首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Spatial subsidies, defined as the flow of energy, nutrients, organisms or pollutants from one habitat to another, have been shown to affect the food–web dynamics in a wide range of ecosystems. An important subsidy to riparian communities is the contribution of adult stream insects to terrestrial predators such as birds, bats and lizards, but also invertebrates including ground and web‐building spiders. 2. We surveyed 37 first‐ and second‐order forest streams across differing environmental gradients in the Central South Island, New Zealand, to investigate the relationship between potential aquatic prey subsidies and predatory riparian arachnids. We anticipated that stream‐insect biomass would be positively associated with riparian arachnids, as a result of emergent adult aquatic insect subsidies to the adjacent habitat. 3. We confirmed positive associations between stream‐insect biomass as a predictor variable and riparian arachnid biomass (R2 = 0.42, F1,34 = 25.2, P < 0.001) and web densities (R2 = 0.45, F1,14 = 11.5, P < 0.01) respectively as dependent variables after adjusting for the confounding effects of environmental variables. Hierarchical partitioning confirmed the importance of stream insect biomass as a statistically significant contributor to the total explained variance in analyses calculated for arachnid biomass, abundance and web density. 4. A concurrent survey of spider‐web density along 20‐m transects from the stream edge into the forest indicated a strong decline in web‐building spider density moving away from the stream (R2 = 0.41, F1,158 = 109, P < 0.001), with stream‐insect biomass as a significant covariate (F1,149 = 17.7, P < 0.001). 5. Our results suggest that productivity gradients present in the donor system affect the magnitude of the interaction between adjacent habitats. Productivity gradients may lead to increased reciprocal subsidies through a positive feedback loop involving the predation of spiders and other predatory terrestrial invertebrates by aquatic predators. However, terrestrial insectivores such as birds, bats and lizards that are not readily used as prey by aquatic predators may circumvent the feedback cycle by consuming a large proportion of emergent aquatic‐insect biomass. This may lead to asymmetry in the strength of food–web linkages between aquatic and terrestrial habitats.  相似文献   

2.
Cross‐ecosystem transfers of resources could alter the life history traits of consumers in adjacent systems by changing the nature and availability of prey. However, large‐scale influences, such as natural disturbances, that control the magnitude of prey subsidies are likely to modify these effects. To investigate impacts of cross‐ecosystem subsidies on the life history traits of a riparian predator we measured the size, sex and condition of riparian fishing spiders (Dolomedes aquaticus) across a gradient of flooding frequency and intensity. These spiders rely on adult aquatic insects for a large proportion of their diet and previous research demonstrated that increased flooding decreased the abundance of aquatic insect prey. In this study, laboratory experiments indicated that increased prey availability hastened the first moult of the spiders after winter and decreased the propensity for cannibalistic interactions of individuals of the same size. However, despite the likely positive influences of increased food supply, in the field the highest abundance and proportion of large, potentially reproductive females occurred at the most flood‐prone rivers, where aquatic prey availability was the lowest. It is likely that other factors modified by the disturbance regime, such as habitat availability, flood‐related mortality and intra‐specific interaction rates, altered the influence of cross‐ecosystem subsidies on the life history traits of these spiders. Thus, our results indicate that disturbance‐related effects can flow across ecosystem boundaries and alter the life history traits of predators relying on allochthonous resources.  相似文献   

3.
Community structure and dynamics can be influenced by resource transfers between ecosystems, yet little is known about how boundary structure determines both the magnitude of exchanges and their effects on recipient and donor communities. Aquatic and terrestrial ecosystems are often linked by resource fluxes and riparian vegetation is commonly affected by anthropogenic alterations to land use or river hydrological regime. I investigated whether shrubs at the freshwater–terrestrial interface alter the supply, distribution and importance of aquatic prey resources to terrestrial consumers. Shrubs were predicted to alter the larval community composition of aquatic insects and the emergence of winged adults, thus affecting aquatic prey subsidies to terrestrial consumers. In addition, shrubs were hypothesized to alter the microclimatic suitability of the riparian zone for adult aquatic insects, act as a physical barrier to their dispersal and affect terrestrial community composition, particularly the abundance and type of predators that could benefit from the aquatic prey resource. Stable isotope dietary analyses and a survey of shrub‐dominated and open grassland riparian habitats revealed that larval densities of aquatic insects (EPTM: Ephemeroptera, Plecoptera, Trichoptera and Megaloptera) were higher in shrub than grassland habitats; however, reduced emergence and lateral dispersal in shrub areas led to lower densities of adults. The temperature and relative humidity of the riparian zone did not differ between the habitats. Ground‐active terrestrial invertebrate communities had a higher proportion of cursorial spiders in grassland, coinciding with greater abundances of aquatic prey. Aquatic prey contribution to cursorial spider diet matched adult aquatic insect abundances. Overall, riparian shrubs reduced the magnitude, or at least altered the timing, of cross‐ecosystem subsidy supply, distribution and use by consumers through mechanisms operating in both the aquatic and terrestrial ecosystems. Thus, the structure of ecosystem boundaries has complex effects on the strength of biological interactions between adjacent systems.  相似文献   

4.
1. Low flows in rivers are predicted to increase in extent and severity in many areas in the future, yet the consequent impacts of river drying on terrestrial communities via (i) changes to riparian microclimatic conditions and (ii) the identity and abundance of emerging aquatic insects available to riparian predators have not been quantified. 2. We investigated the influence of low river flow on a riparian fishing spider, Dolomedes aquaticus, in five New Zealand rivers containing permanently flowing and drying reaches and, in one river, along a longitudinal drying gradient. 3. The biomass of aquatic insects, potential prey for D. aquaticus, declined with low river flows while the abundance of potential terrestrial prey remained similar at all sites. In the replicate rivers, and along the longitudinal drying gradient, spider biomass was lower, and size classes were skewed towards more small and fewer large spiders, in drying sites. A desiccation experiment in the laboratory indicated high sensitivity of the spiders, with prey presence increasing spider survival. 4. Differences in the spatial distribution, biomass and population size structure of spiders were observed along the longitudinal drying gradient and disappeared within 16 days of the water returning to all sites. 5. In total, low river flow affected the biomass of D. aquaticus, as well as their size class structure and spatial distribution. This indicates that low river flows have the potential to affect adjacent terrestrial ecosystems.  相似文献   

5.
Alterations to river flow conditions have wide impacts on riparian organisms in terms of behavior and biomass. However, little is known about natural flood impacts on prey use and individual growth of riparian predators. Using stable carbon isotope analysis, we investigated flood impacts on aquatic-prey use and the size structure of an orb-web spider, Nephila clavata, during 3 years under different flood conditions in a black locust forest in the middle reaches of the Chikuma River. Large floods depressed aquatic-prey abundance, but did not affect terrestrial-prey abundance in the riparian forest. Consequently, spider growth was stunted after large floods. Spider body size was positively correlated with the body sizes of both aquatic and terrestrial insects in spider webs, where terrestrial insects were significantly larger than aquatic insects. The δ13C of aquatic insects was about 8‰ higher than that of terrestrial insects, and the δ13C of both insect groups did not vary significantly between months or among years. A negative relationship was found between body size and δ13C in spiders under different subsidies levels. Our results showed that flow regime altered spider growth through changes in aquatic subsidies level, but not aquatic-prey use by the spiders due to relative body sizes of predators and prey. Changes in relative body sizes of predator and prey may be an important factor in understanding nutrients, materials, and energy flows in aquatic and terrestrial linkages in the context of flow regime.  相似文献   

6.
Aquatic and terrestrial ecosystems are linked by fluxes of carbon and nutrients in riparian areas. Processes that alter these fluxes may therefore change the diet and composition of consumer communities. We used stable carbon isotope (δ13C) analyses to test whether the increased abundance of aquatic prey observed in a previous study led to a dietary shift in riparian consumers in areas illuminated by artificial light at night (ALAN). We measured the contribution of aquatic‐derived carbon to diets in riparian arthropods in experimentally lit and unlit sites along an agricultural drainage ditch in northern Germany. The δ13C signature of the spider Pachygnatha clercki (Tetragnathidae) was 0.7‰ lower in the ALAN‐illuminated site in summer, indicating a greater assimilation of aquatic prey. Bayesian mixing models also supported higher intake of aquatic prey under ALAN in spring (34% versus 21%). In contrast, isotopic signatures for P. clercki (0.3‰) and Pardosa prativaga (0.7‰) indicated a preference for terrestrial prey in the illuminated site in spring. Terrestrial prey intake increased in spring for P. clercki under ALAN (from 70% to 74%) and in spring and autumn for P. prativaga (from 68% to 77% and from 67% to 72%) and Opiliones (from 68% to 72%; 68% to 75%). This was despite most of the available prey (up to 80%) being aquatic in origin. We conclude that ALAN changed the diet of riparian secondary consumers by increasing the density of both aquatic and terrestrial prey. Dietary changes were species‐ and season‐specific, indicating that the effects of ALAN may interact with phenology and feeding strategy. Because streetlights can occur in high density near freshwaters, ALAN may have widespread effects on aquatic–terrestrial ecosystem linkages.  相似文献   

7.
Elderd BD 《Oecologia》2006,147(2):261-271
Disturbances, such as flooding, play important roles in determining community structure. Most studies of disturbances focus on the direct effects and, hence, the indirect effects of disturbances are poorly understood. Within terrestrial riparian areas, annual flooding leads to differences in the arthropod community as compared to non-flooded areas. In turn, these differences are likely to alter the survival, growth, and reproduction of plant species via an indirect effect of flooding (i.e., changes in herbivory patterns). To test for such effects, an experiment was conducted wherein arthropod predators and herbivores were excluded from plots in flooded and non-flooded areas and the impact on a common riparian plant, Mimulus guttatus was examined. In general, the direct effect of flooding on M. guttatus was positive. The indirect effects, however, significantly decreased plant survival for both years of the experiment, regardless of predator presence, because of an increased exposure to grasshoppers, the most abundant herbivore in the non-flooded sites. Leafhoppers, which were more abundant in the flooded sites, had much weaker and varying effects. During 2000, when the leafhopper herbivory was high, arthropod predators did not significantly reduce damage to plants. In 2001, the mean herbivory damage was lower and predators were able to significantly reduce overall leafhopper damage. The effects of predators on leafhoppers, however, did not increase plant survival, final weight, or the reproduction potential and, thus, did not initiate a species-level trophic cascade. Overall, it was the differences in the herbivore community that led to a significant decrease in plant survival. While flooding certainly alters riparian plant survival through direct abiotic effects, it also indirectly affects riparian plants by changing the arthropod community, in particular herbivores, and hence trophic interactions.  相似文献   

8.
1. Comparative studies of distinct, but not ecologically isolated, systems such as lakes and streams may improve our understanding of the importance of ecological linkages in aquatic ecosystems. 2. In this study we compared the macroinvertebrate benthos of stony habitats in Swedish lakes and streams. Community composition was used to evaluate zoogeographic patterns and functional feeding guilds were used to identify mechanisms potentially affecting such patterns. 3. Stream communities were generally more diverse and species‐rich and had a higher proportion of grazers, shredders and passive‐filter feeders than lakes. Lake communities had a higher proportion of predators and collector‐gatherers. Of the 10 most common taxa, only Leptophlebia mayflies, clams (Sphaeriidae) and the isopod Asellus aquaticus were recorded in both lakes and streams. 4. Among‐site variance in macroinvertebrate communities accounted for by regional‐scale variables was low (6.4% for lakes and 10.1% for streams), compared with that by local‐scale variables (21% for lakes and 37.6% for streams). For lakes, the among‐site variance in macroinvertebrate communities was best explained by habitat‐scale characteristics followed by ecosystem, riparian, catchment, geographic position and ecoregion. For streams, the variance in macroinvertebrate communities was best explained by ecosystem characteristics followed by habitat, catchment, riparian, ecoregion and geographic position. 5. Conspicuous differences in spatial pattern were revealed between lakes and streams. For lakes, the most unequivocal differences in community composition and function occurred at the transition zone between the mixed forests in the south and the boreal coniferous forests in the north. Surprisingly, streams did not respond as strongly to profound landscape‐level differences in climate and vegetation cover. 6. The spatial differences noted between macroinvertebrate communities of lakes and streams may be because of differences in retention of detrital matter. Our findings imply that detrital inputs are qualitatively similar, but that the retention and processing of coarse particulate organic matter was presumably higher in lake littoral regions than in stream riffle habitats. 7. Although our findings support the conjecture that species distribution is determined fundamentally by conditions prevailing at the local‐scale, regional factors such as land use/type and the role of history were important and seemingly act as strong determinants of large‐scale patterns in biodiversity.  相似文献   

9.
10.
1. Changes in one prey species' density can indirectly affect the abundance of another prey species if a shared predator eats both species. Sometimes, indirect effects occur when prey straddle habitats, including when riparian predator populations grow in response to emergent aquatic insects and increase predation on terrestrial prey. However, predators may largely switch to aquatic insects or become satiated, reducing predation on terrestrial prey. 2. To determine the net indirect effect of aquatic insects on terrestrial arthropods via generalist spider predators, a field experiment was conducted mimicking midge influx and a wolf spider numerical response inside enclosures near an Icelandic lake. Lab mesocosms were also used to assess per capita rates of spider predation u nder differing levels of midge abundance. 3. Midges always decreased sentinel prey predation, but this effect increased with predator density. When midges were absent, predation increased 30% at a high spider density, but predation was equal between spider treatments when midges were present. In situ arthropods showed no effect of midge or spider treatments, although non‐significant abundance patterns were observed congruent with sentinel prey results. 4. In lab mesocosms, prey survivorship increased ≥50% where midges were present and rapidly saturated; the addition of 5, 20, 50, and 100 midges equivalently reduced spider predation, supporting predator distraction rather than satiation as the root cause. 5. The present results demonstrate a strong positive indirect effect of midges and broadly support the concept that predator responses to alternative prey are a major influence on the magnitude and direction of predator‐mediated indirect effects.  相似文献   

11.
1. Trophic linkages between terrestrial and aquatic ecosystems are common and sensitive to disruption. However, there is little information on what causes variation in the strength and spatial scale of these linkages. 2. In the highly aquatic adults of the headwater salamander Gyrinophilus porphyriticus (family Plethodontidae), use of terrestrial prey decreases along a gradient from early‐ to late‐successional riparian forests. To understand the cause of this relationship, we tested the predictions that (i) terrestrial prey abundance is lower in late‐successional forests, and (ii) G. porphyriticus adults cannot move as far from the stream to forage in late‐successional forests, thus limiting access to terrestrial prey. 3. We established 100‐m long study reaches on six headwater streams in the Hubbard Brook Experimental Forest, New Hampshire. Three reaches were in early‐successional forests and three were in late‐successional forests. We conducted pitfall trapping for invertebrate prey in June and July of 2005, with three traps at 0, 2, 5 and 10 m from the stream at each reach. In June, July and August of 2004 and 2005, nighttime salamander surveys were conducted at each reach along ten, 10‐m long by 2.5‐m wide transects perpendicular to the stream. 4. Abundance of terrestrial prey was consistently lower in late‐successional forests, suggesting that consumption of terrestrial prey by G. porphyriticus is affected by prey abundance. Contrary to our prediction, G. porphyriticus adults moved farther from the stream in late‐successional forests, suggesting that habitat conditions in late‐successional forests do not limit movement away from the stream, and that lower abundances of terrestrial prey in these forests may cause salamanders to move farther from streams. 5. Our results provide novel insight on the extent of terrestrial habitat use by G. porphyriticus. More broadly, these results indicate that major habitat gradients, such as forest succession, can affect the strength and scale of terrestrial‐aquatic linkages. Application of this insight to the design of vegetation buffers along headwater streams would have widespread benefits to freshwater ecosystems.  相似文献   

12.
Northern ecosystems are facing unprecedented climate modifications, which pose a major threat for arctic species, especially the specialist predator guild. However, the mechanisms underlying responses of predators to climate change remain poorly understood. Climate can influence fitness parameters of predators either through reduced reproduction or survival following adverse weather conditions, or via changes in the population dynamics of their main prey. Here, we combined three overlapping long‐term datasets on the breeding density and parameters of a rodent‐specialist predator, the rough‐legged buzzard Buteo lagopus, its main prey population dynamics and climate variables, collected in subarctic areas of Finland and Norway, to assess the impact of changing climate on the predator reproductive response. Rough‐legged buzzards responded to ongoing climate change by advancing their laying date (0.1 d yr?1 over the 21 yr of the study period), as a consequence of earlier snowmelt. However, we documented for the same period a decrease in breeding success, which principally resulted from an indirect effect of changes in the dynamics of their main prey, i.e. grey‐sided voles Microtus oeconomus, and not from the expected negative effect of unfavorable weather conditions during the brood‐rearing period on nestling survival. Additionally, we showed the striking impact of autumn and winter weather conditions on vole population growth rates in subarctic ecosystems, with a strong positive correlation between mean snow depth in autumn and winter and both winter and summer population growth rates. Our results highlighted that, in northern ecosystems, ongoing climate change has the potential to impact specialist predator species through two mechanistic linkages, which may in the long‐run, threaten the viability of their populations, and lead to potential severe cascading trophic effects at the ecosystem level.  相似文献   

13.
In many parts of the world, the magnitude and frequency of cold‐season precipitation are expected to increase in the near future. This will result in an increased magnitude and duration of winter and spring flooding by rain‐fed streams and rivers. Such climate‐driven increases in flooding are likely to affect riparian plant communities, but future vegetation changes are hard to predict due to current lack of data. To fill this knowledge gap, we experimentally modified the hydrology of five streams across three countries in north‐western Europe during late winter/early spring over a period of 3 years. We assessed the responses in riparian plant species richness, biomass, plant‐available nitrogen and phosphorus and seed deposition to increased flooding depth (+18 cm on average at the lowest positions along the riparian gradient) and prolonged flooding duration (6 weeks on average). After 3 years of increased flooding, there was an overall decline in riparian species richness, while riparian plant biomass increased. Extractable soil nitrogen and phosphorus also increased and are likely to have contributed to the increased biomass. Increased flooding resulted in the arrival of more seeds of additional species to the riparian zone, thereby potentially facilitating the shifts in riparian plant species composition we observed. The results of our concerted experimental effort demonstrate that changes in stream riparian plant communities can occur rapidly following increased winter flooding, leading to strong reductions in plant species diversity.  相似文献   

14.
Intra‐guild predation (IGP) – where a top predator (IGPred) consumes both a basal resource and a competitor for that resource (IGPrey) – has become a fundamental part of understanding species interactions and community dynamics. IGP communities composed of intraguild predators and prey have been well studied; however, we know less about IGP communities composed of predators, pathogens, and resources. Resource quality plays an important role in community dynamics and may influence IGP dynamics as well. We conducted a meta‐analysis on predator–pathogen–resource communities to determine whether resource quality mediated by the pathogen affected predator life‐history traits and if these effects met the theoretical constraints of IGP communities. To do this, we summarized results from studies that investigated the use of predators and pathogens to control insect pests. In these systems, the predators are the IGPred and pathogens are the IGPrey. We found that consumer longevity, fecundity, and survival decreased by 26%, 31% and 13% respectively, when predators consumed pathogen‐infected prey, making the infected prey a low quality resource. Predators also significantly preferred healthy prey over infected prey. When we divided consumers by enemy type, strict predators (e.g. wolf spiders) had no preference while parasitoids preferred healthy prey. Our results suggest that communities containing parasitoids and pathogens may rarely exhibit intraguild predation; whereas, communities composed of strict predators and pathogens are more likely dominated by IGP dynamics. In these latter communities, the consumption of low and high quality resources suggests that IGP communities composed of strict predators, pathogens and prey should naturally persist, supporting IGP theory. Synthesis We investigated how consuming pathogen‐infected prey influence important life‐history parameters of insect predators. Pathogens are used in a variety of biocontrol programs, especially to control crop pests. We found that true predators (i.e. wolf spiders) have no preference for healthy or infected prey and have reduced fecundity, survival and longevity consuming infected prey. However, parasitoids avoided infected prey when possible. In biocontrol programs with multiple control agents, parasitoids and pathogens would do a better job controlling pests as predators would reduce the amount of pathogen available and have reduced fitness from consuming infected prey. However, theory suggests that true predators, prey and pathogens may coexist long term.  相似文献   

15.
1. Ecologists have struggled to describe general patterns in the impacts of predators on stream prey, particularly at large, realistic spatial and temporal scales. Among the confounding variables in many systems is the presence of multiple predators whose interactions can be complex and unpredictable. 2. We studied the interactions between brook trout (Salvelinus fontinalis) and larval two‐lined salamanders (Eurycea bislineata), two dominant vertebrate predators in New England stream systems, by examining patterns of two‐lined salamander abundance in stream reaches above and below waterfalls that are barriers to fish dispersal, by measuring the effects of trout on salamander density and activity using a large‐scale manipulation of brook trout presence, and by conducting a small‐scale laboratory experiment to study how brook trout and larval two‐lined salamanders affect each other's prey consumption. 3. We captured more salamanders above waterfalls, in the absence of trout, than below waterfalls where trout were present. Salamander density and daytime activity decreased following trout addition to streams, and salamander activity shifted from aperiodic to more nocturnal with fish. Analysis of stomach contents from our laboratory experiment revealed that salamanders eat fewer prey with trout, but trout eat more prey in the presence of salamanders. 4. We suggest that as predators in streams, salamanders can influence invertebrate prey communities both directly and through density‐ and trait‐mediated interactions with other predators.  相似文献   

16.
Streams and adjacent riparian habitats represent linked terrestrial and aquatic ecosystems that exchange materials and energy. Recognized relationships among apex predators and ecosystem biodiversity led us to hypothesize that these predators in riparian‐stream systems were more likely to be found in sites with high stream quality, defined as increased ecosystem function and integrity. In our freshwater study system, river otter Lontra canadensis and mink Neovison vison play critical roles as apex predators. We used multi‐season occupancy modelling across three sampling years (2012–2014) to compare aspects of the stream communities that explain occupancy dynamics of river otter and mink, including their interactions with other semi‐aquatic mammals. We surveyed for semi‐aquatic mammals at 77 sites in 12 major watersheds in southern Illinois, USA (44 526 km2). Naïve occupancy differed among years but generally increased for river otter, and remained high (≥93.5%) for mink. Increasing substrate availability increased detectability of river otter, whereas mink detection varied by survey period. Occupancy of river otter during the initial survey period was higher in sites closer to reintroduction points. Probability of colonization of river otter was positively associated with macroinvertebrate index of biotic integrity, fish species richness, and beaver presence. Sites with high species richness of fish families preferred by river otter also had increased river otter persistence. Mink occupied sites with increased fish richness, muskrat presence and mussel community index. Taken together, our results show occupancy of both mink and river otter were predicted by aspects of prey diversity and presence, indicating the importance of community composition in occupancy dynamics of riparian predators. Ultimately, these relationships suggest that habitat heterogeneity and system stability are important to apex predator site use. However, the relative role of bottom–up and top–down forcing in stream systems remains to be resolved.  相似文献   

17.
SUMMARY 1. Transfer of carbon from freshwater to terrestrial ecosystems can occur through predation on adult aquatic insects, but the significance of this trophic pathway to the energetics of riparian communities is poorly understood. We used stable isotopes of carbon and nitrogen to explore linkages between aquatic insect production and the nutrition of web‐building and free‐living spiders alongside two streams in the North Island of New Zealand. 2. δ13C values for riparian tree leaves (means for each site = ?32.2 and ?30.3‰) were distinct from those of lichens collected from stream channel rocks and instream algae, both of which were similar (?23.4 to ?22.4‰). δ15N values for leaves were similar at both sites (?3.4 and ?2.7‰), but algae were considerably more depleted in δ15N atonesite suggesting significant differences in instream nitrogen sources between the twostreams. 3. Isotope values for potential aquatic prey of spiders indicated that aquatic algal production was their primary carbon source at both sites. Terrestrial invertebrates collected and assumed to be potential prey reflected a range of carbon sources and represented several trophic levels. 4. At one site, δ13C values indicated a primarily algae‐aquatic insect pathway of carbon transfer to both web‐building and free‐living spider guilds. The other site appeared to have a primarily terrestrial carbon pathway for the free‐living spider guild, and a mixed aquatic‐terrestrial pathway for the web‐building guild. 5. Overall, web‐building spiders were estimated to obtain around 61% of their body carbon from aquatic production compared with 55% for free‐living spiders. Our findings suggest that consumption of prey derived from aquatic sources can provide significant nutrition for spiders living along some stream channels. This pathway may represent an important feedback mechanism contributing to the energetics of riparian communities at sites where aquatic insect production is high.  相似文献   

18.
Dippers from the genus Cinclus are highly specialised predators on aquatic invertebrates, and occupy linear territories along rivers where measurements of variations in quality are relatively straightforward. For these reasons, they are ideal model species in which to examine factors affecting territory size. In this paper, we investigated the influence of stream habitats on the territory length of the Brown Dipper (Cinclus pallasii) in Taiwan. The biomass of aquatic insects and other stream habitat variables were analyzed to determine their relationships with the territory length of Brown Dippers from November 1988 to May 1989. Compared with slow-moving waters, riffle areas contained significantly greater insect biomass (paired t test, t 11 = 3.49, P < 0.01), of which trichopteran larvae contributed about 70%. Dippers spent more time foraging in riffles than in slow-moving waters. In addition, dippers preferred foraging in shallow riffles, but avoided deep, slow-moving waters (G = 62.53, df = 3, P < 0.001). Territory length (1,045 ± 165 m [SE], n = 14) was negatively related to proportion of riffles (r 2 = 0.5715, P < 0.01), total aquatic insect biomass (r 2 = 0.5840, P < 0.01), and altitude (r 2 = 0.7176, P < 0.001). In factor analysis, four factors were extracted from the 14 stream variables. However, only factor 1 was significantly related to territory length (r 2 = 0.5207, P < 0.01). Factor 1 explained 42.8% of the total variance and collectively revealed the importance of high food abundance. In other words, Brown Dipper territories were the shortest along high-altitude streams with abundant riffles, fewer pools and abundant aquatic insects. These results indicate that abundant supply of accessible invertebrate prey is the most important factor affecting the territory length of Brown Dippers. This is consistent with Cinclus species elsewhere, and reveals the importance of clean, productive river ecosystems.  相似文献   

19.
Understanding the effects of extreme climatic events on species and their interactions is of paramount importance for predicting and mitigating the impacts of climate change on communities and ecosystems. However, the joint effects of extreme climatic events and species interactions on the behaviour and phenotype of organisms remain poorly understood, leaving a substantial gap in our knowledge on the impacts of climatic change on ecological communities. Using an aphid–ladybeetle system, we experimentally investigated the effects of predators and heat shocks on prey body size, microhabitat use, and transgenerational phenotypic plasticity (i.e., the asexual production of winged offspring by unwinged mothers). We found that (i) aphids were smaller in the presence of predators but larger when exposed to frequent heat shocks; (ii) frequent heat shocks shifted aphid distribution towards the plant's apex, but the presence of predators had the opposite effect and dampened the heat‐shock effects; and (iii) aphids responded to predators by producing winged offspring, but heat shocks strongly inhibited this transgenerational response to predation. Overall, our experimental results show that heat shocks inhibit phenotypic and behavioural responses to predation (and vice versa) and that such changes may alter trophic interactions, and have important consequences on the dynamics and stability of ecological communities. We conclude that the effects of extreme climatic events on the phenotype and behaviour of interacting species should be considered to understand the effects of climate change on species interactions and communities.  相似文献   

20.
Experimental studies in temperate regions have revealed that competition and predation interact to shape aquatic communities. Predators typically reduce the effect of competition on growth and competitors provide alternative prey subjects, which may also alter predation. Here, we examine the independent and combined effects of competition and predation on the survival and growth of hatchling tadpoles of two widespread co‐occurring Neotropical hylid frogs (Agalychnis callidryas and Dendropsophus ebraccatus). Using 400 L mesocosms, we used a 2 × 3 factorial substitutive design, which crossed tadpole species composition with the presence or absence of a free‐roaming predator (Anax amazili dragonfly larva). Dragonflies were effective predators of both species, but had larger effects on A. callidryas survival. Both species had similar growth rates when alone, whereas A. callidryas grew 30 percent faster than D. ebraccatus when they co‐occurred, suggesting interspecific rather than intraspecific competition had relatively stronger effects on D. ebraccatus growth, while the opposite was true for A. callidryas. Predator presence dramatically reduced growth rates of both species and erased this asymmetry. Results suggest that the effects of predator induction (i.e., nonconsumptive effects) on growth were larger than both consumptive and competitive effects. Our study demonstrates that predators have strong effects on both survival and growth of prey, highlighting the potential importance of predators in shaping prey populations and tropical aquatic food web interactions. Abstract in Spanish is available at http://www.blackwell‐synergy.com/loi/btp .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号