首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In highly invaded ecosystems, restoration of native plant communities is dependent upon reducing exotic species relative to native species. Even so, in monitoring, the native–exotic species richness ratio has been shown to be scale‐dependent. Measurement at small spatial scales (<1 m2) can reveal a negative native–exotic richness relationship, where niche occupation may prevent invasion. Conversely, at larger scales, a positive correlation may exist, where environmental heterogeneity and equally favorable conditions may drive native–exotic relationships. Here, we compare slopes of native–exotic relationships across spatial scales in a prairie undergoing active restoration. The observed native–exotic richness ratios varied considerably over scales ranging from 1 to 1,000 m2, emphasizing the importance of choosing a measurement scale that is most pertinent to the treatment and ecological mechanism used to evaluate restoration success. Our native–exotic richness slopes were positive over all scales, but lower than would be expected in a random community assembly, suggesting the influence of niche‐based competition. Correspondingly, our native–exotic cover slope was more negative than a null model; however, areas of frequent fire treatments showed a significant deviation from null only for richness, indicating that burning may enhance native–exotic competitive dynamics for number of species but not cover. The negative native–exotic cover relationships appear to be driven in this system mainly by exotic graminoids, across burn treatments and native functional groups, supporting the concept that frequent burning can alter the dominant competitive mechanism from coverage of these exotic grasses to an improved environment for germination and dispersal of more native species.  相似文献   

2.
Land managers require landscape-scale information on where exotic plant species have successfully established, to better guide research, control, and restoration efforts. We evaluated the vulnerability of various habitats to invasion by exotic plant species in a 100,000 ha area in the southeast corner of Grand Staircase-Escalante National Monument, Utah. For the 97 0.1-ha plots in 11 vegetation types, exotic species richness (log10) was strongly negatively correlated to the cover of cryptobiotic soil crusts (r = −0.47, P < 0.001), and positively correlated to native species richness (r = 0.22, P < 0.03), native species cover (r = 0.23, P < 0.05), and total nitrogen in the soil (r = 0.40, P < 0.001). Exotic species cover was strongly positively correlated to exotic species richness (r = 0.68, P < 0.001). Only 6 of 97 plots did not contain at least one exotic species. Exotic species richness was particularly high in locally rare, mesic vegetation types and nitrogen rich soils. Dry, upland plots (n = 51) had less than half of the exotic species richness and cover compared to plots (n = 45) in washes and lowland depressions that collect water intermittently. Plots dominated by trees had significantly greater native and exotic species richness compared to plots dominated by shrubs. For the 97 plots combined, 33% of the variance in exotic species richness could be explained by a positive relationship with total plant cover, and negative relationships with the cover of cryptobiotic crusts and bare ground. There are several reasons for concern: (1) Exotic plant species are invading hot spots of native plant diversity and rare/unique habitats. (2) The foliar cover of exotic species was greatest in habitats that had been invaded by several exotic species.(3) Continued disturbance of fragile cryptobiotic crusts by livestock, people, and vehicles may facilitate the further invasion of exotic plant species. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
We investigated some of the factors influencing exotic invasion of native sub‐alpine plant communities at a site in southeast Australia. Structure, floristic composition and invasibility of the plant communities and attributes of the invasive species were studied. To determine the plant characteristics correlated with invasiveness, we distinguished between roadside invaders, native community invaders and non‐invasive exotic species, and compared these groups across a range of traits including functional group, taxonomic affinity, life history, mating system and morphology. Poa grasslands and Eucalyptus‐Poa woodlands contained the largest number of exotic species, although all communities studied appeared resilient to invasion by most species. Most community invaders were broad‐leaved herbs while roadside invaders contained both herbs and a range of grass species. Over the entire study area the richness and cover of native and exotic herbaceous species were positively related, but exotic herbs were more negatively related to cover of specific functional groups (e.g. trees) than native herbs. Compared with the overall pool of exotic species, those capable of invading native plant communities were disproportionately polycarpic, Asteracean and cross‐pollinating. Our data support the hypothesis that strong ecological filtering of exotic species generates an exotic assemblage containing few dominant species and which functionally converges on the native assemblage. These findings contrast with those observed in the majority of invaded natural systems. We conclude that the invasion of closed sub‐alpine communities must be viewed in terms of the unique attributes of the invading species, the structure and composition of the invaded communities and the strong extrinsic physical and climatic factors typical of the sub‐alpine environment.  相似文献   

4.
We compare two successional models as guides for restoring native riparian understory species along a 160‐km stretch of the Sacramento River in California. In 2001 and 2007, we surveyed cover, frequency, and richness of native and exotic understory species in 15 sites planted (1989–1996) with overstory species to determine whether native understory species colonized naturally (passive relay floristics model). In 2007, we surveyed 20 additional sites (planted 1997–2003) in 14 of which understory species were planted (initial floristics model) to evaluate whether planting accelerated community recovery. We surveyed 10 remnant forests as references for successional trajectories. Mean cover and frequency of natives changed little over time in sites where they were not planted initially; increases in native cover in a few sites were primarily due to a single common species (Galium aparine). Species composition shifted from light‐demanding to shade‐adapted species, both exotic and native, in response to a doubling of overstory cover. Sites with high intensity understory plantings had greater cover and frequency of native understory species than unplanted sites, but were still low relative to reference forests. Light‐demanding natives (e.g., Artemisia douglasiana, Rubus ursinus, and grasses) established in sites where they were planted; however, a shade‐adapted species (Carex barbarae) did not survive well. Our research indicates that the passive relay floristics and the initial floristic composition approaches serve to restore a few common native understory species, but that planting species as site conditions become appropriate (active relay floristics model) will be needed to restore entire native understory communities.  相似文献   

5.
Abstract Stock grazing has degraded many riparian ecosystems around the world. However, the potential for ecosystem recovery following the removal of grazing stock is poorly known. We developed a conceptual model to predict the responses of native and exotic herbaceous plants to grazing exclusion, based on site productivity and the degree of initial vegetation degradation. The effects of excluding grazing stock on richness, cover and composition of herbaceous plants were examined over 12 years in the degraded understorey of a riparian forest in Gulpa Island State Forest in south‐eastern Australia. We predicted that grazing exclusion would lead to limited changes in vegetation cover, richness and composition, owing to presumed low site productivity and the high degree of understorey degradation. Results showed that the cover, richness and composition of native and exotic species varied significantly among years. Over all plots, regions and years, total cover was slightly but significantly lower in grazed than in ungrazed plots (43.4% vs. 50.8%). While the cover of native plants increased over time in both treatments, the rate of increase was slightly greater in ungrazed plots. Grazing exclusion had no effect on the richness of native or exotic species, but had a significant but minor impact on plant composition, with different common species (mostly exotics) being promoted or diminished in ungrazed plots. The composition of grazed and ungrazed areas did not become more different over time. Overall, the effects that could be attributed to grazing exclusion were relatively minor and transient. Results are consistent with predictions based on site productivity and initial degradation, and should not be extrapolated to other more productive, or less degraded, riparian systems.  相似文献   

6.
Considerable research has been devoted to understanding how plant invasions are influenced by properties of the native community and to the traits of exotic species that contribute to successful invasion. Studies of invasibility are common in successionally stable grasslands, but rare in recently disturbed or seral forests. We used 16 yr of species richness and abundance data from 1 m2 plots in a clearcut and burned forest in the Cascade Range of western Oregon to address the following questions: 1) is invasion success correlated with properties of the native community? Are correlations stronger among pools of functionally similar taxa (i.e. exotic and native annuals)? Do these relationships change over successional time? 2) Does exotic abundance increase with removal of potentially dominant native species? 3) Do the population dynamics of exotic and native species differ, suggesting that exotics are more successful colonists? Exotics were primarily annual and biennial species. Regardless of the measure of success (richness, cover, biomass, or density) or successional stage, most correlations between exotics and natives were non‐significant. Exotic and native annuals showed positive correlations during mid‐succession, but these were attributed to shared associations with bare ground rather than to direct biotic interactions. At peak abundance, neither cover nor density of exotics differed between controls and plots from which native, mid‐successional dominants were removed. Tests comparing nine measures of population performance (representing the pace, magnitude, and duration of population growth) revealed no significant differences between native and exotic species. In this early successional system, local richness and abundance of exotics are not explained by properties of the native community, by the presence of dominant native species, or by superior colonizing ability among exotics species. Instead natives and exotics exhibit individualistic patterns of increase and decline suggesting similar sets of life‐history traits leading to similar successional roles.  相似文献   

7.
Prairie reconstructions are a critical component of preservation of the imperiled tallgrass prairie ecosystem in the Midwestern United States. Sustainability of this endeavor depends on establishment of persistent cover of planted native species and resistance to noxious weeds. The goal of this study was to understand the influence of early reconstruction practices on long‐term outcomes. Twelve replicates of three planting methods (dormant‐season broadcast, growing‐season broadcast, and growing‐season drill) and three seed mix richness levels (10, 20, or 34 species), fully crossed in a completely randomized design were planted in 2005 on nine former agricultural fields located in Iowa and Minnesota. Cover by species was estimated in 2005–2007, 2010, and 2015. In 2015, cover of planted species, native nonplanted species, and exotic species were similar to those recorded in 2010. Cover of the noxious weed Cirsium arvense had also declined by an average of 49% without herbicide from a peak in 2007 to low stable levels from 2010 to 2015. Richness of planted forbs, on the other hand, were still increasing in high‐richness broadcast treatments (e.g. 17–59% increase 2010–1015 in Minnesota). Two results in 2015 are reasons for concern: cover of planted species is only slightly over 50% in both Minnesota and Iowa, though with forbs still increasing, this may improve; and the cool‐season exotic grasses Poa pratensis and Bromus inermis are increasing at both Minnesota and Iowa sites. Control of these invasive grasses will be necessary, but care will be needed to avoid negative impacts of control methods on natives.  相似文献   

8.
Aim In terrestrial plant communities, the relationship between native species diversity and exotic success is typically scale‐dependent. It is often proposed that within local neighbourhoods, high native diversity limits resources, thereby inhibiting exotic success. However, environmental variation that manifests over space or time can create positive correlations between native diversity and exotic success at larger scales. In marine habitats, there have been few multi‐scale surveys of this pattern, so it is unclear how diversity, resource limitation and the environment influence the success of exotic species in these systems. Location Washington, USA. Methods I analysed nested spatial and temporal surveys of fouling communities, which are assemblages of sessile marine invertebrates, to test whether the relationships between native richness, resource availability and exotic cover supported the diversity‐stability and diversity‐resistance theories, to test whether these relationships changed with spatio‐temporal scale, and to explore the temperature preferences of native and exotic fouling species. Results Survey data failed to support diversity‐stability theory: space availability actually increased with native richness at the local neighbourhood scale, and neither space availability nor variability decreased with native richness across larger spatio‐temporal scales. I did find support for diversity‐resistance theory, as richness negatively correlated with exotic cover in local neighbourhoods. Unexpectedly, this negative correlation disappeared at intermediate scales, but emerged again at the regional scale. This scale‐dependent pattern could be partially explained by contrasting water temperature preferences of native and exotic species. Main conclusions Within local neighbourhoods, native diversity may inhibit exotic abundance, but the mechanism is unlikely related to resource limitation. At the largest scale, correlations suggest that native richness is higher in cooler environments, whereas exotic richness is higher in warmer environments. This large‐scale pattern contrasts with the typical plant community pattern, and has important implications for coastal management in the face of global climate change.  相似文献   

9.
Recent multi-habitat studies across a range of spatial scales have shown that species-rich habitats are often highly invasible by exotic species. The primary measures of invasion in these and other studies are invader richness and the absolute cover or biomass of invaders. We argue that the relative biomass or cover of invaders (dominance) is an important but overlooked measure of plant invasion. We re-analyzed data presented in five previous studies to evaluate whether exotic relative abundance is positively correlated with native richness. There were either no relationships or negative relationships between native richness and relative exotic cover calculated from three spatial scales (1, 1000 and 4000 m2). Thus while the original studies reported high exotic richness or absolute cover in habitats rich in native species, native richness did not predict the degree to which exotics had become dominant or abundant relative to natives. Absolute measures of exotic cover reported in the original studies underestimated relative exotic cover in habitats with low native species richness. High exotic dominance in areas of low native richness may indicate that exotic richness and dominance are controlled by different factors. We conclude that it is useful for researchers to measure both invader richness and invader dominance when trying to understand the environmental factors that are associated with plant invasions.  相似文献   

10.
Question: What are the effects of fire in native shrubland communities and in pine plantations established in these shrublands? Location: Northern Patagonia, Argentina. Methods: We surveyed four sites in Chall‐Huaco valley, located in northwest Patagonia. Each site was a vegetation mosaic composed of an unburned Pinus ponderosa plantation, a plantation burned in 1996, and an unburned matorral and a matorral burned by the same fire. We recorded the cover of all vascular plant species. We also analysed species richness, total cover, proportion of exotic species, abundance of woody species and herb species, cover of exotic species, abundance of woody and herb species and differences in composition of species. For both shrubs and tree species we recorded the main strategy of regeneration (by resprouting or by seed). Results: We found that fire had different effects on native matorral and pine plantations. Five years after fire, plantations came to be dominated by herbs and exotic species, showing differences in floristic composition. In contrast, matorral communities remained very similar to unburned matorral in terms of species richness, proportion of woody species, and herb species and proportion of exotics. Also, pine plantations were primarily colonized by seedlings, while matorrals were primarily colonized by resprouting. Conclusions: Matorrals are highly fire resilient communities, and the practice of establishing plantations on matorrals produces a strong reduction in the capacity of matorral to return to its original state. The elimination of shrubs owing to the effect of plantations can hinder regeneration of native ecosystems. Burned plantations may slowly develop into ecosystems similar to the native ones, or they may produce a new ecosystem dominated by exotic herbs. This study shows that plantations of exotic conifers affect native vegetation even after they have been removed, as in this case by fire.  相似文献   

11.
Summary Although many native species are now used in the revegetation of soil disturbances in Australian alpine areas, exotic species were, until recently, the only components of seed mixes. The use of exotic species and fertilizer was justified by their availability and low cost, and the prediction that native species would replace the exotic sward, presumably once soil nutrient levels dropped to those found in native vegetation. There was no apparent regard for the invasive capacities of the exotic species used. An investigation of a road verge on the Bogong High Plains, revegetated with a mixture of exotic species in the late 1950s, has shown that colonization by native plants can be very slow. Although many native species had colonized by 1993, exotic species still provided 50% of the cover. Agrostis capillaris accounted for most of this. The major native colonizers were Carex spp., Colobanthus affinis , Euchiton spp., Leptinella filicula , Poa hiemata , Ranunculus victoriensis and Scleranthus biflorus . Poa hiemata provided by far the most cover of the native colonizers. There have been considerable increases in the cover and number of native species on the verge since 1989. Cattle grazing and trampling are likely to have limited colonization of native plants prior to the removal of livestock in 1991. Recommendations are made on approaches to future revegetation in the alpine area.  相似文献   

12.
Many systems are prone to both exotic plant invasion and frequent natural disturbances. Native species richness can buffer the effects of invasion or disturbance when imposed in isolation, but it is largely unknown whether richness provides substantial resistance against invader impact in the face of disturbance. We experimentally examined how disturbance (drought/burning) influenced the impact of three exotic invaders (Centaurea stoebe, Linaria dalmatica, or Potentilla recta) on native abundance across a gradient of species richness, using previously constructed grassland assemblages. We found that invaders had higher cover in experimentally disturbed plots than in undisturbed plots across all levels of native species richness. Although exotic species varied in cover, all three invaders had significant impacts on native cover in disturbed plots. Regardless of disturbance, however, invader cover diminished with increasing richness. Invader impacts on native cover also diminished at higher richness levels, but only in undisturbed plots. In disturbed plots, invaders strongly impacted native cover across all richness levels, as disturbance favoured invaders over native species. By examining these ecological processes concurrently, we found that disturbance exacerbated invader impacts on native abundance. Although diversity provided a buffering effect against invader impact without disturbance, the combination of invasion and disturbance markedly depressed native abundance, even in high richness assemblages.  相似文献   

13.
The 2002 Hayman Fire burned with mixed severity across 55,800 ha of montane Colorado forest, including pre-existing plots that were originally measured for understory plant composition and cover in 1997. We examined the influence of the Hayman Fire on exotic plants by remeasuring these plots annually from 2003 to 2007. We found that (1) exotic richness and cover generally increased as fire severity and time since fire increased; (2) the exotic species present in a plot before the fire were also largely present in the plot postfire, regardless of fire severity; (3) most of the new postfire species in a plot were present elsewhere in the study area before the fire, although some new species were truly new invaders that were not found in prefire surveys; (4) lightly burned riparian forests were not more susceptible to exotic invasion than surrounding uplands that burned with similar severity; and (5) native and exotic richness and cover were positively correlated or uncorrelated for all fire severities and years. Our findings indicate that exotics were stimulated by the Hayman Fire, especially in severely burned areas. However, exotic richness and cover remain low as of 2007, and correlations between native and exotic richness and cover suggest that exotics have not yet interfered with native understory development. Therefore, we conclude that exotic plants are not a major ecological threat at present, but recommend that monitoring be continued to evaluate if they will pose a threat in future years.  相似文献   

14.
Aim Classic theory suggests that species‐rich communities should be more resistant to the establishment of exotic species than species‐poor communities. Although this theory predicts that exotic species should be less diverse in regions that contain more native species, macroecological analyses often find that the correlation between exotic and native species richness is positive rather than negative. To reconcile results with theory, we explore to what extent climatic conditions, landscape heterogeneity and anthropogenic disturbance may explain the positive relationship between native and exotic plant richness. Location Catalonia (western Mediterranean region). Methods We integrated floristic records and GIS‐based environmental measures to make spatially explicit 10‐km grid cells. We asked whether the observed positive relationship between native and exotic plant richness (R2= 0.11) resulted from the addition of several negative correlations corresponding to different environmental conditions identified with cluster analysis. Moreover, we directly quantified the importance of common causal effects with a structural equation modelling framework. Results We found no evidence that the relationship between native and exotic plant richness was negative when the comparison was made within environmentally homogeneous groups. Although there were common factors explaining both native and exotic richness, mainly associated with landscape heterogeneity and human pressure, these factors only explained 17.2% of the total correlation. Nevertheless, when the comparison was restricted to native plants associated with human‐disturbed (i.e. ruderal) ecosystems, the relationship was stronger (R2= 0.52) and the fraction explained by common factors increased substantially (58.3%). Main conclusions While our results confirm that the positive correlation between exotic and native plant richness is in part explained by common extrinsic factors, they also highlight the great importance of anthropic factors that – by reducing biotic resistance – facilitate the establishment and spread of both exotic and native plants that tolerate disturbed environments.  相似文献   

15.
Plantation forests are of increasing importance worldwide for wood and fibre production, and in some areas they are the only forest cover. Here we investigate the potential role of exotic plantations in supporting native forest-dwelling carabid beetles in regions that have experienced extensive deforestation. On the Canterbury Plains of New Zealand, more than 99% of the previous native forest cover has been lost, and today exotic pine (Pinus radiata) plantations are the only forest habitat of substantial area. Carabids were caught with pitfall traps in native kanuka (Kunzea ericoides) forest remnants and in a neighbouring pine plantation, grassland and gorse (Ulex europaeus) shrubland. A total of 2,700 individuals were caught, with significantly greater abundance in traps in young pine, grassland and gorse habitats than in kanuka and older pine. Rarefied species richness was greatest in kanuka, a habitat that supported two forest specialist species not present in other habitat types. A critically endangered species was found only in the exotic plantation forest, which also acts as a surrogate habitat for most carabids associated with kanuka forest. The few remaining native forest patches are of critical importance to conservation on the Canterbury Plains, but in the absence of larger native forest areas plantation forests are more valuable for carabid conservation than the exotic grassland that dominates the region.  相似文献   

16.
Restoration of native vegetation often focuses on the canopy layer species, with the assumption that regeneration of the understory elements will occur as a consequence. The goal of this study was to assess the influence of canopy restoration on the composition and abundance of understory plant species assemblages along riparian margins in the Hunter Valley, NSW, Australia. We compared the floristic composition (richness, abundance, and diversity) of understory species between nonrevegetated (open) and canopy revegetated plots across five sites. A number of other factors that may also influence understory vegetation, including soil nutrients, proximity to main channel, and light availability, were also measured. We found that sites where the canopy had been restored had lower exotic species richness and abundance, as well as higher native species cover, but not native species richness, compared with open sites. Multivariate analysis of plots based on plant community composition showed that revegetated sites were associated with lower total species diversity, light availability, and exotic cover. This study has found that the restoration of the canopy layer does result in lower exotic species richness and cover, and higher native species cover and diversity in the understory, a desirable restoration outcome. Our results provide evidence that restoration of native canopy species may facilitate restoration of native understory species; however, other interventions to increase native species richness of the understory should also be considered as part of management practice.  相似文献   

17.
Abstract: Positive interactions between species are known to play an important role in the dynamics of plant communities, including the enhancement of invasions by exotics. We studied the influence of the invasive shrub Pyracantha angustifolia (Rosaceae) on the recruitment of native and exotic woody species in a secondary shrubland in central Argentina mountains. We recorded woody sapling recruitment and micro‐environmental conditions under the canopies of Pyracantha and the dominant native shrub Condalia montana (Rhamnaceae), and in the absence of shrub cover, considering these situations as three treatments. We found that native and exotic species richness were higher under Pyracantha than under the other treatments. Ligustrum lucidum (Oleaceae), an exotic bird‐dispersed shade‐tolerant tree, was the most abundant species recruiting in the area, and its density was four times higher under the canopy of Pyracantha. This positive interaction may be related to Pyracantha's denser shading, to the mechanical protection of its canopy against ungulates, and/or to the simultaneous fruit ripening of both woody invaders.  相似文献   

18.
Different management regimes imposed on similar habitat types provide opportunities to investigate mechanisms driving community assembly and changes in species composition. We investigated the effect of pasture management on vegetation composition in wetlands with varying spatial isolation on a Florida cattle ranch. We hypothesized that increased pasture management intensity would dampen the expected negative effect of wetland isolation on native species richness due to a change from dispersal‐driven community assembly to niche‐driven assembly by accentuated environmental tolerance. We used native plant richness, exotic plant richness and mean coefficient of conservatism (CC) to assess wetland plant assemblage composition. Sixty wetlands were sampled, stratified by three levels of isolation across two pasture management intensities; semi‐native (less intensely managed; mostly native grasses, never fertilized) and agronomically improved (intensely managed, planted with exotic grasses, and fertilized). Improved pasture wetlands had lower native richness and CC scores, and greater total soil phosphorus and exotic species coverage compared to semi‐native pasture wetlands. Increased wetland isolation was significantly associated with decreases in native species richness in semi‐native pasture wetlands but not in improved pasture wetlands. Additionally, the species–area relationship was stronger in wetlands in improved pastures than semi‐native pastures. Our results indicate that a) native species switch from dispersal‐based community assembly in semi‐native pastures to a species‐sorting process in improved pastures, and b) recently‐introduced exotic species already sorted for more intensive management conditions are primarily undergoing dispersal‐based community assembly. That land‐use may alter the relative importance of assembly processes and that different processes drive native and exotic richness has implications for both ecosystem management and restoration planning.  相似文献   

19.
We tested whether the recently proposed two‐part measure of degree of invasion (DI) of a community relating exotic proportion of cover to exotic proportion of richness can characterize patterns of plant invasions at multiple savannah sites in Southern Africa. Regression analysis was performed on transformed data to assess how this two‐part measure of DI compares to other metrics of community invasibility. The results indicate that at the plot level, the absolute cover of exotics was not significantly related to native cover for three sites out of four assessed (R2 ≤ 0.17; > 0.05). Also, at all four sites, no significant relationships were detected between native and exotic plant richness at both the 1‐m2 and 400‐m2 plot scales. By contrast, significant (< 0.05) positive linear relationships were observed between exotic proportion of richness and exotic proportion of cover at all sites (R2 was as high as 0.67 and 0.97 for two sites). Our results indicate that the new two‐part measure of DI is able to characterize patterns of plant invasions across plant communities in African savannahs.  相似文献   

20.
Habitat restoration to promote wild pollinator populations is becoming increasingly common in agricultural lands. Yet, little is known about how wild bees, globally the most important wild pollinators, use resources in restored habitats. We compared bee use of native and exotic plants in two types of restored native plant hedgerows: mature hedgerows (>10 years from establishment) designed for natural enemy enhancement and new hedgerows (≤2 years from establishment) designed to enhance bee populations. Bees were collected from flowers using timed aerial netting and flowering plant cover was estimated by species using cover classes. At mature hedgerow sites, wild bee abundance, richness, and diversity were greater on native plants than exotic plants. At new sites, where native plants were small and had limited floral display, abundance of bees was greater on native plants than exotic plants; but, controlling for floral cover, there was no difference in bee diversity and richness between the two plant types. At both mature and new hedgerows, wild bees preferred to forage from native plants than exotic plants. Honey bees, which were from managed colonies, also preferred native plants at mature hedgerow sites but exhibited no preference at new sites. Our study shows that wild bees, and managed bees in some cases, prefer to forage on native plants in hedgerows over co‐occurring weedy, exotic plants. Semi‐quantitative ranking identified which native plants were most preferred. Hedgerow restoration with native plants may help enhance wild bee abundance and diversity, and maintain honey bee health, in agricultural areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号