首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fluorescence of purified biliproteins (phycocyanin 645, phycocyanin 612, and phycoerythrin 545) from three cryptomonads, Chroomonas species, Hemiselmis virescens, and Rhodomonas lens, and C-phycocyanin from Anacystis nidulans has been time resolved in the picosecond region with a streak camera system having less than or equal to 2-ps jitter. The fluorescence lifetimes of phycocyanins from Chroomonas species and Hemiselmis virescens are 1.5 +/- 0.2 ns and 2.3 +/- 0.2 ns, respectively, regardless of the fluence of the 30 ps, 532-nm excitation pulse. (Fluence [or photons/cm2] = f intensity [photons/cm2s]dt.). In contrast, that of C-phycocyanin is 2.3 +/- 0.2 ns when the excitation fluence is 8.2 X 10(11) photons/cm2 and decreases to a decay approximated by an exponential decay time of 0.65 +/- 0.1 ns at 7.2 X 10(16) photons/cm2. The cryptomonad phycoerythrin fluorescence decay lifetime is also dependent on intensity, having a decay time of 1.5 +/- 0.1 ns at low fluences and becoming clearly biphasic at higher fluences (greater than 10(15) photons/cm2). We interpret the shortening of decay times for C-phycocyanin and phycoerythrin 545 in terms of exciton annihilation, and have discussed the applicability of exciton annihilation theories to the high fluence effects.  相似文献   

2.
A method to separate phycoerythrin 545, isolated from the cryptomonad alga, Rhodomonaslens, into two subunits has been developed. The method uses no denaturants (urea, guanidine, detergent) but relies on dissociation of the dimeric protein and subsequent aggregation of the β subunit at pH 3.0. The absorption spectra and amino acid composition of the subunits are presented. The spectra of the α subunit was red-shifted relative to β in both pH 3.0 buffer and in acidic 8.0 M urea.  相似文献   

3.
Determination of the partial amino acid sequence of the beta subunit of cryptomonad strain CBD phycoerythrin 566 established the nature, locations, and modes of attachment of the three bilin prosthetic groups and revealed a site of posttranslational methylation. Isolation of peptides cross-linked by a phycobiliviolin led to an unambiguous assignment of two thioether linkages, from residues beta-Cys-50 and beta-Cys-61 to this bilin. Two bilins were attached through single thioether linkages, a phycobiliviolin at beta-Cys-158 and a phycoerythrobilin at beta-Cys-82 (the residue numbering is that for B-phycoerythrin; Sidler, W., Kumpf, B., Suter, F., Morisset, W., Wehrmeyer, W., and Zuber, H. (1985) Biol. Chem. Hoppe-Seyler 366, 233-244). The partial sequences (99 residues) established for phycoerythrin 566 beta subunit showed a 79% identity with that of the red algal Porphyridium cruentum B-phycoerythrin beta subunit. A particularly remarkable finding is that the unique methylasparagine residue at position beta-72, highly conserved in cyanobacterial and red algal phycobiliproteins (Klotz, A. V., and Glazer, A. N. (1987) J. Biol. Chem. 262, 17350-17355), is also present at beta-72 in the cryptomonad phycoerythrin. Comparison of the locations of donor and acceptor bilins in cryptomonad phycoerythrin with those found for cyanobacterial and red algal phycobiliproteins showed different favored pathways of energy migration in the cryptomonad protein.  相似文献   

4.
1. The fluorescence spectra of the alga Porphyridium have been recorded as energy distribution curves for eleven different incident wave lengths of monochromatic incident light between wave lengths 405 and 546 mµ. 2. In these spectra chlorophyll fluorescence predominates when the incident light is in the blue part of the spectrum which is strongly absorbed by chlorophyll. 3. For blue-green and green light the spectrum excited in Porphyridium contains in addition to chlorophyll fluorescence, the fluorescence bands characteristic of phycoerythrin and of phycocyanin. 4. From these spectra the approximate curves for the fluorescence of the individual pigments phycoerythrin, phycocyanin, and chlorophyll in the living material have been derived and the relative intensity of each of them has been obtained for each of the eleven incident wave lengths. 5. The effectiveness spectrum for the excitation of the fluorescence of these three pigments in vivo has been plotted. 6. From comparisons of the effectiveness spectrum for the excitation of each of these pigments it appears that both phycocyanin and chlorophyll receive energy from light which is absorbed by phycoerythrin. 7. It is suggested that phycocyanin may be an intermediate in the resonance transfer of energy from phycoerythrin to chlorophyll. 8. Since phycoerythrin and phycocyanin transfer energy to chlorophyll, it appears probable that chlorophyll plays a specific chemical role in photosynthesis in addition to acting as a light absorber.  相似文献   

5.
Characterization of phycocyanin from Chromonas species   总被引:2,自引:0,他引:2  
  相似文献   

6.
Summary Two closely similar phycoerythrins were purified from Cryptomonas sp. The two proteins were indistinguishable with respect to native molecular weight, subunit structure, photolability and immunological specificity, and differed only in their isoelectric points (pH 5.74 and 6.35), as determined by isoelectric focussing in polyacrylamide gels. Each protein consisted of two unequal subunits, (mol. wt. 11,800) and (mol. wt. 19,000), and each subunit contained covalently bound chromophore. In contrast to the blue-green and red algal phycoerythrins studied thus far, the Cryptomonas sp. phycoerythrins are extremely photolabile; exposure of the purified proteins to relatively short periods of intense illumination with visible light produces a marked decrease in fluorescence and in absorbance at 567 m.Abbreviation used SDS sodium dodecyl sulfate  相似文献   

7.
The cryptomonad nucleomorph is a vestigial nucleus of a eukaryotic red alga engulfed by a phagotrophic protist and retained as a photosynthetic endosymbiont. This review recounts the initial discovery and subsequent characterisation of the cryptomonad nucleomorph focusing on the key role of Peter Sitte and his protégés in our understanding of secondary endosymbiosis to create complex plastids, one of the major transition events in the evolution of life on Earth.  相似文献   

8.
Immunochemistry on cryptomonad biliproteins   总被引:1,自引:1,他引:1       下载免费PDF全文
A survey is made of the immunochemical behavior of four of the six known types of cryptomonad biliproteins: phycocyanins 612 and 645 and phycoerythrins 545 and 566. They were compared both among themselves and to selected biliproteins isolated from blue-green and red algae. All the cryptomonad biliproteins were shown to be closely related to each other by Ouchterlony double diffusion technics. An antigenic relationship among all the cryptomonad biliproteins and B-phycoerythrin (red alga) and C-phycoerythrin (blue-green alga) was established. Only a very marginal cross-reactivity was found between C-phycocyanin (blue-green algae) and the cryptomonad biliproteins. These results suggest a common ancestor for the photosynthetic units of all three biliprotein-containing phyla.  相似文献   

9.
The bilin organization of three cryptomonad biliproteins (phycocyanins 612 and 645 and phycoerythrin 545) was examined in detail. Two others (phycocyanin 630 and phycoerythrin 566) were studied less extensively. Phycocyanin 645 and phycoerythrin 545 were suggested to have one bilin in each monomeric (alphabeta) unit of the dimer (alpha2beta2) isolated from the others, and the remaining six bilins may be in pairs. One pair was found across the monomer-monomer interface of the protein dimer, and two identical pairs were proposed to be within the monomer protein units. For phycocyanin 612, a major surprise was that a pair of bilins was apparently not found across the monomer-monomer interface, but the remaining bilins were distributed as in the other two cryptomonad proteins. The effect of temperature on the CD spectra of phycocyainin 612 demonstrated that two of the bands (one positive and one negative) behaved identically, which is required if they are coupled. The two lowest-energy CD bands of phycocyanin 612 originated from paired bilins, and the two higher-energy bands were from more isolated bilins. The paired bilins within the protein monomers contained the lowest-energy transition for these biliproteins. Using the bilins as naturally occurring reporter groups, phycocyanin 612 was shown to undergo a reversible change in tertiary structure at 40 degrees C. Protein monomers were shown to be functioning biliproteins. A hypothesis is that the coupled pair of bilins within the monomeric units offers important advantages for efficient energy migration, and other bilins transfer energy to this pair, extending the wavelength range or efficiency of light absorption.  相似文献   

10.
11.
Dissociation and association of phycocyanin   总被引:2,自引:0,他引:2  
E Fujimori  J Pecci 《Biochemistry》1966,5(11):3500-3508
  相似文献   

12.
Upon assembly of the phycoerythrin trimer into hexamer and the hexamer into dodecamer, marked spectral changes are observed. The absorption and circular dichroism spectra of the various phycoerythrin aggregates were resolved into Gaussian components representing individual electronic transitions of phycoerythrobilin chromophores within these proteins. While the contribution of a broad, sensitizing band (at 525 nm) is constant, with increasing aggregate size, a short-wavelength pair of bands centered at 555 nm decreases concomitantly with a dramatic increase in the intensity of a long-wavelength pair of chromophore transitions centered at 563 nm. The implications of these spectral changes for efficient energy transfer in the phycobilisome are discussed.  相似文献   

13.
Summary The periplast ofHemiselmis brunnescens Butcher is a complex cell covering comprised of the plasma membrane (PM) sandwiched between a surface periplast component (SPC) and an inner periplast component (IPC). The SPC is revealed by deep-etching, and consists of hexagonal plates composed of tripartite subunits that appear to self-assemble into a crystalline layer with a hexagonal symmetry. Small scales (termed fibrillar scales) accumulate on the crystalline plates during cell growth, eventually forming a carpet that itself may appear crystalline when fully formed. Heptagonal rosette scales are occasionally observed on the surface as well. The position of the crystalline plates is precisely mirrored by both the E and P fracture faces of the PM. The plate proper is underlain by membrane with a high concentration of intramembrane particles (IMPs) while the bands of membrane underlying the plate borders lack IMPs. Access of subunits and fibrillar scales to the cell surface following initial plate formation appears to be at the plate boundaries. This study suggests that cryptomonad flagellates may provide model systems for studying the self-assembly of cell surface components, and for relating membrane structure to function, as evidence suggests a major role for the PM in mediating periplast assembly and development.  相似文献   

14.
15.
Cyanobacteria light-harvesting complexes can change their structure to cope with fluctuating environmental conditions. Studying in vivo structural changes is difficult owing to complexities imposed by the cellular environment. Mimicking this system in vitro is challenging, as well. The in vivo system is highly concentrated, and handling similar in vitro concentrated samples optically is difficult because of high absorption. In this research, we mapped the cyanobacteria antennas self-assembly pathways using highly concentrated solutions of phycocyanin (PC) that mimic the in vivo condition. PC was isolated from the thermophilic cyanobacterium Thermosynechococcus vulcanus and measured by several methods. PC has three oligomeric states: hexamer, trimer, and monomer. We showed that the oligomeric state was changed upon increase of PC solution concentration. This oligomerization mechanism may enable photosynthetic organisms to adapt their light-harvesting system to a wide range of environmental conditions.  相似文献   

16.
The biliproteins of the unicellular, thylakoid-less cyanobacterium Gleobacter violaceus were resolved by chromatography on hydroxylapatite and DEAE-cellulose into five components: phycoerythrin I and II, phycocyanin I and II, and allophycocyanin. Allophycocyanin B was not detected. Three of these components, phycoerythrin II, phycocyanin II, and allophycocyanin, were purified to homogeneity. Phycoerythrin II crystallized as hexagonal prisms. G. violaceus allophycocyanin crystallized as thin plates; unter similar conditions other cyanobacterial allophycocyanins crystallize as needles. The biliproteins in the phycoerythrin I and phycocyanin I components were present in polydisperse, high molecular weight aggregates, which may represent incompletely dissociated substructures of the phycobilisome.Both phycoerythrin components from G. violaceus carry phycoerythrobilin and phycourbilin groups in the ratio of 6:1. Separation of the and subunits of these biliproteins revealed that the phycoerythrobilins were equally distributed between the two subunits, and that the subunit alone carried the phycourobilin. These phycoerythrins are the first cyanobacterial phycobiliproteins found to carry a phycourobilin prosthetic group.Abbreviations used PE poycoerythrin - PC phycocyanin - AP allophycocyanin - SDS sodium dodecyl sulfate - PAGE polyacrylamide gel electrophoresis - B Bangiophycean - R Rhodophytan - C Cyanobacterial  相似文献   

17.
藻红蛋白光敏剂研究进展   总被引:3,自引:1,他引:3  
光动力学治疗法作为一种新的肿瘤治疗方法,近年来发展十分迅速。从红藻中提取的藻红蛋白可以作为光动力学治疗法的一种新的光敏剂。本概述了我国红藻藻红蛋白资源概况、光疗法和光敏剂作用机理及其研究发展历史与现状,重点阐述了藻红蛋白光敏剂的应用现状、前景和发展趋势,并认为藻红蛋白是光动力学治疗法中一种非常有前景的光敏剂。藻红蛋白在490nm有吸收光谱,而发射光谱位于560nm;藻红蛋白能特异性地聚集在肿瘤细胞周围,吸收周围环境光能并传递给氧分子,使氧分子转化为具有强氧化性的多线态氧,从而可以大量杀死肿瘤细胞。  相似文献   

18.
《BBA》1987,892(1):48-55
We have studied the redistribution of excitation energy in the cryptomonad alga Cryptomonas ovata. Low-temperature fluorescence emission spectra from cells preilluminated with light 1 and light 2 show that preferential excitation of Photosystem II (PS II) leads to decreased fluorescence emission from chlorophyll (Chl) a associated with PS II relative to the emission following the preferential excitation of Photosystem I (PS I). The fluorescence change is indicative of a light-state transition by the cells. However, comparision of measurements of the kinetics of P-700 photooxidation by cells fixed with glutaraldehyde following illumination with light 1 or light 2 shows that the relative activity of PS I is lower in cells fixed in light 2. This is in contrast to the expectation for cells in State 2. Excitation spectra for the fluorescence emission from PS II Chl a show that preferential excitation of PS II leads to a decreased probability for energy transfer from phycoerythrin and Chl c2 to PS II when compared to cells in which PS I is preferentially excited. This result is in accordance with recent picosecond time-resolved fluorescence studies (Bruce, D., Biggins, J., Charbonneau, S. and Thewalt, M. (1987) in Progress in Photosynthesis Research (Biggins, J., ed.), Vol. II, pp. 777–780, Martinus Nijhoff, Dordrecht) and we, therefore, suggest that C. ovata does not undergo a classical light-state transition. However, preferential excitation of PS II or PS I appears to cause pigment-protein conformational changes which change the probability for energy transfer from phycoerythrin to PS II, and we suggest that this may be a mechanism for photoprotection of PS II. Studies of the kinetics of excitation-energy redistribution, and of the effects of electron-transport inhibitors and uncouplers of photophosphorylation indicate that the mechanism for excitation-energy redistribution in C. ovata and phycobilisome-containing organisms may be similar.  相似文献   

19.
Summary The structure and development of the complex periplast, or cell covering, of cryptomonads is reviewed. The periplast consists of the plasma membrane (PM) plus an associated surface periplast component (SPC) and cytoplasmic or inner periplast component (IPC). The structure of the SPC and IPC, and their association with the PM, varies considerably between genera. This review, which concentrates on cryptomonads with an IPC of discrete plates, discusses relationships between periplast components and examines the development of this unique cell covering. Formation and growth of inner plates occurs throughout the cell cycle from specialized regions termed anamorphic zones. Crystalline surface plates, which comprise the SPC in many cryptomonad species, appear to form by self-assembly of disorganized subunits. InKomma caudata the subunits are composed of a high molecular weight glycoprotein that is produced within the endomembrane system and deposited onto the cell surface within anamorphic zones. The self-assembly of subunits into highly ordered surface plates appears closely associated with developmental changes in the underlying IPC and PM.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号