首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of magnesium and chloride ions on photosynthetic electron transport were investigated in membrane fragments of a blue-green alga, Nostoc muscorum (Strain 7119), noted for their stability and high rates of electron transport from water or reduced dichlorophenolindophenol to NADP+. Magnesium ions were required not only for light-induced electron transport from water to NADP+ but also for protection in the dark of the integrity of the water-photooxidizing system (Photosystem II). Membrane fragments suspended in the dark in a medium lacking Mg2+ lost the capacity to photoreduce NADP+ with water on subsequent illumination. Chloride ions could substitute, but less effectively, for each of these two effects of magnesium ions. By contrast, the photoreduction of NADP+ by DCIPH2 was independent of Mg2+ (or Cl?) for the protection of the electron transport system in the dark or during the light reaction proper. Furthermore, high concentrations of MgCl2 produced a strong inhibition of NADP+ photoreduction with DCIPH2 without significantly affecting the rate of NADP+ photoreduction with water. The implications of these findings for the differential involvement of Photosystem I and Photosystem II in the photoreduction of NADP+ with different electron donors are discussed.  相似文献   

2.
The effect of NADP+ on light-induced steady-state redox changes of membrane-bound cytochromes was investigated in membrane fragements prepared from the blue-green algae Nostoc muscorum (Strain 7119) that had high rates of electron transport from water to NADP+ and from an artificial electron donor, reduced dichlorophenolindophenol (DCIPH2) to NDAP+. The membrane fragments contained very little phycocyanin and had excellent optical properties for spectrophotometric assays. With DCIPH2 as the electron donor, NADP+ had no effect on the light-induced redox changes of cytochromes: with or without NADP+, 715- or 664-nm illumination resulted mainly in the oxidation of cytochrome f and of other component(s) which may include a c-type cytochrome with an alpha peak at 549nm. With 664 nm illumination and water as the electron donor, NADP+ had a pronounced effect on the redox state of cytochromes, causing a shift toward oxidation of a component with a peak at 549 nm (possibly a c-type cytochrome), cytochrome f, and particularly cytochrome b559. Cytochrome b559 appeared to be a component of the main noncyclic electron transport chain and was photooxidized at physiological temperatures by Photosystem II. This photooxidation was apparent only in the presence of a terminal acceptor (NADP+) for the electron flow from water.  相似文献   

3.
A mathematical analysis is described which measures the effects of actinic light intensity and concentration of an artificial electron donor on the steady-state light-induced redox level of a reaction-center pigment (e.g. P-700) and on the overall light-induced electron flux (e.g. reduction of NADP+). The analysis led to a formulation (somewhat similar to the Michaelis-Menten equation for enzyme kinetics) in which a parameter, I12, is defined as the actinic light intensity that, at a given concentration of electron donor, renders the reaction-center pigment half oxidized and half reduced. To determine the role of a presumed reaction-center pigment, I12 is compared with another parameter, equivalent to I12, that is obtained independently of the reaction-center pigment by measuring the effect of actinic light intensity and concentration of electron donor on the overall electron flow.The theory was tested and validated in a model system with spinach Photosystem I chloroplast fragments by measurements of photooxidation of P-700 and light-induced reduction of NADP+ by reduced 2,6-dichlorophenolindophenol. A possible extension of this mathematical analysis to more general electron-transport systems is discussed.  相似文献   

4.
Joseph T. Warden 《BBA》1976,440(1):89-97
A 300 μs decay component of ESR Signal I (P-700+) in chloroplasts is observed following a 10 μs actinic xenon flash. This transient is inhibited by treatments which block electron transfer from Photosystem II to Photosystem I (e.g. 3-(3,4-dichlorophenyl)-1, 1-dimethylurea (DCMU), 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), KCN and HgCl2). The fast transient reduction of P-700+ can be restored in the case of DCMU or DBMIB inhibition by addition of an electron donor couple (2,6-dichlorophenol indophenol (Cl2Ind)/ascorbate) which supplies electrons to cytochrome f. However, this donor couple is inefficient in restoring electron transport in chloroplasts which have been inhibited with the plastocyanin inactivators, KCN and HgCl2. Oxidation-reduction measurements reveal that the fast P-700+ reduction component reflects electron transfer from a component with Em = 375±10 mV (pH = 7.5). These data suggest the assignment of the 300-μs decay kinetics to electron transfer from cytochrome f (Fe2+) to P-700+, thus confirming the recent observations of Haehnel et al. (Z. Naturforsch. 26b, 1171–1174 (1971)).  相似文献   

5.
J.H. Golbeck  B.R. Velthuys  B. Kok 《BBA》1978,504(1):226-230
Absorption changes accompanying the formation of light-induced P-700+ were investigated in a highly enriched Photosystem I preparation where an intermediate electron acceptor preceding P-430 could be detected. In an enriched Photosystem I particle, light-induced reversible absorption changes observed at 700 nm in the presence of dithionite resembled those previously seen at 703 nm and 820 nm [9], thus indicating the presence of a backreaction between P-700+ and A?2. After this same Photosystem I particle was treated to denature the bound iron-sulfur centers, the photochemical changes that could be attributed to P-700 A2 were completely lost. These results provide evidence that the intermediate electron acceptor, A2, is a bound iron-sulfur protein. Additional studies in the 400–500 nm region with Photosystem I particles prepared by sonication indicate that the spectrum of A2 is different from that of P-430.  相似文献   

6.
David B. Knaff 《BBA》1973,325(2):284-296
1. Cytochrome f (λmax = 554 nm, Em = +0.35 V) and cytochrome b558 (λmax = 558 nm, Em = +0.35 V) were photooxidized by Photosystem I and photoreduced by Photosystem II in a cell-free preparation from the blue-green alga Nostoc muscorum. The steady-state oxidation levels of both cytochromes were affected by noncyclic electron acceptors and by inhibitors of noncyclic electron transport. These results are consistent with the hypothesis that the mechanism of NADP reduction by water involves a Photosystem II and a Photosystem I light reaction operating in series and linked by a chain of electron carriers that includes cytochrome f and cytochrome b558.2. Phosphorylation cofactors shifted the steady-state of cytochrome f to a more reduced level under conditions of noncyclic electron transport but had no effect on cytochrome b558. These observations suggest that the noncyclic phosphorylation site lies before cytochrome f (on the Photosystem II side) and that cytochrome f is closer to this site than is cytochrome b558.3. A Photosystem II photoreduction of C550 at 77 °K was observed, suggesting that in blue-green algae, as in other plants, C550 is closely associated with the primary electron acceptor for Photosystem II. A Photosystem I photooxidation of P700 at 77 °K was observed, consistent with P700 serving as the primary electron donor of Photosystem I.  相似文献   

7.
J. Michael Gould 《BBA》1975,387(1):135-148
1. The Photosystem I-mediated transfer of electrons from diaminodurene, diaminotoluene and reduced 2,6-dichlorophenolindophenol to methylviologen is optimal at pH 8–8.5, where phosphorylation is also maximal. In the presence of superoxide dismutase, the efficiency of phosphorylation rises from ? 0.1 at pH 6.5 to 0.6–0.7 at pH 8–8.5, regardless of the exogenous electron donor used.2. The apparent Km (at pH 8.1) for diaminodurene is 6·10?4 M and for diaminotoluene is 1.2·10?3 M. The concentrations of diaminodurene and diaminotoluene required to saturate the electron transport processes are > 2 mM and > 5 mM, respectively. At these higher electron donor concentrations the rates of electron transport are markedly increased by phosphorylation (1.5-fold) or by uncoupling conditions (2-fold).3. Kinetic analysis of the transfer of electrons from reduced 2,6-dichlorophenolindophenol (DCIPH2) to methylviologen indicates that two reactions with very different apparent Km values for DCIPH2 are involved. The rates of electron flux through both pathways are increased by phosphorylation or uncoupling conditions although only one of the pathways is coupled to ATP formation. No similar complications are observed when diaminodurene or diaminotoluene serves as the electron donor.4. In the diaminodurene → methylviologen reaction, ATP formation and that part of the electron transport dependent upon ATP formation are partially inhibited by the energy transfer inhibitor HgCl2. This partial inhibition of ATP formation rises to about 50% at less than 1 atom of mercury per 20 molecules of chlorophyll, then does not further increase until very much higher levels of mercury are added.5. It is suggested that exogenous electron donors such as diaminodurene, diaminotoluene and DCIPH2 can substitute for an endogenous electron carrier in donating electrons to cytochrome f via the mercury-sensitive coupling site (Site I) located on the main electron-transporting chain. If this is so, there would seem to be no reason for postulating yet another coupling site on a side branch of the electron transport chain in order to account for cyclic photophosphorylation.  相似文献   

8.
The kinetics of the photoreduction of C-550, the photooxidation of cytochrome b559 and the fluorescence yield changes during irradiation of chloroplasts at ?196 °C were measured and compared. The photoreduction of C-550 proceeded more rapidly than the photooxidation of cytochrome b559 and the fluorescence yield increase followed the cytochrome b559 oxidation. These results suggest that fluorescence yield under these conditions indicates the dark reduction of the primary electron donor to Photosystem II, P680+, by cytochrome b559 rather than the photoreduction of the primary electron acceptor.The photoreduction of C-550 showed little if any temperature dependence over the range of ?196 to ?100 °C. The amount of cytochrome b559 photooxidized was sensitive to temperature decreasing from the maximal change at temperatures between ?196 to ?160 °C to no change at ?100 °C. To the extent that the reaction occurred at temperatures between ?160 and ?100 °C the rate was largely independent of temperature. The rate of the fluorescence increase was dependent on temperature over this range being 3–4 times more rapid at ?100 than at ?160 °C. At ?100 °C the light-induced fluorescence increase and the photoreduction of C-550 show similar kinetics. The temperature dependence of the fluorescence induction curve is attributed to the temperature dependence of the dark reduction of P680+.The intensity dependence of the photoreduction of C-550 and of the photooxidation of cytochrome b559 are linear at low intensities (below 200 μW/cm2) but fall off at higher intensities. The failure of reciprocity in the photoreduction of C-550 at the higher intensities is not explained by the simple model proposed for the Photosystem II reaction centers.  相似文献   

9.
10.
11.
J. Amesz  B.G. De Grooth 《BBA》1975,376(2):298-307
Absorbance changes in the region 500–565 nm and at 702 nm, brought about by excitation of Photosystems 1 and 2, respectively, were measured in spinach chloroplasts at ?50 °C. Either dark-adapted chloroplasts were used or chloroplasts preilluminated with a number of short saturating flashes just before cooling.Both photosystems were found to cause a light-induced increase of absorbance at 518 nm (due to “P518”). The System 1-induced change was not affected by preillumination. It decayed within 1 s in the dark and showed similar kinetics as P700. Experiments in the presence of external electron acceptors (methylviologen or Fe(CN)63?) suggested that P518 was not affected by the redox state of the primary electron acceptor of System 1. The absorbance increase at 518 nm due to System 2 decayed in the dark with a half-time of several min. The kinetics were similar to those of C-550, the presumed indicator of the primary electron acceptor of System 2. After two flashes preillumination the changes due to P518 and C-550 were reduced by about 40%, and a relatively slow, System 2-induced oxidation of cytochrome b559 occurred which proceeded at a similar rate as the increase in yield of chlorophyll a fluorescence. The results indicate that at ?50°C two different photoreactions of System 2 occur. One consists of a photoreduction of the primary electron acceptor associated with C-550, accompanied by the oxidation of an unknown electron donor; the other is less efficient and results in the photooxidation of cytochrome b559.  相似文献   

12.
1. The effects of varying the ambient oxidation/reduction potential on the redox changes of cytochromes c, cytochromes b and P605 induced by a laser flash in chromatophores from Rhodopseudomonas capsulata Ala Pho+ have been investigated.2. The appearance and attenuation of the changes with varying ambient redox potential show that, of the cytochromes present, cytochromes c with Em7 = 340 mV and 0 mV, and cytochrome b, Em7 = 60 mV were concerned with photosynthetic electron flow.3. The site of action of antimycin was shown to be between cytochrome b60 and a component, as yet unidentified, called Z.4. The appearance or attenuation of laser-induced changes of cytochromes c0 and b60 on redox titration was dependent on pH, but no effect of pH on the cytochrome c340 titration was observed.5. The dependence on ambient redox potential of the laser-induced bleaching at 605 nm enabled identification of the mid-point potentials of the primary electron donor (Em7 = 440 mV) and acceptor (Em7 = ?25 mV).6. The interrelationship of these electron carriers is discussed with respect to the pathway of cyclic electron flow.  相似文献   

13.
Cytochrome redox changes and electric potential generation are kinetically compared during cyclic electron transfer in Photosystem-I-enriched and Photosystem-II-depleted subchloroplast vesicles (i.e., stroma lamellae membrane vesicles) supplemented with ferredoxin using a suitable electron donating system. In response to a single-turnover flash, the sequence of events is: (1) fast reduction of cytochrome b-563 (t0.5 ≈ 0.5 ms) (2) oxidation of cytochrome c-554 (t0.5 ≈ 2 ms), (3) slower reduction of cytochrome b-563 (t0.5 ≈ 4 ms), (4) generation of the ‘slow’ electric potential component (t0.5 ≈ 15–20 ms), (5) re-reduction of cytochrome c-554 (t0.5 ≈ 30 ms) and (6) reoxidation of cytochrome b-563t0.5 ≈ 90 ms). Per flash two cytochrome b-563 species turn over for one cytochrome c-554. These b-563 cytochromes are reduced with different kinetics via different pathways. The fast reductive pathway proceeds probably via ferredoxin, is insensitive to DNP-INT, DBMIB and HQNO and is independent on the dark redox state of the electron transfer chain. In contrast, the slow reductive pathway is sensitive to DNP-INT and DBMIB, is strongly delayed at suboptimal redox poising (i.e., low NADPHNADP+ ratio) and is possibly coupled to the reduction of cytochrome c-554. Each reductive pathway seems obligatory for the generation of about 50% of the slow electric potential component. Also cytochrome c-559LP (LP, low potential) is involved in Photosystem-I-associated cyclic electron flow, but its flash-induced turnover is only observed at low preestablished electron pressure on the electron-transfer chain. Data suggest that cyclic electron flow around Photosystem I only proceeds if cytochrome b-559LP is in the reduced state before the flash, and a tentative model is presented for electron transfer through the cyclic system.  相似文献   

14.
15.
A Photosystem-II reaction-center particle derived from spinach chloroplasts by Triton treatment contains only one kind of cytochrome, namely, cytochrome b559, in the amount of slightly more than 2 per 100 total chlorophyll molecules. Cytochrome b559 is present in the oxidized form, has a standard redox potential of 58 mV, and undergoes photoreduction.  相似文献   

16.
1. Incubation of chloroplasts with HgCl2 at a molar ratio of HgCl2 to chlorophyll of about unity, induced a complete inhibition of the methyl viologen Hill reaction, as well as methyl viologen photoreduction with reduced 2,6-dichlorophenolindophenol (DCIP) as electron donor. Photooxidation of cytochrome ? was similarly sensitive towards HgCl2, whereas photooxidation of P700 was resistant to the poison. Photoreduction of cytochrome ? and light-induced increase in fluorescence yield were enhanced by the HgCl2 treatment of chloroplasts.  相似文献   

17.
H. Conjeaud  P. Mathis  G. Paillotin 《BBA》1979,546(2):280-291
Absorption changes at 820 or 515 nm after a short laser flash were studied comparatively in untreated chloroplasts and in chloroplasts in which oxygen evolution is inhibited.In chloroplasts pre-treated with Tris, the primary donor of Photosystem II (P-680) is oxidized by the flash, as observed by an absorption increase at 820 nm. After the first flash it is re-reduced in a biphasic manner with half-times of 6 μs (major phase) and 22 μs. After the second flash, the 6 μs phase is nearly absent and P-680+ decays with half-times of 130 μs (major phase) and 22 μs. Exogenous electron donors (MnCl2 or reduced phenylenediamine) have no direct influence on the kinetics of P-680+.In untreated chloroplasts the 6 and 22 μs phases are of very small amplitude, either at the 1st, 2nd or 3rd flash given after dark-adaptation. They are observed, however, after incubation with 10 mM hydroxylamine.These results are interpreted in terms of multiple pathways for the reduction of P-680+: a rapid reduction (<1 μs) by the physiological donor D1; a slower reduction (6 and 22 μs) by donor D′1, operative when O2 evolution is inhibited; a back-reaction (130 μs) when D′1 is oxidized by the pre-illumination in inhibited chloroplasts. In Tris-treated chloroplasts the donor system to P-680+ has the capacity to deliver only one electron.The absorption change at 515 nm (electrochromic absorption shift) has been measured in parallel. It is shown that the change linked to Photosystem II activity has nearly the same magnitude in untreated chloroplasts or in chloroplasts treated with hydroxylamine or with Tris (first and subsequent flashes). Thus we conclude that all the donors (P-680, D1, D′1) are located at the internal side of the thylakoid membrane.  相似文献   

18.
Peter Jurtshuk  T.J. Mueller  T.Y. Wong 《BBA》1981,637(2):374-382
A membrane-bound cytochrome oxidase from Azobacter vinelandii was purified 20-fold using a detergent-solubilization procedure. Activity was monitored using an ascorbate-TMPD oxidation assay. The oxidase was ‘solubilized’ from a sonic-type electron-transport particle (R3 fraction) using Triton X-100 and deoxycholate. Low detergent concentrations first solubilized the flavoprotein oxidoreductases, then higher concentrations of Triton X-100 and KCl solubilized the oxidase, which was precipitated at 27–70% (NH4)2SO4. The highly purified cytochrome oxidase has a V of 60–78 μgatom O consumed/min per mg protein. TMPD oxidation by the purified enzyme was inhibited by CO, KCN, NaN3 and NH2OH; NaNO2 (but not NaNO3) also had a potent inhibitory effect. Spectral analyses revealed two major hemoproteins, the c-type cytochrome c4 and cytochrome o; cytochromes a1 and d were not detected. The Azotobacter cytochrome oxidase is an integrated cytochrome c4?o complex, TMPD-dependent cytochrome oxidase activity being highest in preparations having a high c-type cytochrome content. This TMPD-dependent cytochrome oxidase serves as a major oxygen-activation site for the A. vinelandii respiratory chain. It appears functionally analogous to cytochrome a+a3 oxidase of mammalian mitochondria.  相似文献   

19.
Cytochrome b559 is an essential component of the photosystem II reaction center in photosynthetic oxygen-evolving organisms, but its function still remains unclear. The use of photosystem II preparations from Thermosynechococcus elongatus of high integrity and activity allowed us to measure for the first time the influence of cytochrome b559 mutations on its midpoint redox potential and on the reduction of the cytochrome b559 by the plastoquinone pool (or QB). In this work, five mutants having a mutation in the α-subunit (I14A, I14S, R18S, I27A and I27T) and one in the β-subunit (F32Y) of cytochrome b559 have been investigated. All the mutations led to a destabilization of the high potential form of the cytochrome b559. The midpoint redox potential of the high potential form was significantly altered in the αR18S and αI27T mutant strains. The αR18S strain also showed a high sensitivity to photoinhibitory illumination and an altered oxidase activity. This was suggested by measurements of light induced oxidation and dark re-reduction of the cytochrome b559 showing that under conditions of a non-functional water oxidation system, once the cytochrome is oxidized by P680+, the yield of its reduction by QB or the PQ pool was smaller and the kinetic slower in the αR18S mutant than in the wild-type strain. Thus, the extremely positive redox potential of the high potential form of cytochrome b559 could be necessary to ensure efficient oxidation of the PQ pool and to function as an electron reservoir replacing the water oxidation system when it is not operating.  相似文献   

20.
Differential centrifugation of oxyntic cell homogenates yielded microsomal fractions which contained large amounts of mitochondrial membrane. The presence of marker enzymes (succinate dehydrogenase and cytochrome c oxidase) indicated that mitochondrial contamination of crude microsomes ranged from 20 to 60% in different preparations. A discontinuous sucrose density gradient procedure was developed for the routine preparation of purified oxyntic cell microsomes. A K+-stimulated, Mg2+-requiring ATPase was localized in these purified membranes and coincided with the presence of a K+-stimulated p-nitrophenylphosphatase. Na+ and ouabain had no effect on the K+ stimulation of the microsomal ATPase. The apparent activation constant for K+ was approximately 1 mM at pH 7.5, the optimal pH for stimulation.An anion-sensitive ATPase has been widely studied in gastric microsomal preparations. We found that the basal microsomal ATPase (i.e. without K+) and the mitochondrial ATPase were inhibited by SCN? and enhanced by HCO3?, however, the K+-stimulated component of the microsomal ATPase was virtually unaffected by these anions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号