterial enzymes that utilize an aminoacyl ester with a transfer ribonucleic acid (tRNA) in primary metabolism, the number of tRNA-dependent enzymes used in biosynthetic studies of peptide natural products has increased steadily. In this review, we summarize the rapidly growing knowledge base regarding two types of tRNA-dependent enzymes, which are structurally and functionally distinct. Initially, we focus on enzymes with the GCN5-related N-acetyltransferase fold and discuss the catalytic function and aminoacyl-tRNA recognition. Next, newly found peptide-amino acyl tRNA ligases and their ATP-dependent reactions are highlighted.  相似文献   

6.
Polyacrylamide and porous-glass supports containing the dihydroxyborylphenyl group can be prepared by a method similar to that used in the synthesis of N-[N′-(m-dihydroxyborylphenyl)succinamyl]aminoethylcellulose. The reaction of aminoethylpolyacrylamide or amino-substituted glass with N-(m-dihydroxyborylphenyl)succinamic acid in the presence of N-cyclohexyl-N′-β-(4-methyl-morpholinium) ethylcarbodiimide yields products which, together with the cellulose derivative, are all capable of binding tRNA dissolved in buffers at pH 8.7. The demonstration that bound tRNA can be released with sorbitol solutions or with low pH buffers, together with studies on the binding of tRNA species that contain chemically modified 3′-terminals, indicate that the predominant binding mechanism consists of cyclic complex formation between the immobilized dihydroxyboryl groups and the 3′-terminal cis-diol groups of the tRNA molecules. Aminoacylated tRNA does not bind under the conditions necessary to bind tRNA and this permits the isolation of specific tRNA isoacceptors. The purification of tRNAPhe and the partial purification of tRNAGlu and tRNATrp are described.  相似文献   

7.
CAZy glycoside hydrolase family GH3 consists primarily of stereochemistry-retaining β-glucosidases but also contains a subfamily of β-N-acetylglucosaminidases. Enzymes from this subfamily were recently shown to use a histidine residue within a His-Asp dyad contained in a signature sequence as their catalytic acid/base residue. Reasons for their use of His rather than the Glu or Asp found in other glycosidases were not apparent. Through studies on a representative member, the Nag3 β-N-acetylglucosaminidase from Cellulomonas fimi, we now show that these enzymes act preferentially as glycoside phosphorylases. Their need to accommodate an anionic nucleophile within the enzyme active site explains why histidine is used as an acid/base catalyst in place of the anionic glutamate seen in other GH3 family members. Kinetic and mechanistic studies reveal that these enzymes also employ a double-displacement mechanism involving a covalent glycosyl-enzyme intermediate, which was directly detected by mass spectrometry. Phosphate has no effect on the rates of formation of the glycosyl-enzyme intermediate, but it accelerates turnover of the N-acetylglucosaminyl-enzyme intermediate ∼3-fold, while accelerating turnover of the glucosyl-enzyme intermediate several hundredfold. These represent the first reported examples of retaining β-glycoside phosphorylases, and the first instance of free β-GlcNAc-1-phosphate in a biological context.  相似文献   

8.
The conserved U54 in tRNA is often modified to 5-methyluridine (m5U) and forms a reverse Hoogsteen base pair with A58 that stabilizes the L-shaped tRNA structure. In Gram-positive and some Gram-negative eubacteria, m5U54 is produced by folate/FAD-dependent tRNA (m5U54) methyltransferase (TrmFO). TrmFO utilizes N5,N10-methylenetetrahydrofolate (CH2THF) as a methyl donor. We previously reported an in vitro TrmFO assay system, in which unstable [14C]CH2THF was supplied from [14C]serine and tetrahydrofolate by serine hydroxymethyltransferase. In the current study, we have improved the TrmFO assay system by optimization of enzyme and substrate concentrations and introduction of a filter assay system. Using this assay, we have focused on the tRNA recognition mechanism of TrmFO. 42 tRNA mutant variants were prepared, and experiments with truncated tRNA and microhelix RNAs revealed that the minimum requirement of TrmFO exists in the T-arm structure. The positive determinants for TrmFO were found to be the U54U55C56 sequence and G53-C61 base pair. The gel mobility shift assay and fluorescence quenching showed that the affinity of TrmFO for tRNA in the initial binding process is weak. The inhibition experiments showed that the methylated tRNA is released before the structural change process. Furthermore, we found that A38 prevents incorrect methylation of U32 in the anticodon loop. Moreover, the m1A58 modification clearly accelerates the TrmFO reaction, suggesting a synergistic effect of the m5U54, m1A58, and s2U54 modifications on m5s2U54 formation in Thermus thermophilus cells. The docking model of TrmFO and the T-arm showed that the G53-C61 base pair is not able to directly contact the enzyme.  相似文献   

9.
The crystal structure of N4-acetylcytidine (ac4C) a modified nucleoside of tRNA, has been determined from three-dimensional x-ray diffractometer data. The N4-substituent is proximal to C(5), quite contrary to expectations from solution studies of N4-methylcytosine. This orientation of the N4-substituent will not block Watson-Crick base pairing for reading the third codon by tRNAMMet, and hence the discriminatory function suggested for ac4C might arise due to non-standard conformation of the polynucleotide backbone of the anticodon around the Wobble base. A common characteristic of the modified nucleosides that occur at the Wobble position is their inability to shield the Watson-Crick base pairing sites; this is quite consistent with the necessity for reading the third base of the codon. This is in sharp contrast to the modifications of the nucleosides adjacent to the 3′-end of anticodons, all of which prevent Watson-Crick base pairing.  相似文献   

10.
The alkylation of a number of purified tRNA preparations by reaction with the carcinogens, N-methyl-N-nitrosourea and N-ethyl-N-nitrosourea was studied in order to investigate the role of nucleic acid structure on the distribution of alkylation products within the nucleotide sequence. The rate of alkylation was greatly increased by increasing the pH over the range 6 to 8 and the degree of alkylation (expressed as moles alkyl groups/mole tRNA) was directly proportional to the concentration of the nitrosamide added and independent of the amount of tRNA present. There was no significant difference in the degree of alkylation of any of the tRNA preparations tested. Reaction with N-ethyl-N-nitrosourea resulted in a degree of alkylation some 13 times less than that produced by reaction with a similar concentration of N-methyl-N-nitrosourea. The major product of the reaction was 7-alkylguanine amounting to about 80% of the total, but 3-methylcytosine, 6-O-methylguanine and 1-methyl-, 3-methyl-, and 7-methyladenine were also identified as products of the reaction of tRNAfMet with N-methyl-N-nitrosourea.The possibility that preferential alkylation of certain residues within the polynucleotide sequence was produced by reaction with the nitrosamides was examined by degradation of the alkylated tRNA with pancreatic ribonuclease and separation of the oligonucleotide fragments by chromatography on DEAE cellulose. When tRNAfMet which had been alkylated by reaction with N-methyl-N-nitrosourea or N-ethyl-N-nitrosourea was analysed in this way, the distribution of 7-alkylguanine was, within the limits of experimental error, in agreement with that expected for a random reaction of the alkylating agent with all of the guanosine residues throughout the molecule. A similar result was seen when tRNAPhe was examined. These results were obtained by alkylation under conditions where the native configuration of the tRNA was maintained and show that the tertiary structure of the nucleic acid does not impart any specificity to the reaction with the nitrosamide producing 7-alkylguanine but the possibility that such specificity does exist for the minor products of alkylation cannot be excluded.  相似文献   

11.
E. coli tRNAPhe was modified at its 3-(3-amino-3-carboxypropyl)uridine residue with the N-hydroxysuccinimide ester of N-4-azido-2-nitrophenyl)glycine. Exclusive modification of this base was shown by two-dimensional TLC analysis of the T1 oligonucleotide and nucleoside products of nuclease digestion. The fully modified tRNA could be aminoacylated to the same level as control tRNA. The aminoacylated tRNA was as active as control tRNA in non-enzymatic binding to the P site of ribosomes, and in EFTu-dependent binding to the rirobosomal A site. The functional activity of this photolabile modified tRNA allows it to be used to probe the A and P binding sites on ribosomes and on other proteins that interact with tRNA. Crosslinking to the ribosomal P site has been shown.  相似文献   

12.
The mass spectra of the trimethylsilyl (TMS) derivatives of the methyl and trideuteriomethyl esters of N-acetylneuraminic acid, the methyl ester of N-glycolylneuraminic acid, the methyl ester methyl β-glycoside of N-acetylneuraminic acid, the trideuteriomethyl ester trideuteriomethyl β-glycoside of N-acetylneuraminic acid, and the methyl esters of the (2→3)- and (2→6)-linked isomers of N-acetylneuraminic acid—lactose are discussed. The characteristic fragmentation patterns of the sialic acid derivatives can be used for the identification of this type of carbohydrate. The (2→3)- and (2→6)-linked isomers of N-acetylneuraminic acid—lactose can be differentiated.  相似文献   

13.
The incorporation of the cytokinin N6-benzyladenine into tobacco (Nicotiana tabacum) callus tRNA and rRNA preparations isolated from tissue grown on medium containing either N6-benzyladenine-8-14C or N6-benzyladenine-8-14C: benzene-3H(G) has been examined. N6-benzyladenine was incorporated into both the tRNA and rRNA preparations as the intact base. Over 90% of the radioactive N6-benzyladenosine recovered from the RNA preparations was associated with the rRNA. Purification of the crude rRNA by either MAK chromatography or Sephadex G-200 gel filtration had no effect on the N6-benzyladenosine content of the RNA preparation. The distribution of N6-benzyladenosine moieties in tobacco callus tRNA fractionated by BD-cellulose chromatography did not correspond to the distribution of ribosylzeatin activity. N6-benzyladenosine was released from the rRNA preparation by treatment with venom phosphodiesterase and phosphatase, ribonuclease T2 and phosphatase, or ribonuclease T2 and a 3′-nucleotidase. N6-benzyladenosine was not released from the RNA preparation by treatment with either ribonuclease T2 or phosphatase alone or by successive treatment with ribonuclease T2 and a 5′-nucleotidase. Brief treatment of the rRNA preparation with ribonuclease T1 and pancreatic ribonuclease converted the N6-benzyladenosine moieties into an ethyl alcohol soluble form. On the basis of these and earlier results, the N6-benzyladenosine recovered from the tobacco callus RNA preparations appears to be present as a constituent of RNA and not as a nonpolynucleotide contaminant.  相似文献   

14.
Programmed RNA breakage is an emerging theme underlying cellular responses to stress, virus infection and defense against foreign species. In many cases, site-specific cleavage of the target RNA generates 2′,3′ cyclic phosphate and 5′-OH ends. For the damage to be repaired, both broken ends must be healed before they can be sealed by a ligase. Healing entails hydrolysis of the 2′,3′ cyclic phosphate to form a 3′-OH and phosphorylation of the 5′-OH to form a 5′-PO4. Here, we demonstrate that a polynucleotide kinase-phosphatase enzyme from Clostridium thermocellum (CthPnkp) can catalyze both of the end-healing steps of tRNA splicing in vitro. The route of tRNA repair by CthPnkp can be reprogrammed by a mutation in the 3′ end-healing domain (H189D) that yields a 2′-PO4 product instead of a 2′-OH. Whereas tRNA ends healed by wild-type CthPnkp are readily sealed by T4 RNA ligase 1, the H189D enzyme generates ends that are spliced by yeast tRNA ligase. Our findings suggest that RNA repair enzymes can evolve their specificities to suit a particular pathway.  相似文献   

15.
16.
Two archaeal tRNA methyltransferases belonging to the SPOUT superfamily and displaying unexpected activities are identified. These enzymes are orthologous to the yeast Trm10p methyltransferase, which catalyses the formation of 1-methylguanosine at position 9 of tRNA. In contrast, the Trm10p orthologue from the crenarchaeon Sulfolobus acidocaldarius forms 1-methyladenosine at the same position. Even more surprisingly, the Trm10p orthologue from the euryarchaeon Thermococcus kodakaraensis methylates the N1-atom of either adenosine or guanosine at position 9 in different tRNAs. This is to our knowledge the first example of a tRNA methyltransferase with a broadened nucleoside recognition capability. The evolution of tRNA methyltransferases methylating the N1 atom of a purine residue is discussed.  相似文献   

17.
Distinct low molecular weight RNA species that have properties expected for the precursor to tRNA have been isolated from the posterior silkglands of the silkworm Bombyx mori. These RNAs migrate between 4 S and 5 S markers on acrylamide gels and are labeled preferentially in vivo in relation to tRNA. The precursor RNAs can be converted specifically into molecules indistinguishable in size from tRNA upon incubation with “cleavage” enzymes isolated from the silkgland ribosomes. Two of the three low molecular weight RNAs contain the modified residues, pseudouridine, dihydrouridine and ribothymidine, and are methylated in vivo, suggesting that these base modifications occur while the tRNA is still in its precursor stage.  相似文献   

18.
Alterations in rat liver transfer RNA (tRNA) methyltransferase activities have been observed after liver damage by various chemicals or by partial hepatectomy. The qualitative and quantitative nature of these activity changes and the time course for their induction have been studied. Since homologous tRNAs are essentially fully modified in vivo, E. coli tRNAs were used as in vitro substrates for the rat liver enzymes in these studies. Each of the liver-damaging agents tested rapidly caused increases in activities of the enzyme(s) catalyzing methyl group transfer to tRNAs that have an unmodified guanine at position 26 from the 5′ end of the molecule. This group of tRNAs includes E. coli tRNANfmet, tRNAAla1, tRNALeu1, or Leu2, and tRNASer3 (Group 1). In each case N2-methylguanine and N2,N2-dimethylguanine represented 90% or more of the products of these in vitro methylations. The product and substrate specificity observed are characteristic of N2-guanine methyltransferase II (S-adenosyl-L-methionine:tRNA (guanine-2)-methyltransferase, EC 2.1.1.32). In crude and partially purified preparations derived from livers of both control and treated animals this enzyme activity was not diminished significantly by exposure to 50°C for 10 min. The same liver-damaging agents induced little or no change in the activities of enzymes that catalyze methyl group transfer to various other E. coli tRNAs that do not have guanine at position 26 (Group 2). The results of mixing experiments appear to rule out the likelihood that the observed enzyme activity changes are due to stimulatory or inhibitory materials present in the enzyme preperations from control or treated animals. Thus, our experiments indicate that liver damage by each of several different methods, including surgery or administration of chemicals that are strong carcinogens, hepatotoxins, or cancer-promoting substances, all produce changes in liver tRNA methyltransferase activity that represent a selective increase in activity of N2-guanine tRNA methyltransferase II. It is proposed that the specificity of this change is not fortuitous, but is the manifestation of an as yet unidentified regulatory process.  相似文献   

19.
Related domains containing the purine NTP-binding sequence pattern have been revealed in two enzymes involved in tRNA processing, yeast tRNA ligase and phage T4 polynucleotide kinase, and in one of the major proteins of mammalian nerve myelin sheath, 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNPase). It is suggested that, similarly to the tRNA processing enzymes, CNPase possesses polynucleotide kinase activity, in addition to the phosphohydrolase one. It is speculated that CNPase may be an authentic mammalian polynucleotide kinase recruited as a structural component of the myelin sheath, analogously to the eye lens crystallins. Significant sequence similarity was revealed also between the N-terminal regions of yeast tRNA ligase and phage T4 RNA ligase. A tentative scheme of the domainal organizations for the three complex enzymes is proposed. According to this model, tRNA ligase contains at least three functional domains, in the order: N-ligase-kinase-phosphohydrolase-C, whereas polynucleotide kinase and CNPase encompass only the two C-terminal domains in the same order.  相似文献   

20.
Free energy of imperfect nucleic acid helices. II. Small hairpin loops   总被引:61,自引:0,他引:61  
Physical studies of enzymically synthesized oligonucleotides of defined sequence are used to evaluate quantitatively the stability of small RNA hairpin loops and helices. The series (Ap)4G(pC) N(pU)4, N = 4, 5 or 6, exists as monomolecular hairpin helices when N ≥ 5, and as imperfect dimer helices when N ≤ 4. In this size range, hairpin loops become more favorable (less destabilizing thermodynamically) as they increase in size from 3 to 4 to 5 unbonded nucleotides. Very small hairpin loops are particularly destabilizing; molecules whose base sequence would imply a hairpin loop of three nucleotides will generally exist with a loop of five, including a broken terminal base pair.Thermodynamic parameters for base pair and loop formation are calculated by a method which makes unnecessary the use of measured enthalpies of polynucleotide melting. Literature data on oligonucleotide double helices yield estimates of the free energy contribution from each of the six types of stacking interactions between three possible neighboring base pairs. The advantage of this approach is that the properties of oligonucleotides are used in predicting the stability of small RNA helices, avoiding the long extrapolation from the properties of high polymers.We provide Tables of temperature-dependent free energies that allow one to predict the stability and thermal transition temperature of many simple RNA secondary structures (applicable to ~1 m-Na+ concentration). As an example, we apply the rules to an isolated fragment of tRNASer (yeast) (Coutts, 1971), whose properties were not used in calculating the free-energy parameters. The experimental melting temperature of 88 °C is predicted with an error margin of 5 deg. C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号