首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Local adaptation is an important principle in a world of environmental change and might be critical for species persistence. We tested the hypothesis that replicated populations can attain rapid local adaptation under two varying laboratory environments. Clonal subpopulations of the cyclically parthenogenetic rotifer Brachionus calyciflorus were allowed to adapt to two varying harsh and a benign environment: a high‐salt, a food‐limited environment and untreated culture medium (no salt addition, high food). In contrast to most previous studies, we re‐adjusted rotifer density to a fixed value (two individuals per ml) every 3–4 days of unrestricted population growth, instead of exchanging a fixed proportion of the culture medium. Thus our dilution regime specifically selected for high population growth during the entire experiment and it allowed us to continuously track changes in fitness (i.e., maximum population growth under the prevailing conditions) in each population. After 56 days (43 asexual and eight sexual generations) of selection, the populations in the harsh environments showed a significant increase in fitness over time relative to the beginning compared to the population in untreated culture medium. Furthermore, the high‐salt population exhibited a significantly elevated ratio of sexual offspring from the start of the experiment, which suggested that this environment either triggered higher rates of sex or that the untreated medium and the food‐limited environment suppressed sex. In a following assay of local adaptation we measured population fitness under “local” versus “foreign” conditions (populations adapted to this environment compared to those of the other environment) for both harsh habitats. We found significantly higher fitness values for the local populations (on average, a 38% higher fitness) compared to the foreign populations. Overall, local adaptation was formed rapidly and it seemed to be more pronounced in the high‐salt treatment.  相似文献   

2.
Predicting how species will respond to the rapid climatic changes predicted this century is an urgent task. Species distribution models (SDMs) use the current relationship between environmental variation and species’ abundances to predict the effect of future environmental change on their distributions. However, two common assumptions of SDMs are likely to be violated in many cases: (i) that the relationship of environment with abundance or fitness is constant throughout a species’ range and will remain so in future and (ii) that abiotic factors (e.g. temperature, humidity) determine species’ distributions. We test these assumptions by relating field abundance of the rainforest fruit fly Drosophila birchii to ecological change across gradients that include its low and high altitudinal limits. We then test how such ecological variation affects the fitness of 35 D. birchii families transplanted in 591 cages to sites along two altitudinal gradients, to determine whether genetic variation in fitness responses could facilitate future adaptation to environmental change. Overall, field abundance was highest at cooler, high‐altitude sites, and declined towards warmer, low‐altitude sites. By contrast, cage fitness (productivity) increased towards warmer, lower‐altitude sites, suggesting that biotic interactions (absent from cages) drive ecological limits at warmer margins. In addition, the relationship between environmental variation and abundance varied significantly among gradients, indicating divergence in ecological niche across the species’ range. However, there was no evidence for local adaptation within gradients, despite greater productivity of high‐altitude than low‐altitude populations when families were reared under laboratory conditions. Families also responded similarly to transplantation along gradients, providing no evidence for fitness trade‐offs that would favour local adaptation. These findings highlight the importance of (i) measuring genetic variation in key traits under ecologically relevant conditions, and (ii) considering the effect of biotic interactions when predicting species’ responses to environmental change.  相似文献   

3.
Biological invasions comprise accidental evolutionary experiments, whose genetic compositions underlie relative success, spread and persistence in new habitats. However, little is known about whether, or how, their population genetic patterns change temporally and/or spatially across the invasion's history. Theory predicts that most would undergo founder effect, exhibit low genetic divergence across the new range and gain variation over time via new arriving propagules. To test these predictions, we analyse population genetic diversity and divergence patterns of the Eurasian round goby Neogobius melanostomus across the two decades of its North American invasion in the Laurentian Great Lakes, comparing results from 13 nuclear DNA microsatellite loci and mitochondrial DNA cytochrome b sequences. We test whether ‘genetic stasis’, ‘genetic replacement’ and/or ‘genetic supplement’ scenarios have occurred at the invasion's core and expansion sites, in comparison with its primary native source population in the Dnieper River, Black Sea. Results reveal pronounced genetic divergence across the exotic range, with population areas remaining genetically distinct and statistically consistent across two decades, supporting ‘genetic stasis’ and ‘founder takes most’. The original genotypes continue to predominate, whose high population growth likely outpaced the relative success of later arrivals. The original invasion core has stayed the most similar to the native source. Secondary expansion sites indicate slight allelic composition convergence towards the core population over time, attributable to some early ‘genetic supplementation’. The geographic and temporal coverage of this investigation offers a rare opportunity to discern population dynamics over time and space in context of invasion genetic theory vs. reality.  相似文献   

4.
Population‐level studies of how tit species (Parus spp.) track the changing phenology of their caterpillar food source have provided a model system allowing inference into how populations can adjust to changing climates, but are often limited because they implicitly assume all individuals experience similar environments. Ecologists are increasingly using satellite‐derived data to quantify aspects of animals' environments, but so far studies examining phenology have generally done so at large spatial scales. Considering the scale at which individuals experience their environment is likely to be key if we are to understand the ecological and evolutionary processes acting on reproductive phenology within populations. Here, we use time series of satellite images, with a resolution of 240 m, to quantify spatial variation in vegetation green‐up for a 385‐ha mixed‐deciduous woodland. Using data spanning 13 years, we demonstrate that annual population‐level measures of the timing of peak abundance of winter moth larvae (Operophtera brumata) and the timing of egg laying in great tits (Parus major) and blue tits (Cyanistes caeruleus) is related to satellite‐derived spring vegetation phenology. We go on to show that timing of local vegetation green‐up significantly explained individual differences in tit reproductive phenology within the population, and that the degree of synchrony between bird and vegetation phenology showed marked spatial variation across the woodland. Areas of high oak tree (Quercus robur) and hazel (Corylus avellana) density showed the strongest match between remote‐sensed vegetation phenology and reproductive phenology in both species. Marked within‐population variation in the extent to which phenology of different trophic levels match suggests that more attention should be given to small‐scale processes when exploring the causes and consequences of phenological matching. We discuss how use of remotely sensed data to study within‐population variation could broaden the scale and scope of studies exploring phenological synchrony between organisms and their environment.  相似文献   

5.
Local adaptation experiments are widely used to quantify the levels of adaptation within a heterogeneous environment. However, theoretical studies generally focus on the probability of fixation of alleles or the mean fitness of populations, rather than local adaptation as it is commonly measured experimentally or in field studies. Here, we develop mathematical models and use them to generate analytical predictions for the level of local adaptation as a function of selection, migration and genetic drift. First, we contrast mean fitness and local adaptation measures and show that the latter can be expressed in a simple and general way as a function of the spatial covariance between population mean phenotype and local environmental conditions. Second, we develop several approximations of a population genetics model to show that the system exhibits different behaviours depending on the rate of migration. The main insights are the following: with intermediate migration, both genetic drift and migration decrease local adaptation; with low migration, drift decreases local adaptation but migration speeds up adaptation; with high migration, genetic drift has no effect on local adaptation. Third, we extend this analysis to cases where the trait under selection is continuous using classical quantitative genetics theory. Finally, we discuss these results in the light of recent experimental work on local adaptation.  相似文献   

6.
The box‐tree pyralid Cydalima perspectalis (Walker 1859) (Lepidoptera: Pyralidae), native to Eastern Asia, is a newly introduced species causing severe damage to box‐trees (Buxus sp.) in private and public gardens as well as in semi‐natural box‐tree forests in Central Europe. It is so far not known whether different box‐tree subspecies (or varieties) are similarly affected by this invasive moth. In a choice experiment offering branches of five different box‐tree varieties as oviposition sites, we found a preference of female moths for laying their egg clusters on the variety ‘Rotundifolia’, while other varieties were less frequently considered. The preference for ‘Rotundifolia’, the variety with the largest leaves in the tests, remained when intervariety differences in foliar area (mean leaf size × number of leaves) were taken into account. Feeding larvae on leaves of either of the five box‐tree varieties revealed a significant effect of the seasonal generation of C. perspectalis on the growth rate of individuals but no influence of the box‐tree variety. Larvae from the spring generation show the highest growth rate, those from the summer generation a moderate and those from the autumn generation the lowest growth rate. The moths used in the experiments may belong to the 10th to 12th generation present in Europe. The time elapsed since their introduction may be too short for an optimal adaptation to the partly novel diet encountered by the invasive moth.  相似文献   

7.
Polymorphisms are common in the natural world and have played an important role in our understanding of how selection maintains multiple phenotypes within extant populations. Studying the evolutionary history of polymorphisms has revealed important features of this widespread form of phenotypic diversity, including its role in speciation, niche breadth, and range size. In the present study, we examined the evolutionary history of a ubiquitous colour polymorphism in the sulphur butterflies (subfamily: Coliadinae) termed the ‘alba’ polymorphism. We investigated the origin and stability of the ‘alba’ polymorphism using ancestral state reconstruction analysis. Our results indicate that the ancestor of the Coliadinae was polymorphic and that this polymorphism has undergone repeated transitions to monomorphism. Repeated loss of polymorphism suggests that the ‘alba’ polymorphism may be relatively unstable over evolutionary time. These results provide a framework for future studies on the origin and maintenance of the ‘alba’ polymorphism and guide the direction of future hypotheses. We discuss these results in light of current understandings of how the ‘alba’ polymorphism is maintained in extant populations.  相似文献   

8.
Thanks to genome‐scale diversity data, present‐day studies can provide a detailed view of how natural and cultivated species adapt to their environment and particularly to environmental gradients. However, due to their sensitivity, up‐to‐date studies might be more sensitive to undocumented demographic effects such as the pattern of migration and the reproduction regime. In this study, we provide guidelines for the use of popular or recently developed statistical methods to detect footprints of selection. We simulated 100 populations along a selective gradient and explored different migration models, sampling schemes and rates of self‐fertilization. We investigated the power and robustness of eight methods to detect loci potentially under selection: three designed to detect genotype–environment correlations and five designed to detect adaptive differentiation (based on FST or similar measures). We show that genotype–environment correlation methods have substantially more power to detect selection than differentiation‐based methods but that they generally suffer from high rates of false positives. This effect is exacerbated whenever allele frequencies are correlated, either between populations or within populations. Our results suggest that, when the underlying genetic structure of the data is unknown, a number of robust methods are preferable. Moreover, in the simulated scenario we used, sampling many populations led to better results than sampling many individuals per population. Finally, care should be taken when using methods to identify genotype–environment correlations without correcting for allele frequency autocorrelation because of the risk of spurious signals due to allele frequency correlations between populations.  相似文献   

9.
Parasite‐mediated selection varying across time and space in metapopulations is expected to result in host local adaptation and the maintenance of genetic diversity in disease‐related traits. However, nonadaptive processes like migration and extinction‐(re)colonization dynamics might interfere with adaptive evolution. Understanding how adaptive and nonadaptive processes interact to shape genetic variability in life‐history and disease‐related traits can provide important insights into their evolution in subdivided populations. Here we investigate signatures of spatially fluctuating, parasite‐mediated selection in a natural metapopulation of Daphnia magna. Host genotypes from infected and uninfected populations were genotyped at microsatellite markers, and phenotyped for life‐history and disease traits in common garden experiments. Combining phenotypic and genotypic data a QSTFST‐like analysis was conducted to test for signatures of parasite mediated selection. We observed high variation within and among populations for phenotypic traits, but neither an indication of host local adaptation nor a cost of resistance. Infected populations have a higher gene diversity (Hs) than uninfected populations and Hs is strongly positively correlated with fitness. These results suggest a strong parasite effect on reducing population level inbreeding. We discuss how stochastic processes related to frequent extinction‐(re)colonization dynamics as well as host and parasite migration impede the evolution of resistance in the infected populations. We suggest that the genetic and phenotypic patterns of variation are a product of dynamic changes in the host gene pool caused by the interaction of colonization bottlenecks, inbreeding, immigration, hybrid vigor, rare host genotype advantage and parasitism. Our study highlights the effect of the parasite in ameliorating the negative fitness consequences caused by the high drift load in this metapopulation.  相似文献   

10.
Inter-generational temporal variability of the environment is important in the evolution and adaptation of phenotypic traits. We discuss a population-dynamic approach which plays a central role in the analysis of evolutionary processes. The basic principle is that the phenotypes with the greatest long-term average growth rate will dominate the entire population. The calculation of longterm average growth rates for populations under temporal stochasticity can be highly cumbersome. However, for a discrete non-overlapping population, it is identical to the geometric mean of the growth rates (geometric mean fitness), which is usually different from the simple arithmetic mean of growth rates. Evolutionary outcomes based on geometric mean fitness are often very different from the predictions based on the usual arithmetic mean fitness. In this paper we illustrate the concept of geometric mean fitness in a few simple models. We discuss its implications for the adaptive evolution of phenotypes, e.g. foraging under predation risks and clutch size. Next, we present an application: the risk-spreading egg-laying behaviour of the cabbage white butterfly, and develop a two-patch population dynamic model to show how the optimal solution diverges from the ssual arithmetic mean approach. The dynamics of these stochastic models cannot be predicted from the dynamics of simple deterministic models. Thus the inclusion of stochastic factors in the analyses of populations is essential to the understanding of not only population dynamics, but also their evolutionary dynamics.  相似文献   

11.
How individual genetic variability relates to fitness is important in understanding evolution and the processes affecting populations of conservation concern. Heterozygosity–fitness correlations (HFCs) have been widely used to study this link in wild populations, where key parameters that affect both variability and fitness, such as inbreeding, can be difficult to measure. We used estimates of parental heterozygosity and genetic similarity (‘relatedness’) derived from 32 microsatellite markers to explore the relationship between genetic variability and fitness in a population of the critically endangered hawksbill turtle, Eretmochelys imbricata. We found no effect of maternal MLH (multilocus heterozygosity) on clutch size or egg success rate, and no single‐locus effects. However, we found effects of paternal MLH and parental relatedness on egg success rate that interacted in a way that may result in both positive and negative effects of genetic variability. Multicollinearity in these tests was within safe limits, and null simulations suggested that the effect was not an artefact of using paternal genotypes reconstructed from large samples of offspring. Our results could imply a tension between inbreeding and outbreeding depression in this system, which is biologically feasible in turtles: female‐biased natal philopatry may elevate inbreeding risk and local adaptation, and both processes may be disrupted by male‐biased dispersal. Although this conclusion should be treated with caution due to a lack of significant identity disequilibrium, our study shows the importance of considering both positive and negative effects when assessing how variation in genetic variability affects fitness in wild systems.  相似文献   

12.
Communal nesting lizards may be vulnerable to climate warming, particularly if air temperatures regulate nest temperatures. In southeastern Australia, velvet geckos Oedura lesueurii lay eggs communally inside rock crevices. We investigated whether increases in air temperatures could elevate nest temperatures, and if so, how this could influence hatching phenotypes, survival, and population dynamics. In natural nests, maximum daily air temperature influenced mean and maximum daily nest temperatures, implying that nest temperatures will increase under climate warming. To determine whether hotter nests influence hatchling phenotypes, we incubated eggs under two fluctuating temperature regimes to mimic current ‘cold’ nests (mean = 23.2 °C, range 10–33 °C) and future ‘hot’ nests (27.0 °C, 14–37 °C). ‘Hot’ incubation temperatures produced smaller hatchlings than did cold temperature incubation. We released individually marked hatchlings into the wild in 2014 and 2015, and monitored their survival over 10 months. In 2014 and 2015, hot‐incubated hatchlings had higher annual mortality (99%, 97%) than cold‐incubated (11%, 58%) or wild‐born hatchlings (78%, 22%). To determine future trajectories of velvet gecko populations under climate warming, we ran population viability analyses in Vortex and varied annual rates of hatchling mortality within the range 78– 96%. Hatchling mortality strongly influenced the probability of extinction and the mean time to extinction. When hatchling mortality was >86%, populations had a higher probability of extinction (PE: range 0.52– 1.0) with mean times to extinction of 18–44 years. Whether future changes in hatchling survival translate into reduced population viability will depend on the ability of females to modify their nest‐site choices. Over the period 1992–2015, females used the same communal nests annually, suggesting that there may be little plasticity in maternal nest‐site selection. The impacts of climate change may therefore be especially severe on communal nesting species, particularly if such species occupy thermally challenging environments.  相似文献   

13.
Sexual selection can increase rates of adaptation by imposing strong selection in males, thereby allowing efficient purging of the mutation load on population fitness at a low demographic cost. Indeed, sexual selection tends to be male‐biased throughout the animal kingdom, but little empirical work has explored the ecological sensitivity of this sex difference. In this study, we generated theoretical predictions of sex‐specific strengths of selection, environmental sensitivities and genotype‐by‐environment interactions and tested them in seed beetles by manipulating either larval host plant or rearing temperature. Using fourteen isofemale lines, we measured sex‐specific reductions in fitness components, genotype‐by‐environment interactions and the strength of selection (variance in fitness) in the juvenile and adult stage. As predicted, variance in fitness increased with stress, was consistently greater in males than females for adult reproductive success (implying strong sexual selection), but was similar in the sexes in terms of juvenile survival across all levels of stress. Although genetic variance in fitness increased in magnitude under severe stress, heritability decreased and particularly so in males. Moreover, genotype‐by‐environment interactions for fitness were common but specific to the type of stress, sex and life stage, suggesting that new environments may change the relative alignment and strength of selection in males and females. Our study thus exemplifies how environmental stress can influence the relative forces of natural and sexual selection, as well as concomitant changes in genetic variance in fitness, which are predicted to have consequences for rates of adaptation in sexual populations.  相似文献   

14.
15.
In animal‐pollinated plants, local adaptation to pollinator behaviour or morphology can restrict gene flow among plant populations; but gene flow may also prevent divergent adaptation. Here, we examine possible effects of gene flow on plant–pollinator trait matching in two varieties of Joshua tree (Agavaceae: Yucca brevifolia). The two varieties differ in strikingly in floral morphology, which matches differences in the morphology of their pollinators. However, this codivergence is not present at a smaller scale: within the two varieties of Joshua tree, variation in floral morphology between demes is not correlated with differences in moth morphology. We use population genetic data for Joshua tree and its pollinators to test the hypotheses that gene flow between Joshua tree populations is structured by pollinator specificity, and that gene flow within the divergent plant–pollinator associations ‘swamps’ fine‐scale coadaptation. Our data show that Joshua tree populations are structured by pollinator association, but the two tree varieties are only weakly isolated – meaning that their phenotypic differences are maintained in the face of significant gene flow. Coalescent analysis of gene flow between the two Joshua tree types suggests that it may be shaped by asymmetric pollinator specificity, which has been observed in a narrow zone of sympatry. Finally, we find evidence suggesting that gene flow among Joshua tree sites may shape floral morphology within one plant–pollinator association, but not the other.  相似文献   

16.
The contribution of Pleistocene sea level changes to diversification patterns in archipelagos around the world, and specifically whether the repeated cycles of island connectivity and isolation acted as a ‘species pump’ is debated. The debate has been perpetuated in part because of the type of evidence used to evaluate the species‐pump hypothesis. Specifically, existing tests of the ‘Pleistocene Aggregate Island Complex’ (PAIC) model of diversification interpret the lack of concordant divergence times among multiple codistributed taxa as a rejection of the PAIC model. However, the null expectation of concordance disregards taxon‐specific ecological traits and geographic characteristics that may affect population persistence and gene flow among islands. Here, we study the factors affecting population divergence in thirteen flightless darkling beetle species (Coleoptera: Tenebrionidae) across the PAIC system of the Cycladic plateau in the Aegean archipelago. Based on isolation‐by‐resistance analyses, hierarchical amova and the degree of genealogical sorting on individual islands, we identify a major effect of bathymetry and habitat stability on the levels of genetic divergence across the PAIC, with island size and body size playing a secondary role as well. We subsequently use bathymetric maps and habitat association to generate predictions about the set of islands and group of taxa expected to show phylogeographic concordance. We test these predictions using hierarchical approximate Bayesian computation and show how our interpretations regarding the role of PAICs as drivers of divergence change when relying on a null expectation of concordance compared to a refined model that takes geography and ecological traits into account.  相似文献   

17.
Impacts of climate change on avian populations   总被引:1,自引:0,他引:1  
This review focuses on the impacts of climate change on population dynamics. I introduce the MUP (Measuring, Understanding, and Predicting) approach, which provides a general framework where an enhanced understanding of climate‐population processes, along with improved long‐term data, are merged into coherent projections of future population responses to climate change. This approach can be applied to any species, but this review illustrates its benefit using birds as examples. Birds are one of the best‐studied groups and a large number of studies have detected climate impacts on vital rates (i.e., life history traits, such as survival, maturation, or breeding, affecting changes in population size and composition) and population abundance. These studies reveal multifaceted effects of climate with direct, indirect, time‐lagged, and nonlinear effects. However, few studies integrate these effects into a climate‐dependent population model to understand the respective role of climate variables and their components (mean state, variability, extreme) on population dynamics. To quantify how populations cope with climate change impacts, I introduce a new universal variable: the ‘population robustness to climate change.’ The comparison of such robustness, along with prospective and retrospective analysis may help to identify the major climate threats and characteristics of threatened avian species. Finally, studies projecting avian population responses to future climate change predicted by IPCC‐class climate models are rare. Population projections hinge on selecting a multiclimate model ensemble at the appropriate temporal and spatial scales and integrating both radiative forcing and internal variability in climate with fully specified uncertainties in both demographic and climate processes.  相似文献   

18.
Sexual reproduction in flowering plants depends on the fitness of the male gametophyte during fertilization. Because pollen development is highly sensitive to hot and cold temperature extremes, reliable methods to evaluate pollen viability are important for research into improving reproductive heat stress (HS) tolerance. Here, we describe an approach to rapidly evaluate pollen viability using a reactive oxygen species (ROS) probe dichlorodihydrofluorescein diacetate (i.e. H2DCFDA‐staining) coupled with flow cytometry. In using flow cytometry to analyze mature pollen harvested from Arabidopsis and tomato flowers, we discovered that pollen distributed bimodally into ‘low‐ROS’ and ‘high‐ROS’ subpopulations. Pollen germination assays following fluorescence‐activated cell sorting revealed that the high‐ROS pollen germinated with a frequency that was 35‐fold higher than the low‐ROS pollen, supporting a model in which a significant fraction of a flower's pollen remains in a low metabolic or dormant state even after hydration. The ability to use flow cytometry to quantify ROS dynamics within a large pollen population was shown by dose‐dependent alterations in DCF‐fluorescence in response to oxidative stress or antioxidant treatments. HS treatments (35°C) increased ROS levels, which correlated with a ~60% reduction in pollen germination. These results demonstrate the potential of using flow cytometry‐based approaches to investigate metabolic changes during stress responses in pollen.  相似文献   

19.
Significant changes in plant phenology have been observed in response to increases in mean global temperatures. There are concerns that accelerated phenologies can negatively impact plant populations. However, the fitness consequence of changes in phenology in response to elevated temperature is not well understood, particularly under field conditions. We address this issue by exposing a set of recombinant inbred lines of Arabidopsis thaliana to a simulated global warming treatment in the field. We find that plants exposed to elevated temperatures flower earlier, as predicted by photothermal models. However, contrary to life‐history trade‐off expectations, they also flower at a larger vegetative size, suggesting that warming probably causes acceleration in vegetative development. Although warming increases mean fitness (fruit production) by ca. 25%, there is a significant genotype‐by‐environment interaction. Changes in fitness rank indicate that imminent climate change can cause populations to be maladapted in their new environment, if adaptive evolution is limited. Thus, changes in the genetic composition of populations are likely, depending on the species’ generation time and the speed of temperature change. Interestingly, genotypes that show stronger phenological responses have higher fitness under elevated temperatures, suggesting that phenological sensitivity might be a good indicator of success under elevated temperature at the genotypic level as well as at the species level.  相似文献   

20.
Several studies of eye morphology have analysed macroevolutionary patterns in the diversity of eyes, and although these studies are often linked to environment or behaviour, they provide only indirect evidence of selection. Specific data to show the microevolutionary potential for adaptation by natural selection in eye morphology have been lacking. We document directional selection on eye size, an important determinant of visual capabilities, in a wild population of the freshwater microcrustacean Daphnia. We show that even slight changes in eye size may have major consequences for fitness. An increase in eye diameter of 19.9 μm – slightly more than one standard deviation – is associated with an increase in clutch size of one egg, or an increase of nearly 20% of the mean clutch size. Furthermore, relative eye size is genetically variable and thus could evolve in response to the observed selective pressure. We conclude that selection on incremental variation in eye size may have led to differences observed on broader taxonomic scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号