首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interactions of proteins and cholesterol with lipids in bilayer membranes.   总被引:6,自引:0,他引:6  
Mixtures of lipids and protein, the ATPase from rabbit sarcoplasmic reticulum, were studied by freeze-fracture electron microscopy and by measurement of the amount of fluid lipid with the spin label 2,2,6,6-tetramethylpiperidine-1-oxyl (TEM-PO). In dimyristoyl phosphatidylcholine vesicles the protein molecules were randomly distributed above the transition temperature, Tt, of the lipid and aggregated below Tt. For mixtures of dimyristoyl and dipalmitoyl phosphatidylcholine the existence of fluid and solid domains were shown in the temperature interval predicted from earlier TEMPO measurements. When protein was incorporated into this lipid mixture, freeze-fracture particles were randomly distributed in fluid lipids, or aggregated when only solid lipids were present. In mixtures of dimyristoyl phosphatidylcholine with cholesterol the protein was distributed randomly above the transition temperature of the phosphatidylcholine. Below that transition temperature the protein was excluded from a banded phase of solid lipid in the case of 10 mol% cholesterol. In mixtures containing 20 mol% cholesterol, protein molecules formed linear arrays, 50-200 nm in length, around smooth patches of lipid. Phase diagrams for lipid/cholesterol and lipid/protein systems are proposed which account for many of the available data. A model for increasing solidification of lipid around protein molecules or cholesterol above the transition temperature of the lipid is discussed.  相似文献   

2.
The protein-induced lipid transfer between phosphatidylcholine vesicles was investigated. Measurements of the degree of polarization at single vesicles were made by flow cytometry using diphenylhexatriene as the optical probe. Vesicles differing in phase transition temperature could be distinguished by their degree of polarization at a temperature where one population was in the fluid (T > Tt) and the other one in the quasi-crystalline (T < Tt) state. Besides vesicles containing exchanged lipids we also observed fractions of unaffected vesicles. The lipid exchange was visualized directly by freeze-fracture electron microscopy. The characteristic ‘ripple’ structure of phosphatidylcholine vesicles disappeared upon exchange with lipid in the fluid state.  相似文献   

3.
[N-13CH3] Phosphatidylcholines are introduced into the outer monolayer of phosphatidylcholine vesicles with the phosphatidylcholine exchange protein from bovine liver. The transbilayer distribution of the [N-13CH3] phosphatidylcholine is measured with 13C NMR. The transbilayer movements of [N-13CH3]-dioleoyl phosphatidylcholine and [N-13CH3] dimyristoyl phosphatidylcholine at 30°C in vesicles composed of these phosphatidylcholines are extremely slow processes with estimated half-times of days. [N-13CH3] Dioleoyl phosphatidylcholine introduced into dimyristoyl phosphatidylcholine vesicles migrates from the outer to the inner monolayer with a half-time of less than 12 h. The data suggest that differential changes in the lateral packing of the two monolayers might be a driving force for transbilayer transport of phospholipids.  相似文献   

4.
Perturbations induced by melittin on the thermotropism of dimyristoyl-, dipalmitoyl-, distearoylphosphatidylcholine and natural sphingomyelin are investigated and rationalized from data obtained by fluorescence polarization, differential scanning calorimetry and Raman spectroscopy. Depending on the technique and / or experimental conditions used, the observed effects differ at the same lipid to protein molar ratio, due to partial binding of melittin. The binding is more efficient for tetrameric than for monomeric melittin, but in both cases its affinity is weaker for phosphatidylcholine dispersions in the gel phase than for sonicated vesicles. For temperatures T ? Tm efficient binding occurs whatever the initial state of the lipids is. One can summarize the effects induced by melittin on the transition temperature as follows: (i) No upward shift is observed on synthetic phosphatidylcholines when lipid degradation is avoided. This is achieved by using highly purified melittin, phospholipase inhibitors, and / or non-hydrolysable lipids. (ii) Melittin monomer does not change Tm. (iii) When melittin tetramer is stabilized, it decreases Tm by 10–15 deg. C. The transition broadens, and is finally abolished for Ri ? 2. Very similar results are found for natural sphingomyelin. Fluorescence polarization indicates similar changes in order and dynamics of the acyl chains for all lipid studied. For T ? Tm, fluorescence and Raman show that melittin decreases the amount of CH2 groups in ‘trans’ conformation and the intermolecular order of the chains. According to fluorescence data, there is an increase of the rigid-body orientational order at T ? Tm, while from Raman the positional intermolecular order decreases without significant change in the CH2 groups ‘trans’/‘gauche’ ratio.  相似文献   

5.
According to previous authors, cytochrome b5, when extracted from bovine liver by a detergent method, is called cytochrome d-b5. On the other hand, the protein obtained after trypsin action, which eliminates an hydrophobic peptide of about 54 residues, is called cytochrome t-b5.Fluorescence polarization of the dansyl phosphatidylethanolamine probe inserted into phospholipid vesicles is very senstive to the binding of proteins, and so is a useful method to study lipid-protein interactions.The chromophore mobility, R, decreases markedly when dipalmitoyl phosphatidylcholine vesicles are incubated with cytochrome d-b5, whereas R does not change for cytochrome c and cytochrome t-b5. This can be interpreted as a strengthening of the bilayer, only due to the interaction of the hydrophobic peptide tail.Interaction of dipalmitoyl phosphatidylcholine vesicles with cytochrome d-b5 occurs either below or above the melting temperature of the aliphatic chains (41 °C). Even for a high protein to lipid molar ratio (1 molecule of protein for 40 phospholipid molecules), the melting temperature is apparently unaffected.Phosphatidylserine and phosphatidylinositol do not interact at pH 7.7 with cytochrome d-b5, because electrostatic forces prevent formation of complexes. At low pH, the interaction with the protein occurs, but the binding is mainly of electrostatic nature.  相似文献   

6.
In order to investigate the role of the plasma membrane in determining the kinetics of removal of cholesterol from cells, the efflux of [3H]cholesterol from intact cells and plasma membrane vesicles has been compared. The release of cholesterol from cultures of Fu5AH rat hepatoma and WIRL-3C rat liver cells to complexes of egg phosphatidylcholine (1 mg / ml) and human high-density apolipoprotein is first order with respect to concentration of cholesterol in the cells, with half-times (t12) for at least one-third of the cell cholesterol of 3.2 ± 0.6 and 14.3 ± 1.5 h, respectively. Plasma membrane vesicles (0.5–5.0 μm diameter) were produced from both cell lines by incubating the cells with 50 mM formaldehyde and 2 mM dithiothreitol for 90 min. The efflux of cholesterol from the isolated vesicles follows the same kinetics as the intact, parent cells: the t12 values for plasma membrane vesicles of Fu5AH and WIRL cells are 3.9 ± 0.5 and 11.2 ± 0.7 h, respectively. These t12 values reflect the rate-limiting step in the cholesterol efflux process, which is the desorption of cholesterol molecules from the plasma membrane into the extracellular aqueous phase. The fact that intact cells and isolated plasma membranes release cholesterol at the same rate indicates that variations in the plasma membrane structure account for differences in the kinetics of cholesterol release from different cell types. In order to investigate the role of plasma membrane lipids, the kinetics of cholesterol desorption from small unilamellar vesicles prepared from the total lipid isolated from plasma membrane vesicles of Fu5AH and WIRL cells were measured. Half-times of cholesterol release from plasma membrane lipid vesicles of Fu5AH and WIRL cells were the same, with values of 3.1 ± 0.1 and 2.9 ± 0.2 h, respectively. Since bilayers formed from isolated plasma membrane lipids do not reproduce the kinetics of cholesterol efflux observed with the intact plasma membranes, it is likely that the local domain structure, as influenced by membrane proteins, is responsible for the differences in t12 values for cholesterol efflux from these cell lines.  相似文献   

7.
The dielectric dispersion in the MHz range of the zwitterionic dipolar phosphocholine head groups has been measured from 0–70°C for various mixtures of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and cholesterol. The abrupt change in the derived relaxation frequency f2 observed for pure DPPC at the gel-to-liquid crystalline phase transition at 42°C reduces to a more gradual increase of frequency with temperature as the cholesterol content is increased. In general the presence of cholesterol increases the DPPC head group mobility due to its spacing effect. Below 42°C no sudden changes in f2 are found at 20 or 33 mol% cholesterol, where phase boundaries have been suggested from other methods. Above 42°C, however, a decrease in f2 at cholesterol contents up to 20–30 mol% is found. This is thought to be partly due to an additional restricting effect of the cholesterol on the number of hydrocarbon chain conformations and consequently on the area occupied by the DPPC molecules.  相似文献   

8.
9.
Differential polarized phase fluorometry was used to quantify the rotational rate (R) and limiting anisotropy (r) of the membrane probe diphenylhexatriene (DPH) in solvents and lipid vesicles exposed to hydrostatic pressures ranging from 1 bar to 2 kbar. These measurements reveal the effect of pressure on the phase-transition temperatures of the phosphatidylcholine vesicles, and the effects of pressure on order parameter of the acyl side-chain region of the membranes, the latter as indicated by r. In addition to the well-known elevation of the transition temperature (Tc) with pressure, our results demonstrate that increased pressure restores the order of the bilayers to that representative of temperatures below the transition temperature. We also found that solvents which allowed free isotropic rotation of DPH at 1 bar no longer allowed free rotation when sufficiently compressed; moreover, the apparent DPH rotational rate increased with r. Pressure studies using both DPH and the charged DPH analogue, trimethylammonium DPH (TMA-DPH) indicated that the Tc of dipalmitoylphosphatidylcholine vesicles increased 23 K/kbar and an apparent volume change of 0.036 ml/mol lipid at the phase transition. Assuming, as has been proposed, that TMA-DPH is localized near the glycerol backbone region of the bilayers, these results indicate a similar temperature- and pressure-dependent phase transition in this region and the acyl side-chain region of the membrane.  相似文献   

10.
11.
The temperature dependence of the Raman spectrum has been studied for binary phospholipid mixtures of dimyristoyl phosphatidylcholine (and its chain deuterated -d54 derivative) with distearoyl phosphatidylcholine. Two distinct melting regions are observed for the 1 : 1 mole ratio mixture. The use of deuterated phospholipid permits the identification of the lower (≈22°C) transition with primarily the melting of the shorter chain component, and the higher (≈47°C) transition primarily with the melting of the longer chains. The C-H stretching vibrations of the distearoyl component respond to the melting of the dimyristoyl component, an apparent consequence of alterations in the lateral interactions of the distearoyl chains. These changes in the C-H spectral region suggest that phase separation does not occur in the gel state for this system. The results are in reasonable accord with recent calorimetric studies (Mabrey, S. and Sturtevant, J.M. (1976) Proc. Natl. Acad. Sci. U.S. 73, 3862–3866). The feasibility of using deuterated phospholipids to monitor the conformation of each component in a binary phospholipid mixture is demonstrated.  相似文献   

12.
The phase transition temperature (Tt) of dipalmitoyl phosphatidic acid multilamellar liposomes is depressed 10°C by the inhalation anesthetic methoxyflurane at a concentration of 100 mmol/mol lipid. Application of 100 atm of helium pressure to pure phosphatidic acid liposomes increased Tt only 1.5°C. However, application of 100 atm helium pressure to dipalmitoyl phosphatidic acid lipsomes containing 100 mmol methoxyflurane/mol lipid almost completely antagonized the effect of the anesthetic. A nonlinear pressure effect is observed. In a previous study, a concentration of 60 mmol methoxyflurane/mol dipalmitoyl phosphatidylcholine depressed Tt only 1.5°C, exhibiting a linear pressure effect. The completely different behavior in the charged membrane is best explained by extrusion of the anesthetic from the lipid phase.  相似文献   

13.
Charge-pulse current-relaxation studies have been performed with lipid bilayer membranes in the presence of the hydrophobic ion dipicrylamine. From the analysis of the relaxation times and amplitudes the translocation rate constant ki of dipicrylamine as well as the partition coefficient β between membrane surface and water could be evaluated. In a first series of experiments membranes made from monoolein or dioleoylphosphatidylcholine in a number of different n-alkane solvents were studied, as well as virtually solvent-free bilayer membranes made from monolayers. The thickness d of the hydrocarbon layer of these membranes varied between 5.0 and 2.5 nm. While β was almost insensitive to variations in d, a strong decrease of ki with increasing membrane thickness was found; the observed dependence of ki on d approximately agreed with the theoretically expected influence of membrane thickness on the height of the dielectric barrier. No specific differences between Mueller-Rudin films and solvent-free (Montal-Mueller) membranes other than differences in thickness were found. In a further series of experiments the chemical structure of the lipid was systematically varied (number and position of double bonds in the hydrocarbon chain, nature of the polar head group). The translocation rate constant ki was much larger in phosphatidylethanolamine membranes than in phosphatidylcholine membranes. A strong increase of ki was found when the number of double bonds in the hydrocarbon chain was increased from one to three. These changes were discussed in terms of membrane fluidity and dielectric barrier height. Much higher values of ki were observed in lipids with ester linkage between hydrocarbon chain and glycerol backbone, as compared with the corresponding ether analogs. This finding is qualitatively consistent with determinations of dipolar potentials in monolayers of ester and ether lipids. When cholesterol is added to phosphatidylcholine membranes, the translocation rate constant ki increases up to five-fold, while the partition coefficient β remains virtually constant. The variation of ki in this case can be largely accounted for by a decrease in membrane thickness and a concomitant reduction in dielectric barrier height. In membranes made from the negatively charged lipid phosphatidylserine the partition coefficient of dipicrylamine strongly increased with ionic strength, as expected from the Gouy-Chapman theory of the surface potential.  相似文献   

14.
The addition of cholate to the microsomes at 37.5°C resulted in a striking decrease in the apparent substrate dissociation constant (K′s) and its temperature dependency. The microsomal membranes depleted of 80% of the lipids preserved the temperature dependency of the Ks and exhibited breaks in the Van't Hoff plot at the characteristic temperature of the lipids phase transition. The results indicate that the cytochrome P-450 is considerably restrained from expressing its maximum substrate binding potential at physiological temperature. In addition, the results indicate that the majority of the lipids apparently do not play a significant role in imposing constraint on the substratecytochrome P-450 binding reaction and in the temperature dependency of the Ks.  相似文献   

15.
Charge-pulse relaxation experiments with the negatively charged lipophilic ions, dipicrylamine and tetraphenylborate, (as well as with the positively charged carrier system Rb+-valinomycin) have been carried out in order to study the influence of sterols on the ion transport through the lipid bilayer membrane. The mol fraction of the sterols (cholesterol, epicholesterol, ergosterol, stigmasterol, dihydrocholsterol, epicoprostanol and cholesterololeate) as referred to total lipid was varied in a wide range (mol fractions 0–0.8).The monoolein/sterol or dioleoylphosphatidylcholine/sterol mixtures were dissolved in n-hexadecane in order to minimize effects of the sterol on the membrane thickness.Cholesterol had a strong influence on the transport of the lipophilic ions. Its incorporation into monoolein membranes increased the rate constant i of translocation up to 8-fold, but incorporation into phosphatidylcholine membranes had virtually no influence on ki. The other sterols with one hydroxy group and cholesterololeate had no influence on the rate constant or the partition coefficient β. The results are discussed on the basis of a possible change of dipole potential of the membrane caused by cholesterol and its derivatives.In the case of valinomycin-mediated Rb+ transport only cholesterol had a strong influence on transport properties. The rate constants of association (kR) as well as the rate constants of translocation of the complex (kMS) and of the free carrier (kS) were reduced by incorporation of cholesterol up to eight-fold. The decrease of kS and kMS are possibly caused by a decrease of membrane fluidity, whereas the decrease of kR may be due to an increase of surface potential. The different action of cholesterol on the two transport systems is discussed under the assumption that the adsorption plane of the lipophilic ion is located more towards the aqueous side and that of the ion-carrier complexes more towards the hydrocarbon side of the dipole layer.  相似文献   

16.
Cytochrome b5 was extracted and purified from beef liver by a detergent method (cytochrome d-b5). The hydrophilic moiety which carries the heme group (cytochrome t-b5) was prepared by trypsin action upon pure cytochrome d-b5.Single-shelled lecithin liposomes form complexes with cytochromes d-b5 up to a molar ratio of one protein for 35 phospholipids. The lipid-protein complexes were isolated by gel filtration on Sepharose 4B. They are hollow vesicles in which [3H]-glucose can be trapped. Their diameter is greater than that of the initial liposomes.Cytochrome t-b5 does not interact with the vesicles. These results show that the hydrophobic tail is necessary for the binding and that the hydrophilic part of the protein is located on the outer face of the vesicles. This asymmetry is also proved by the action of reducing agents.Experiments with saturated phosphatidylcholines show that the protein interacts with the lipids both below the transition temperature TM. i.e. when the aliphatic chains are in a crystalline state, and above TM, when the alipathic chain are in a fluid state.1H NMR spectra show that even at the maximum cytochrome d-b5 concentration the presence of the proteins does not markedly change the dynamics to the phospholipid molecules. An asymmetric single-shelled vesicle structure is proposed for the complex.  相似文献   

17.
The intact, amphipatic form of cytochrome b5 could bind to unsealed ghosts, but not to resealed ghosts, suggesting that the cytochrome could bind only to the inner (cytoplasmic) surface of the ghost membrane. This was further confirmed by the finding that the cytochrome could bind to closed, inside-out vesicles prepared from the ghosts. This asymmetric binding was not due to the exclusive localization of sialic acid and sugar chains on the outer surface of the ghosts membrane, because the cytochrome could not bind to ghosts even after enzymatic removal of these components. Although liposomes consisting of phosphatidylcholine or both phosphatidylcholine and sphingomyelin could effectively bind the cytochrome, this binding capacity was progressively decreased as increasing amount of cholesterol was included in the composition of phosphatidylcholine liposomes. Removal of cholesterol from resealed ghosts by incubation with egg phosphatidylcholine liposomes resulted in the binding of cytochrome b5 to the outer surface of the treated ghosts. The possibility is discussed that the asymmetric binding is due to preferential localization of cholesterol in the outer leaflet of the lipid bilayer that constitutes the ghost membrane.  相似文献   

18.
19.
20.
The ionization of fatty acids, fatty amines and N-acylamino acids incorporated in phosphatidylcholine single-walled vesicles has been measured. The guest molecules have been specifically enriched with 13C and titrated by using NMR spectroscopy. The apparent pKa of fatty acids in phosphatidylcholine bilayers is 7.2–7.4 and those of fatty amines are approx. 9.5. These pKa values depend on many different parameters related to the structure of the lipid/ solution interface, to the composition of the aqueous medium and to the localization of the ionizable groups. A special sensitivity to the ionic strength and to the surface charge has been found. A positive surface charge decreases the pKa value whereas a negative one increases it, the total range of variation being 2.5–3 units. In a qualitative macroscopic interpretation, it is proposed that pKa is essentially determined by the low polarity of the lipidic matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号