首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ismael Moya  Raphael Garcia 《BBA》1983,722(3):480-491
A new method for decomposing fluorescence emission spectra into their elementary components, based on the simultaneous recording of fluorescence intensity and lifetime vs. the emission wavelength, has been applied to the spectra of algal cells at liquid nitrogen temperature. A model of Gaussian components fits both τ(λ) and F(λ) spectra with the same parameters. The fluorescence lifetimes have been measured by phase fluorimetry at two modulation frequencies: 29 and 139 MHz. The final Gaussian decomposition is able to describe both the 29 and 139 MHz spectra. The following conclusions concerning the fluorescence spectra of Chlorella cells at 77 K can be drawn. These conclusions are also valid with minor changes for the other examined species. (1) An overlapping of different emitting bands occurs in all the spectra; therefore, a direct lifetime reading from phase delay measurement necessitates measurements being made at several frequencies. (2) At the Fmax fluorescence level, the lifetime values of the two emissions usually associated with variable fluorescence are 0.53 ns (for B′1; λ peak 688 nm), and 1.46 ns (for B′2; λ peak 698 nm); these lifetimes are shorter than those we have measured at room temperature (approx. 1.8 ns). (3) Superimposed on B′1 and B′2 and with approximatively the same peak location, two long-lifetime components (B″1, 4.8 ns; B″2, 5.6 ns) are present. Two hypotheses can be proposed to explain these emissions: (i) the long-lifetime components arise from subsets of chlorophyll a disconnected from the functional antenna by the cooling process; and (ii) charge recombination in reaction centers leads to delayed fluorescence. (4) In the λ > 710 nm region, two main bands are required to describe the so-called Photosystem I emission: B3 (0.8 ns; λ peak 715 nm) and B4 (3.3 ns; λ peak 724 nm). The former band, usually unresolved in the amplitude fluorescence spectra, is a specific finding from lifetime measurements and has been associated with the antenna core of Photosystem I. No additional information has been obtained for B4. A supplementary small band (B5, 0.40 ns; λ peak ? 740 nm) is necessary to take into account the frequency effect and the τ(λ) decrease in the λ > 740 nm spectral range.  相似文献   

2.
In intact, uncoupled type B chloroplasts from spinach, added ATP causes a slow light-induced decline (t12 ≈ 3 min) of chlorophyll a fluorescence at room temperature. Fluorescence spectra were recorded after fast cooling to 77 K and normalized with fluorescein as an internal standard. Related to the fluorescence quenching at room temperature, an increase in Photosystem (PS) I fluorescence (F735) and a decrease in PS II fluorescence (F695) were observed in the low-temperature spectra. The change in the F735F695 ratio was abolished by the presence of methyl viologen. Fluorescence induction at 77 K of chloroplasts frozen in the quenched state showed lowered variable (Fv) and initial (F0) fluorescence at 690 nm and an increase in F0 at 735 nm. The results are interpreted as indicating an ATP-dependent change of the initial distribution of excitation energy in favor of PS I, which is controlled by the redox state of the electron-transport chain and, according to current theories, is caused by phosphorylation of the light-harvesting complex.  相似文献   

3.
4.
Chenooxazoline3 (50–100 μM) inhibited (>50%) both 7α and 7β-dehydroxylase activities in whole cells and cell extracts of Eubacterium sp. V.P.I. 12708. Chenooxazoline (>50 μM) and methylchenooxazoline (>25 μM) but not lithooxazoline (≤100 μM) inhibited growing cultures of Eubacterium sp. V.P.I. 12708. Chenooxazoline (100 μM) also inhibited the growth of certain members of the genera Eubacterium, Clostridium, Bacteroides and Staphylococcus but not Pseudomonas, Escherichia, Salmonella or the eucaryotic microorganism, Saccharomyces cerevisiae (_< 400 μM).  相似文献   

5.
6.
The effect of Mg2+ concentration and phosphorylation of light-harvesting chlorophyll ab-protein on various chlorophyll fluorescence induction parameters of isolated pea thylakoids has been studied. (1) Lowering the Mg2+ concentration from 3 to 0.4 mM decreases only the variable fluorescence (Fv) and the area above the induction curve while at the same time increasing the slow exponential component of the rise (βmax). (2) A further decrease in Mg2+ concentration from 0.4 to 0 mM decreases the initial (F0) fluorescence level such that the ratio FvFm increases slightly as does the area above the induction curve and βmax. (3) Thylakoid membranes, phosphorylated at 5 mM Mg2+, show an equal decrease in Fv and F0, no change in the area above the induction curve and an increase in βmax. At 2 mM Mg2+, however, phosphorylation induced a more extensive quenching of Fv so that the FvFm ratio was lowered and the area above the induction curve decreased while βmax increased. (4) When phosphorylated membranes were subsequently suspended in an Mg2+-free medium the effect on F0 due to phosphorylation was found to be additive to that due to the absence of Mg2+. The effect of membrane phosphorylation on fluorescence is discussed in relation to the control of excitation energy distribution and shows that different mechanisms operate depending on the background Mg2+ levels. At high Mg2+ the phosphorylation seems to affect the absorption cross-section of Photosystem II while at lower Mg2+ levels there is an additional effect of increased spillover from Photosystem II to I.  相似文献   

7.
A.W.D. Larkum  Jan M. Anderson 《BBA》1982,679(3):410-421
A Photosystem II reaction centre protein complex was extracted from spinach chloroplasts using digitonin. This complex showed (i) high rates of dichloroindophenol and ferricyanide reduction in the presence of suitable donors, (ii) low-temperature fluorescence at 685 nm with a variable shoulder at 695 nm which increased as the complex aggregated due to depletion of digitonin and (iii) four major polypeptides of 47, 39, 31 and 6 kDa on dissociating polyacrylamide gels. The Photosystem II protein complex, together woth the P-700-chlorophylla protein complex and light-harvesting chlorophyll ab-protein complex (LHCP) also isolated using digitonin, were reconstituted with lipids from spinach chloroplasts to form proteoliposomes. The low-temperature (77 K) fluorescence properties of the various proteoliposomes were analysed. The F685F695 ratios of the Photosystem II reaction centre protein complex-liposomes decreased as the lipid to protein ratios were increased. The F681F697 ratios of LHCP-liposomes were found to behave similarly. Light excitation of chlorophyll b at 475 nm stimulated emission from both the Photosystem II protein complex (F685 and F695) and the P-700-chlorophyll a-protein complex (F735) when LHCP was reconstituted with either of these complexes, demonstrating energy transfer between LHCP and PS I or II complexes in liposomes. No evidence was found for energy transfer from the PS II complex to the P-700-chlorophyll a-protein complex reconstituted in the same proteoliposome preparation. Proteoliposome preparations containing all three chlorophyll-protein complexes showed fluorescence emission at 685, 700 and 735 nm.  相似文献   

8.
(1) In photosystem I (PS I) particles in the presence of dithionite and intense background illumination at 290 K, an external magnetic field (0–0.22 T) induced an increase, ΔF, of the low chlorophyll a emission yield, F (ΔFF ? 1–1.5%). Half the effect was obtained at about 35–60 mT and saturation occurred for magnetic fields higher than about 0.15 T. In the absence of dithionite, no field-induced increase was observed. Cooling to 77 K decreased ΔF at 685 nm, but not at 735 nm, to zero. Measuring the emission spectra of F and ΔF, using continuous excitation light, at 82, 167 and 278 K indicated that the spectra of F and ΔF have about the same maximum at about 730, 725 and 700 nm, respectively. However, the spectra of ΔF show more long-wavelength emission than the corresponding spectra of F. (2) Only in the presence of dithionite and with (or after) background illumination, was a luminescence (delayed fluorescence) component observed at 735 nm, after a 15 ns laser flash (530 nm), that decayed in about 0.1 μs at room temperature and in approx. 0.2 μs at 77 K. A magnetic field of 0.22 T caused an appreciable increase in luminescence intensity after 250 ns, probably mainly caused by an increase in decay time. The emission spectra of the magnetic field-induced increase of luminescence, ΔL, at 82, 167 and 278 K coincided within experimental error with those of ΔF mentioned above. The temperature dependence of ΔF and ΔL was found to be nearly the same, both at 685 and at 735 nm. (3) Analogously to the proposal concerning the 0.15 μs luminescence in photosystem II (Sonneveld, A., Duysens, L.N.M. and Moerdijk, A. (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 5889–5893), we propose that recombination of the oxidized primary donor P-700+ and the reduced acceptor A?, probably A?1, of PS I causes the observed fast luminescence. The effect of an external magnetic field on this emission may be explained by the radical pair mechanism. The field-induced increase of the 0.1–0.2 μs luminescence seems to be at least in large part responsible for the observed increase of the total (prompt + delayed) emission measured during continuous illumination in the presence of a magnetic field.  相似文献   

9.
The nature of the light-induced ΔpH-dependent decline of chlorophyll a fluorescence in intact and broken spinach chloroplasts was investigated. Fluorescence spectra at 77 K of chloroplasts frozen in the low-fluorescent (high ΔpH) state showed increased ratios of the band peak at 735 nm (Photosystem (PS) I fluorescence) to the peak at 695 nm (PS II fluorescence). The increase in the F735F695 ratio at 77 K was related to the extent of fluorescence quenching at room temperature. Normalization of low-temperature spectra with fluorescein as an internal standard revealed a lowering of F695 that was not accompanied by an increase in F735: preillumination before freezing decreased both F695 and, to a lesser extent, F735 in the spectra recorded at 77 K. Fluorescence induction of chloroplasts frozen in the low-fluorescent state showed a markedly decreased variable fluorescence (Fv) of PS II, but no concomitant increase in initial fluorescence (F0) of PS I. Thus, the buildup of a proton gradient at the thylakoid membrane, as reflected by fluorescence quenching at room temperature, affects low-temperature fluorecence emission in a manner entirely different from the effect of removal of Mg2+, which is thought to alter the distribution of excitation energy in favor of PS I. The ΔpH-dependent quenching therefore cannot be caused by such change in energy distribution and is suggested to reflect increased thermal deactivation.  相似文献   

10.
J. Haveman  P. Mathis 《BBA》1976,440(2):346-355
A comparative study is made, at 15 °C, of flash-induced absorption changes around 820 nm (attributed to the primary donors of Photosystems I and II) and 705 nm (Photosystem I only), in normal chloroplasts and in chloroplasts where O2 evolution was inhibited by low pH or by Tris-treatment.At pH 7.5, with untreated chloroplasts, the absorption changes around 820 nm are shown to be due to P-700 alone. Any contribution of the primary donor of Photosystem II should be in times shorter than 60 μs.When chloroplasts are inhibited at the donor side of Photosystem II by low pH, an additional absorption change at 820 nm appears with an amplitude which, at pH 4.0, is slightly higher than the signal due to oxidized P-700. This additional signal is attributed to the primary donor of Photosystem II. It decays (t12 about 180 μs) mainly by back reaction with the primary acceptor and partly by reduction by another electron donor. Acid-washed chloroplasts resuspended at pH 7.5 still present the signal due to Photosystem II (t12 about 120 μs). This shows that the acid inhibition of the first secondary donor of Photosystem II is irreversible.In Tris-treated chloroplasts, absorption changes at 820 nm due to the primary donor of Photosystem II are also observed, but to a lesser extent and only after some charge accumulation at the donor side. They decay with a half-time of 120 μs.  相似文献   

11.
Fluorescence induction of intact Bryopsis chloroplasts whichpreviously had been illuminated in the presence of dithionitethen kept in the dark prior to measurement showed marked quenchingfrom an intermediary peak I to a lower level D before a secondaryrise to a peak P. A small hump (H), related to the membranepotential formed across the thylakoid membranes, overlappedD. The maximum extent of quenching—the I-D dip—wasattained in chloroplasts which had been illuminated for 1 secprior to dark incubation for 1 min. This illumination causedthe complete reduction of secondary electron acceptors and thepartial reduction of Q, the primary electron acceptor of photosystemII. Chloroplasts developed the capacity for transient photooxidationof cytochrome f during subsequent dark incubation, indicatingthat there was dark oxidation of electron acceptors of photosystemI which had been reduced by the illumination. A close correlationwas found between the I-D dip and the transient photooxidationof cytochrome f with respect to the kinetics of light inducedchanges as well as dark restoration after the illumination.Inhibitor studies showed that the dip decreased when the poolsize of photosystem I acceptors was reduced. Our results showthat the I-D dip and the transient photooxidation of cytochromef depend upon a common acceptor pool of photosystem I. We concludedthat the I-D dip is due to the oxidation of Q by photosystemI with a limited electron acceptor pool. (Received September 12, 1980; Accepted November 14, 1980)  相似文献   

12.
Jane M. Bowes  Peter Horton 《BBA》1982,680(2):127-133
Fluorescence induction curves in 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)-inhibited Photosystem (PS) II particles isolated from the blue-green alga Phormidium laminosum have been analysed as a function of redox potential. Redox titration of the initial fluorescence indicated a single component with Em,7.5 = +30 mV (n = 1) (Bowes, J., Horton, P. and Bendall, D.S. (1981) FEBS Lett. 135, 261–264). Despite this simplified electron acceptor system and the small number of chlorophylls per reaction centre, a sigmoidal induction curve was nevertheless seen. Sigmoidicity decreased as Q was reduced potentiometrically prior to induction such that the induction was exponential when the ratio FiFm = 0.64. These particles also showed a slow (β) phase of induction which titrated with an Em value slightly more positive than that of the major quencher. It is concluded that the sigmoidal shape of the fluorescence induction curve observed in Phormidium PS II particles is not a consequence of a requirement for two photons to close the PS II reaction centre, but is generated as a result of energy transfer between photosynthetic units comprising one reaction centre per approx. 50 chlorophylls. Also, the existence of PS II heterogeneity (PS IIα, PS IIβ centres) does not require a structurally differentiated chloroplast, but may only indicate the extent of aggregation of PS II centres.  相似文献   

13.
After digestion by TaqI or nicking by DNAase I, five highly modified bacteriophage DNAs were tested as substrates for T4 DNA ligase. The DNAs used were from phages T4, XP12, PBS1, SP82, and SP15, which contain as a major base either glucosylated 5-hydroxymethylcytosine, 5-methylcytosine, uracil, 5-hydroxymethyluracil, or phosphoglucuronated, glucosylated 5-(4′,5′-dihydroxypentyl)uracil, respectively. The relative ability of cohesive-ended TaqI fragments of these DNAs and of normal, λ DNA to be ligated was as follows: λ DNA = XP12 DNA >SP82 DNA ? nonglucosylatedT4 DNA >T4 DNA = PBS1 DNA ? SP15 DNA. TaqI-T4 DNA fragments were also inefficiently ligated by Escherichia coli DNA ligase. However, annealing-independent ligation of DNAase I-nicked T4, PBS1, and λ DNAs was equally efficient. We conclude that the poor ligation of TaqI fragments of T4 and PBS1 DNAs was due to the hydroxymethylation (and glucosylation) of cytosine residues at T4's cohesive ends and the substitution of uracil residues for thymine residues adjacent to PBS1's cohesive ends destabilizing the annealing of the restriction fragments. Only SP15 DNA with its negatively charged, modified base was unable to serve as a substrate for T4 DNA ligase in an annealing-independent reaction; therefore, its modification directly interfered with enzyme binding or catalysis.  相似文献   

14.
W.S. Chow  R.C. Ford  J. Barber 《BBA》1981,635(2):317-326
Salt-induced chlorophyll fluorescence and spillover changes in control and briefly sonicated chloroplasts have been studied under conditions where Photosystem II traps are closed. In a low-salt medium containing 10 mM KCl, control envelope-free chloroplasts exhibited good spillover, as measured by low chlorophyll fluorescence yield at room temperature, a high ratio of the fluorescence peaks F735F685 at 77 K, and increased Photosystem I activity in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea and Photosystem II light. In contrast, when stacked chloroplasts were briefly sonicated and subsequently diluted into a low-salt medium, a high fluorescence yield at room temperature and a low ratio of F735F685 at 77 K persisted. When unstacked chloroplasts were sonicated and then diluted into a high-salt medium, the room temperature fluorescence yield remained low. The results are interpreted in terms of a model relating the changes in chlorophyll fluoresecence with the lateral diffusion of Photosystem I and Photosystem II chlorophyll-protein complexes in the plane of the thylakoid membrane creating randomized or segregated domains, depending on the degree of electrostatic screening of surface charges (Barber, J. (1980) FEBS Lett. 188, 1–10). It is argued that brief sonication of stacked chloroplasts separates stromal membranes from granal stacks, thus limiting the inter-mixing of the photosystems via lateral diffusion even when the ionic composition of the medium is varied. Consequently energy transfer from Photosystem II to Photosystem I is relatively poor and chlorophyll fluorescence from Photosystem II is enhanced. The loss of the salt effect on sonicated unstacked membranes can also be accommodated by the model. In this case it seems that the generation of small membrane fragments does not allow the normal salt-induced phase separation of the pigment-protein complexes to occur.  相似文献   

15.
Efficient lysogenization of Escherichia coli K12 by bacteriophage λ requires the high level of synthesis of the phage repressor shortly after infection. This high level of synthesis of repressor requires the action of the λ eII and cIII proteins. Certain mutants of λ (λcIIIs) appear to have excess cIIcIII activity and can lysogenize more efficiently than λ+. The basis for the enhanced lysogenization is that, while two or more infecting phage are necessary for λ+ to lysogenize, a single infecting λcIIIs particle is sufficient for lysogenization. Also, repressor levels in cells infected with λcIIIs are higher than in those infected with λ+. I report here that repressor overproduction by λcIIIs (1) is due to a much higher rate of repressor synthesis than that of λ+; (2) is most marked at low multiplicities of infection, possibly because λcIIIs produces repressor much more efficiently than λ+ as a singly infecting phage.  相似文献   

16.
Methotrexate, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and N-hydroxysuccinimide react to form an activated ester of methotrexate which is a potent irreversible inhibitor of methotrexate transport in L1210 cells. In cells treated with the reagent at 37°C, inhibition was rapid (t12 < 1 min), optimal at pH 6.8, half-maximal at an inhibitor concentration of 20 nM, and complete at high levels of the reagent. Specificity was indicated by the fact that excess methotrexate added during the pretreatment step protected the transport system against inactivation. Irreversible inhibition was also observed in cells exposed to the reagent at 4°C. Inactivation in this case was qualitatively similar to the corresponding process at 37°C; it appeared rapidly, was half-maximal at 20 nM, and could be prevented by the addition of high concentrations of the substrate. The extent of the inhibition, however, reached a maximum of only 75%, even in samples containing excess or multiple additions of reagent. The latter findings suggest that at 4°C the transport protein exists in two forms, one (75% of the total) containing binding sites which are accessible to the active ester, and the other (25% of the total) with inaccessible sites. The identity of these sites is suggested to be transport proteins which have outward and inward orientations, respectively.  相似文献   

17.
C.J. Arntzen  C.L. Ditto 《BBA》1976,449(2):259-274
When isolated chloroplasts from mature pea (Pisum sativum) leaves were treated with digitonin under “low salt” conditions, the membranes were extensively solubilized into small subunits (as evidenced by analysis with small pore ultrafilters). From this solubilized preparation, a photochemically inactive chlorophyll · protein complex (chlorophyll ab ratio, 1.3) was isolated. We suggest that the detergent-derived membrane fragment from mature membranes is a structural complex within the membrane which contains the light-harvesting chlorophyll ab protein and which acts as a light-harvesting antenna primarily for Photosystem II.Cations dramatically alter the structural interaction of the light-harvesting complex with the photochemically active system II complex. This interaction has been measured by determining the amount of protein-bound chlorophyll b and Photosystem II activity which can be released into dispersed subunits by digitonin treatment of chloroplast lamellae. When cations are present to cause interaction between the Photosystem II complex and the light-harvesting pigment · protein, the combined complexes pellet as a “heavy” membranous fraction during differential centrifugation of detergent treated lamellae. In the absence of cations, the two complexes dissociate and can be isolated in a “light” submembrane preparation from which the light-harvesting complex can be purified by sucrose gradient centrifugation.Cation effects on excitation energy distribution between Photosystems I and II have been monitored by following Photosystem II fluorescence changes under chloroplast incubation conditions identical to those used for detergent treatment (with the exception of chlorophyll concentration differences and omission of detergents). The cation dependency of the pigment · protein complex and Photosystem II reaction center interactions measured by detergent fractionation, and regulation of excitation energy distribution as measured by fluorescence changes, were identical. We conclude that changes in substructural organization of intact membranes, involving cation induced changes in the interaction of intramembranous subunits, are the primary factors regulating the distribution of excitation energy between Photosystems II and I.  相似文献   

18.
The wavelength-resolved fluorescence emission kinetics of the accessory pigments and chlorophyll a in Porphyridium cruentum have been studied by picosecond laser spectroscopy. Direct excitation of the pigment B-phycoerythrin with a 530 nm, 6 ps pulse produced fluorescence emission from all of the pigments as a result of energy transfer between the pigments to the reaction centre of Photosystem II. The emission from B-phycoerythrin at 576 nm follows a nonexponential decay law with a mean fluorescence lifetime of 70 ps, whereas the fluorescence from R-phycocyanin (640 nm), allophycocyanin (660 nm) and chlorophyll a (685 nm) all appeared to follow an exponential decay law with lifetimes of 90 ps, 118 ps and 175 ps respectively. Upon closure of the Photosystem II reaction centres with 3-(3,4-dichlorophenyl)-1,1-dimethylurea and preillumination the chlorophyll a decay became non-exponential, having a long component with an apparent lifetime of 840 ps. The fluorescence from the latter three pigments all showed finite risetimes to the maximum emission intensity of 12 ps for R-phycocyanin, 24 ps for allophycocyanin and 50 ps for chlorophyll a.A kinetic analysis of these results indicates that energy transfer between the pigments is at least 99% efficient and is governed by an exp ?At12 transfer function. The apparent exponential behaviour of the fluorescence decay functions of the latter three pigments is shown to be a direct result of the energy transfer kinetics, as are the observed risetimes in the fluorescence emissions.  相似文献   

19.
J. Barber  G.F.W. Searle  C.J. Tredwell 《BBA》1978,501(2):174-182
The MgCl2-induced chlorophyll fluorescence yield changes in broken chloroplasts, suspended in a cation-free medium, treated with 3,-(3′,4′-dichlorophenyl)-1,1-dimethylurea and pre-illuminated, has been investigated on a picosecond time scale. Chloroplasts in the low fluorescing state showed a fluorescence decay law of the form exp ?At12, where A was found to be 0.052 ps?12, and may be attributed to the rate of spillover from Photosystem II to Photosystem I. Addition of 10 mM MgCl2 produced a 50% increase in the steady-state fluorescence quantum yield and caused a marked decrease in the decay rate. The fluorescence decay law was found to be predominantly exponential with a 1/e lifetime of 1.6 ns. These results support the hypothesis that cation-induced changes in the fluorescence yield of chlorophyll are related to the variations in the rate of energy transfer from Photosystem II to Photosystem I, rather than to changes in the partitioning of absorbed quanta between the two systems.  相似文献   

20.
Galanin-like peptide (GALP) is a neuropeptide involved in energy metabolism. The interactive effect of GALP and exercise on energy metabolism has not been investigated. The aim of this study was to determine if energy metabolism in spontaneously exercising mice could be promoted by intracerebroventricular (ICV) GALP administration. Changes in respiratory exchange ratio in response to GALP ICV administration indicated that lipids were primarily consumed followed by a continuous consumption of glucose throughout the dark period in non-exercising mice. In mice permitted to spontaneously exercise on a running-wheel, GALP ICV administration increased the consumed oxygen volume and heat production level from 5 to 11 h after administration. These effects occurred independently from the total running distance. The interaction between GALP ICV administration and spontaneous exercise decreased body weight within 24 h (F(1,16) = 5.772, p < 0.05), with no significant interaction observed regarding food and water intake or total distance. Energy metabolism-related enzymes were assessed in liver and skeletal muscle samples, with a significant interaction on mRNA expression between GALP ICV administration and spontaneous exercise observed in phosphoenolpyruvate carboxykinase (F(1,16) = 18.602, p < 0.001) that regulates gluconeogenesis and glucose transporter-4 (F(1,16) = 21.092, p < 0.001). GALP significantly decreased the mRNA expression of sterol regulatory element-binding protein-1c (p < 0.05) that regulates fatty acid synthesis regardless of spontaneous exercise with no changes to acetyl-CoA carboxylase a and fatty acid synthetase. These results indicate the GALP ICV administration can further promote energy metabolism when administered to spontaneously exercising mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号