首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An ultrafiltration-light absorption spectrometric method for soluble molybdate-reactive silicon was assessed and applied to bovine and ovine blood plasma and sera, giving precise analytical results. Interfering protein above molecular weight 10,000–25,000 was removed by ultrafiltration, and silicon in ultrafiltrates was quantitated by measuring light absorption at 810 nm of the 1,2,4-aminonaphthol sulfonic acid/ascorbic acid-reduced silicomolybdate. Chemical interferences on the color-forming reaction of remaining blood components were tested by measuring recoveries of silicon added to real blood plasma samples and to synthetic blood plasma solutions, the latter containing typical levels of the major ions Na+, K+, Ca2+, HCO3?, and Cl?, together with varying quantities of the potential interferants (amount per analytical reaction): phosphate (0–0.5 mg P), ferric ion (0–3 mg), fluoride (0–1.25 mg), vanadate (0–0.5 mg V), arsenate (0–10 μg As), and germanate (0–0.5 μg Ge). The mean recovery of added 0.8–9 μg silicon/g of bovine and ovine plasma was 97.7% (SE = 1.0, n = 17); the mean recovery of 1 and 5 μg silicon from synthetic blood plasma solutions with interferant levels up to 50-fold that in normal plasma was 99.2% (SE = 0.3, n = 47). Silicon concentrations found in bovine and ovine blood plasma and sera were typically around 7 μg/ml with procedural reagent blanks consistently low at a mean of 0.12 μg/test (SD = 0.011, n = 20). The silicon level in Center for Disease Control bovine serum (reference specimen Lot R-2274) was found to be (mean ± SE, n = 10) 1.147 ± 0.013 μg/g or 1.172 ± 0.013 μg/ml (25°C). The method detectivity (detection limit) was estimated at 0.03 μg.  相似文献   

2.
A column-switching high-performance liquid chromatography method with ultraviolet detection at 210 nm has been developed for the determination of N-(trans-4-isopropylcyclohexylcarbonyl)-d-phenylalanine (AY4166, I) in human plasma. Plasma samples were prepared by solid-phase extraction with Sep-Pak Light tC18, followed by HPLC. The calibration graph for I was linear in the range 0.1–20 μg/ml. The limit of quantitation of I, in plasma, was 0.05 μg/ml. The recovery of spiked I (0.5 μg/ml) to drug-free plasma was over 92% and the relative standard deviation of spiked I (0.5 μg/ml) compared to drug-free plasma was 4.3% (n = 8).  相似文献   

3.
A micro method for determination of indomethacin in plasma was developed. Following deproteinization of plasma with acetonitrile containing internal standard (mefenamic acid), the separation of indomethacin and internal standard was achieved by high-performance liquid chromatography using a 7 μm LiChrosorb-RP18 column (250×4 mm I.D.) at 50°C. The mobile phase was 6 mM phosphoric acid–acetonitrile (50:50). The flow-rate was kept at 2.0 ml/min and the column effluent was monitored at 205 nm. The coefficients of variation of the method estimated at 0.2 and 1.0 μg/ml were 4.2 and 2.3%, and the detection limit of the drug was about 0.05 μg/ml (S/N=5). The method requires minimum pretreatment of the plasma with a small sample volume (25 μl), and is very suitable for therapeutic drug monitoring of indomethacin in premature infants with symptomatic patent ductus arteriosus.  相似文献   

4.
Diadenosine 5′,5‴-p1,p4-tetraphosphate (Ap4A) was converted with chloroacetaldehyde to the fluorescent di-1,N6-ethenoadenosine derivative within 60 min at 80°C. It was separated by reversed-phase HPLC and detected fluorimetrically (excitation and emission wavelengths of 275 and 410 nm, respectively). The detection limit of Ap4A was ca. 0.2 μg/ml in plasma when 10 μl of the sample was applied to the column. The rate of degradation of Ap4A added to whole blood (5 μg/ml) was examined using this method. Half-lives (means ± S.E., n = 3) were 0.88 ± 0.30 min (in rat blood), 13.7 ± 3.6 min (in dog blood and 17.2 ± 1.4 min (in human blood). A marked species difference in the degradation rate of Ap4A in blood was observed.  相似文献   

5.
A simple, accurate and sensitive high-performance liquid chromatographic method with UV detection was carried out to measure simultaneously plasma and urine concentrations of both p-aminohippuric acid and inulin. Following a simplified acid hydrolysis of the sample, the separation was carried out in 4 min using a C18 reversed-phase column with a flow-rate of 1 ml/min, and monitoring the absorbance at 280 nm. Within the investigated concentration ranges of inulin (0.1–3.2 mg/ml) and p-aminohippuric acid (0.0097–0.3 mg/ml), good linearity (r>0.99) was obtained. Within-run RSD ranged from 2.9 to 6.1% and between-run RSD ranged from 6.4 to 10%. Analytical recoveries were 101–112%, with little differences between plasma and urine samples. The detection limit was 1 μg/ml for all the analytes studied. This method might be ideal for renal function studies where a rapid and reproducible assessment of both renal glomerular filtration rate and blood flow-rate is required.  相似文献   

6.
BackgroundDisproportional heavy metals and essential elements were reported in children with autism spectrum disorder (ASD) that is obscure in etiology. Inevitably, the association is biased by diet and environmental factors.MethodsFifty pairs, one with ASD and the other living together from the same special school with cerebral palsy (CP), were recruited in Hangzhou (China), aged from 2 to 11 years old (74.0 % male). All samples were divided into two subgroups: preschool-aged (2–5 years old) and school-aged (6–10 years old). Heavy metals (As, Hg, Pb) and essential elements (Al, Ca, Cu, Mg, Mn, Zn) in hair were quantified by inductively coupled plasma mass spectrometry analysis and flame atomic absorption spectroscopy.ResultsThe children with ASD generally had lower hair levels of Mn (ASD 0.124 μg/g, CP 0.332 μg/g, P = 0.001) compared to the children with CP. After stratification for age, there were no significant differences detected in preschool-aged group. In school-aged group, the results exhibited the children with ASD had higher hair Pb (1.485 μg/g, 0.690 μg/g, P = 0.007) and Cu/Zn ratio (0.092, 0.060, P = 0.003), while hair Hg (0.254 μg/g, 0.353 μg/g, P = 0.016)、Mn (0.089 μg/g, 0.385 μg/g, P = 0.002)、Mg (17.81 μg/g, 24.53 μg/g, P = 0.014) and Zn (100.15 μg/g, 135.83 μg/g, P = 0.007) showed an opposite pattern.ConclusionsThese results suggest an imbalance of Mn in Chinese children with ASD.  相似文献   

7.
A differential pulse polarographic assay for plasma vitamin K3 (menadione) has been developed. Details of the assay are (i) lipid-soluble material is extracted from plasma into ether by the method of Bjornsson et al. [(1978) Thromb. Haemostas.2, 466–473]; (ii) ether is evaporated under nitrogen and the residue is dissolved in the supporting electrolyte, methanol: 0.2 m borate buffer (9:1), pH 6.8; (iii) current height is measured at ?0.32 V vs SCE on the differential pulse polarogram. The lower sensitivity limit of this technique after addition of standard vitamin K3 to plasma is 0.3 μm; the calibration curve is linear from 0.6 through 10 μm. Two patients treated with a single dose of menadiol sodium diphosphate, 20 mg/M2 i.m., achieved measurable plasma vitamin K3 levels at 0.5 to 1.0 h ranging between 0.5 (0.08 μg/ml) and 2 μm (0.3 μg/ml).  相似文献   

8.
A rapid, sensitive and specific high-performance liquid chromatographic (HPLC) assay was developed for the determination of amdinocillin (formerly mecillinam) in human plasma and urine. The assay is performed by direct injection of a plasma protein-free supernatant or a dilution of urine. A 10-μm μBondapak phenyl column with an eluting solvent of water—methanol—1 M phosphate buffer, pH 7 (70:30:0.5) was used, with UV detection of the effluent at 220 nm. Azidocillin potassium salt [potassium-6-(d-(-)-α-azidophenyacetamido)-penicillanate] was used as the internal standard and quantitation was based on peak height ratio of amdinocillin to that of the internal standard. The assay has a recovery of 74.4 ± 6.3% (S.D.) in the concentration ranges of 0.1–20 μg per 0.2 ml of plasma with a limit of detection equivalent to 0.5 μg/ml plasma. The urine assay was validated over a concentration range of 0.025–5 mg/ml of urine, and has a limit of detection of 0.025 mg/ml (25 μg/ml) using a 0.1-ml urine specimen per assay.The assay was applied to the determination of plasma and urine concentrations of amdinocillin following intravenous administration of a 10 mg/kg dose of amdinocillin to two human subjects. The HPLC and microbiological assays were shown to correlate well for these samples.  相似文献   

9.
A simple and sensitive high-performance liquid chromatograhic (HPLC) method for the determination of (+)-(S)-sotalol and (−)-(R)-sotalol in biological fluids was established. Following extraction with isopropyl alcohol from biological samples on a Sep-Pak C18 cartridge, the eluent was derivatized with 2,3,4,6-tetra-O-acetyl-β-d-glucopyranosol isothiocyanate (GITC). The diastereoisomeric derivatives are resolved by HPLC with UV detection at 225 nm. Calibration was linear from 0.022 to 4.41 μg/ml in human plasma and from 0.22 to 88.2 μg/ml in human urine for both (+)-(S)- and (−)-(R)-sotalol. The lower limit of determination was 0.022 μg/ml for plasma and 0.22 μg/ml for urine. The within-day and day-to-day coefficients of variation were less than 7.5% for each enantiomer at 0.09 and 1.8 μg/ml in plasma and at 0.44 and 4.4 μg/ml in urine. The method is also applicable to other biological specimens such as rat, mouse and rabbit plasma.  相似文献   

10.
An HPLC method for the determination of spectinomycin in swine, calf and chicken plasma at 0.1 μg/ml or higher is described. The clean-up is based upon ion-pair solid-phase extraction on a High Hydrophobic C18 column treated with sodium dioctyl suflosuccinate. After elution with methanol, spectinomycin is chromatographed on a Spherisorb SCX column using 0.1 M sodium sulphate solution (pH 2.6)-acetonitrile (80:20, v/v) as mobile phase. Fluorescence detection is at an excitation wavelength of 340 nm and an emission wavelength of 460 nm after post-column oxidation with sodium hypochlorite followed by derivatization with o-phthaldialdehyde. Mean recoveries were 99 ± 2% (n = 6), 99 ± 2% (n = 7) and 104 ± 2% (n = 6) for swine, calf and chicken plasma, respectively, at the 0.1 μg/ml level.  相似文献   

11.
We have developed and validated a sensitive and selective method for the determination of the P-glycoprotein modulator GF120918 in murine and human plasma. Chlorpromazine is used as internal standard. Sample pretreatment involves liquid–liquid extraction with tert-butyl methyl ether. Chromatographic separation is achieved by reversed-phase high-performance liquid chromatography using a Symmetry C18 column and detection was accomplished with a fluorescence detector set at excitation and emission wavelengths of 260 and 460 nm, respectively. The mobile phase consists of acetonitrile–50 mM ammonium acetate buffer, pH 4.2 (35:65, v/v). To achieve good separation from endogenous compounds and to improve the peak shape the counter-ion 1-octane sulfonic acid (final concentration 0.005 M) was added to the mobile phase. The lower limit of quantitation was 5.7 ng/ml using 200 μl of human plasma and 23 ng/ml using 50 μl of murine plasma. Within the dynamic range of the calibration curve (5.7–571 ng/ml) the accuracy was close to 100% and within-day and between-day precision were within the generally accepted 15% range. The stability of GF120918 was tested in plasma and blood from mice and humans incubated at 4°C, room temperature, and 37°C for up to 4 h. No losses were observed under these conditions. This method was applied to study the pharmacokinetics of orally administered GF120918 in humans and mice. The sensitivity of the assay was sufficient to determine the concentration in plasma samples obtained up to 24 h after drug administration.  相似文献   

12.
A reliable reversed-phase high-performance liquid chromatographic method was developed for the determination of liposomal nystatin in plasma. Nystatin is extracted by 1:2 (v/v) liquid–liquid extraction with methanol. Separation is achieved by HPLC after direct injection on a μBondapak™ C18 analytical column with a mobile phase composed of 10 mM sodium phosphate, 1 mM EDTA, 30% methanol and 30% acetonitrile adjusted to pH 6. Detection is by ultraviolet absorbance at 305 nm. Quantitation is based on the sum of the peak area concentration of the two major isomers of nystatin, which elute at 7.5–8.5 and 9.5–10.5 min. The assay was linear over the concentration range of 0.05 to 50 μg/ml. The lower limit of quantitation was 0.05 μg/ml, sufficient for investigating the plasma pharmacokinetics of liposomal nystatin in preclinical studies. Accuracies and intra- and inter-day precision showed good reproducibility. With minor modifications, this method also was used for assaying nystatin in various non-plasma body fluids and tissues.  相似文献   

13.
Two different enantioselective chiral chromatographic methods were developed and validated to investigate the disposition of the β1-receptor antagonist atenolol in blood and in brain extracellular fluid of rats (tissue dialysates). System A for the plasma samples was a one-column chromatographic system with a Chiral CBH column with an aqueous buffer as mobile phase into which cellobiose was added for selective regulation of the retention of the internal standard, (S)-metoprolol. The plasma samples were analysed after a simple extraction procedure. The limit of quantitation was 0.2 μg/ml for the atenolol enantiomers. The repeatability of the medium concentration quality control plasma sample (6.0 μg rac-atenolol/ml) was 11–18% for the enantiomers. The dynamic linear range of the plasma samples was 0.5–20 μg/ml. For system B, since atenolol is an extremely hydrophilic drug, the tissue dialysate sample required a much more sensitive system as compared to the plasma samples. A coupled column system was used for peak compression of the enantiomers in the eluate after the separation on the Chiral CBH column, hence increasing the detection sensitivity. The limit of quantification was 0.045 μg/ml for the atenolol enantiomers in artificial CSF. The repeatability of the medium concentration quality control samples (0.1 and 4.0 μg rac-atenolol/ml in artificial CSF and Hepes Ringer, respectively) was 2.8–9.3% for the two enantiomers. The dynamic linear range of the brain samples was 0.05–1.0 and 0.5–20 μg/ml in artificial CSF and Hepes Ringer, respectively. Chirality 9:329–334, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
We developed a sensitive assay to measure amoxicillin in human plasma and midle ear fluid (MEF) using solid-phase extraction and reversed-phase HPLC. Amoxicillin and cefadroxil, the internal standard, were extracted from 50–200 μl of sample with Bond Elut C18 cartridges. The exact was analyzed on a 15 cm × 2 mm, 5μm Keystone MOS Hypersil-1 (C8) column with UV detection at 210 nm. The mobile phase was 6% acetonitrile in 5 mM phosphate buffer (pH = 6.5) and 5 mM tetrabutylammonium. The average absolute recovery of amoxicillin and cefadroxil were 91.2 ± 16.6% and 91.0 ± 6.8%, respectively. The limit of quantitation was 0.125 μg/ml with 200 μl sample size. The linear range was from 0.125 to 35.0 μg/ml with correlation coefficients greater than 0.999. These analytic conditions produced a highly sensitive amoxicillin assay in human body fluids without derivatization.  相似文献   

15.
A column-switching high-performance liquid chromatography method with ultraviolet detection at 210 nm has been developed for the determination of N-(trans-4-isopropylcyclohexylcarbonyl)-d-phenylalanine (AY4166, I) in human plasma. Plasma samples were prepared by solid-phase extraction with Sep-Pak Light tC18, followed by HPLC. The calibration graph for I was linear in the range 0.1–20 μg/ml. The limit of quantitation of I, in plasma, was 0.05 μg/ml. The recovery of spiked I (0.5 μg/ml) to drug-free plasma was over 92% and the relative standard deviation of spiked I (0.5 μg/ml) compared to drug-free plasma was 4.3% (n = 8).  相似文献   

16.
A sensitive and selective bioanalytical liquid chromatographic method for diclofenac is described. The drug was detected as a fluorescent derivative, which was demonstrated by 1H NMR and mass spectrometric studies to be carbazole acetic acid. Diclofenac was derivatized by UV irradiation of the substance performed as a post-column photoreaction. The reactor was a PTFE capillary wound around a 254-nm UV lamp. Diclofenac was isolated from the plasma samples by precipitation of the proteins with acetonitrile. A 50-μl volume of the supernatant was injected onto a Nucleosil C18 column. The mobile phase was 32% acetonitrile in pH 6.6 buffer. Carbazole acetic acid was detected by a fluorescence detector using an excitation wavelength of 288 nm and an emission wavelength of 360 nm. The recovery was 92%, the standard curve was linear in the range 10–5500 ng diclofenac per ml plasma, and the relative standard deviation at 10 and 5000 ng of diclofenac per ml plasma was 9.0% and 3.3%, respectively. The limit of detection was 6 ng/ml at an injection volume of 50 μl. Chromatograms of human and rat plasma containing diclofenac are shown.  相似文献   

17.
We have developed and validated a sensitive and selective assay for the quantification of paclitaxel and its metabolites 6α,3′-p-dihydroxypaclitaxel, 3′-p-hydroxypaclitaxel and 6α-hydroxypaclitaxel in plasma, tissue, urine and faeces specimens of mice. Tissue and faeces were homogenized (approximately 0.1–0.2 g/ml) in bovine serum albumin (40 g/I) in water, and urine was diluted (1:5, v/v) in blank human plasma. Sample pretreatment involved liquid-liquid extraction of 200–1000 μl of sample with diethyl ether followed by automated solid-phase extraction using cyano Bond Elut column. 2′-Methylpaclitaxel was used as internal standard. The overall recovery of the sample pretreatment procedure ranged from 76 ot 85%. In plasma, the lower limit of detection (LOD) and the lower limit of quantitation (LLQ) are 15 and 25 ng/ml, respectively, using 200 μl of sample. In tissues, faeces and urine the LLQs are 25–100 ng/g, 125 ng/g and 25 ng/ml, respectively, using 1000 μl (faeces: 200 μl) of homogenized or diluted sample. The concentrations in the various biological matrices, for validation procedures spiked with known amounts of the test compounds, are read from calibration curves constructed in blank human plasma in the range 25–100 000 ng/ml for paclitaxel and 25–500 ng/ml for the metabolites. The accuracy and precision of the assay fall within the generally accepted criteria for bio-analytical assays.  相似文献   

18.
The present describes a new high-performance liquid chromatographic method with fluorescence detection for the analysis of levodropropizine [S-(−)-3-(4-phenylpiperazin-1-yl)-propane-1,2-diol] (Levotuss), an anti-tussive drug, in human serum and plasma. A reversed-phase separation of levodropropizine was coupled with detection of the native fluorescence of the molecule, using excitation and emission wavelengths of 240 nm and 350 nm respectively. The analytical column was packed with spherical 5 μm poly(styrene-divinylbenzene) particles and the mobile phase was 0.1 M NaH2PO4 pH 3-methanol (70:30, v/v), containing 0.5% (v/v) tetrahydrofuran. For quantitation, p-methoxylevodropropizine was used as the internal standard. Samples of 200 μl of either serum or plasma were mixed with 200 μl of 0.1 M Na2HPO4 pH 8.9 and extracted with 5 ml of chloroform-2-propanol (9:1, v/v). The dried residue from the organic extract was redissolved with distilled water and directly injected into the chromatograph. The limit of detection for levodropropizine, in biological matrix, was about 1–2 ng/ml, at a signal-to-noise ratio of 3. The linearity was satisfactory over a range of concentrations from 3 to 1000 ng/ml (r2 = 0.99910); within-day precision tested in the range 5–100 ng/ml as well as day-to-day reproducibility proved acceptable, with relative standard deviations better than 1% in most cases. Interferences from as many as 91 therapeutic or illicit drugs were excluded.  相似文献   

19.
A direct injection high-performance liquid chromatography method is described for the determination of mitomycin C (MMC) in human plasma. The stationary phase consisted of hydrophilic and hydrophobic functional groups covalently bound to silicone-coated silica beads (CAPCELL PAK MF Ph-1, 150×4.6 mm I.D., 5 μm). A mobile phase using 100% water gave a better separation of MMC from endogenous interferences as compared to a mobile phase with 12.5% acetonitrile and 2.5 mM phosphate buffer (pH 6.9). Using water as the eluent (1 ml/min) and UV detection at 365 nm, MMC was found to elute at 5.0 min with a peak width of 0.3 min, whereas endogenous interferences eluted before 3 min. Total assay time per sample was 6 min. Internal standard was not required because the recovery of MMC was nearly complete, about 90% from 20 to 5000 ng/ml. The standard curve was linear from 20 to 5000 ng/ml in plasma, and the intra- and inter-day variation was between 3 to 6%. The lower detection limit was 5 ng/ml with a 25 μl sample, which represent a two- to four-fold improvement over the 10 ng/ml detection limit by previous methods using liquid-liquid extraction and comparable sample size. The simplicity of this method, i.e., no sample extraction, no internal standard, 100% aqueous mobile phase, isocratic elution and short analysis time (6 min/sample), makes it suitable for large scale routine sample analysis, whereas its small sample volume requirement and high sensitivity are useful for pharmacokinetic studies in small animals where limited sample is available.  相似文献   

20.
R A Dormer  J T France 《Steroids》1973,21(4):497-510
A method for assaying cortisol and cortisone using chromatography on either paper or Sephadex LH-20 columns for isolation, followed by competitive protein binding, has been applied to umbilical cord and maternal plasma samples. In mixed cord plasma the mean cortisol concentration was 6.0 ± 0.8 μg/100 ml (n = 9) and the mean cortisone concentration was 13.5 ± 2.9 μg/100 ml (n = 9). In cord arterial plasma the mean cortisol concentration was 6.3 ± 2.9 μg/100 ml (n = 6) and the mean cortisone level was 10.1 ± 2.5 μg/100 ml (n = 6). For cord venous plasma, the mean level of cortisol was 5.6 ± 1.5 μg/100 ml (n = 6) and of cortisone was 13.5 ± 2.4 μg/100 ml (n = 6). Maternal plasma gave a mean value of cortisol of 42.3 ± 4.5 μg/100 ml (n = 6) and of cortisone of 6.2 ± 0.9 μg/100 ml. The results of this study suggest that the fetus at term-gestation produces cortisol. The significance of this production compared with placental transfer of maternal cortisol into the fetal circulation however is uncertain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号