首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Various respiratory electron transport activities of Rhodopseudomonas capsulata were studied in membrane fragments prepared from photosynthetically grown cells of a parental strain and two terminal oxidase-defective mutant strains. The NADH and succinate oxidase activities of the mutant having a functional N,N,N1,N1-tetramethyl-p-phenylenediamine oxidase, M6, were consideraly more sensitive to inhibition by either antimycin A or cyanide than the corresponding activities of the mutant lacking a functional N,N,N1,N1-tetramethyl-p-phenylenediamine oxidase, M7. The parental strain, Z-1, but not the mutants, showed biphasic inhibitory responses of NADH and succinate oxidase activities with either antimycin A or cyanide. In certain reactions no differences in inhibitor susceptibility were found among the strains tested, implying that the pathways involved were unaffected in the mutants. In this category were the actions of rotenone on NADH oxidase, antimycin A on cytochrome c reductase and, in M6 and Z-1, cyanide on N,N,N'N'-tetramethyl-p-phenylenediamine oxidase. These results suggest that the respiratory chain of the parental strain branches at the ubiquinone-cytochrome b region into two pathways, each branch goes to a distinct terminal oxidase, and either may be blocked independently by genetic mutation.  相似文献   

2.
John R. Bowyer  Antony R. Crofts 《BBA》1981,636(2):218-233
(1) Current models for the mechanism of cyclic electron transport in Rhodopseudomonas sphaeroides and Rhodopseudomonas capsulata have been investigated by observing the kinetics of electron transport in the presence of inhibitors, or in photosynthetically incompetent mutant strains. (2) In addition to its well-characterized effect on the Rieske-type iron sulfur center, 5-(n-undecyl)-6-hydroxy-4,7-dioxobenzothiazole (UHDBT) inhibits both cytochrome b50 and cytochrome b?90 reduction induced by flash excitation in Rps. sphaeroides and Rps. capsulata. The concentration dependency of the inhibition in the presence of antimycin (approx. 2.7 mol UHDBT/mol reaction center for 50% inhibition of extent) is very similar to that of its inhibition of the antimycin-insensitive phase of ferricytochrome c re-reduction. UHDBT did not inhibit electron transfer between the reduced primary acceptor ubiquinone (Q?I) and the secondary acceptor ubiquinone (QII) of the reaction center acceptor complex. A mutant of Rps. capsulata, strain R126, lacked both the UHDBT and antimycin-sensitive phases of cytochrome c re-reduction, and ferricytochrome b50 reduction on flash excitation. (3) In the presence of antimycin, the initial rate of cytochrome b50 reduction increased about 10-fold as the Eh(7.0) was lowered below 180 mV. A plot of the rate at the fastest point in each trace against redox potential resembles the Nernst plot for a two-electron carrier with Em(7.0) ≈ 125 ± 15 mV. Following flash excitation there was a lag of 100–500 μs before cytochrome b50 reduction began. However, there was a considerably longer lag before significant reduction of cytochrome c by the antimycin-sensitive pathway occurred. (4) The herbicide ametryne inhibited electron transfer between Q?I and QII. It was an effective inhibitor of cytochrome b50 photoreduction at Eh(7.0) 390 mV, but not at Eh(7.0) 100 mV. At the latter Eh, low concentrations of ametryne inhibited turnover after one flash in only half of the photochemical reaction centers. By analogy with the response to o-phenanthroline, it is suggested that ametryne is ineffective at inhibiting electron transfer from Q?I to the secondary acceptor ubiquinone when the latter is reduced to the semiquinone form before excitation. (5) At Eh(7.0) > 200 mV, antimycin had a marked effect on the cytochrome b50 reduction-oxidation kinetics but not on the cytochrome c and reaction center changes or the slow phase III of the electrochromic carotenoid change on a 10-ms time scale. This observation appears to rule out a mechanism in which cytochrome b50 oxidation is obligatorily and kinetically linked to the antimycin-sensitive phase of cytochrome c reduction in a reaction involving transmembrane charge transfer at high Eh values. However, at lower redox potentials, cytochrome b50 oxidation is more rapid, and may be linked to the antimycin-sensitive reduction of cytochrome c. (6) It is concluded that neither a simple linear scheme nor a simple Q-cycle model can account adequately for all the observations. Future models will have to take account of a possible heterogeneity of redox chains resulting from the two-electron gate at the level of the secondary quinone, and of the involvement of cytochrome b?90 in the rapid reactions of the cyclic electron transfer chain  相似文献   

3.
4.
The photosynthetically-incompetent mutant V-2 of Rhodopseudomonas spheroides which is incapable of synthesising bacteriochlorophyll was grown aerobically under conditions of both high and low aeration. Potentiometric titration at 560 nm minus 570 nm revealed the presence of several different components tentatively identified as b-type cytochromes. Two such components of oxidation-reduction midpoint potentials of +390 mV ± 10 mV and +255 mV ± 7 mV have not previously been detected in membranes of Rps. spheroides. These components have also been resolved by difference spectra at controlled oxidation-reduction potentials and fourth derivative spectra. Neither component appeared to react with CO. With increasing aeration of the culture medium the relative concentration of these two b-type cytochromes diminished, whilst that of the a-type oxidase increased.  相似文献   

5.
6.
7.
D. Zannoni  B.L. Marrs 《BBA》1981,637(1):96-106
Membranes from cells of Rhodopseudomonas capsulata grown anaerobically in the dark on glucose plus dimethyl sulfoxide differ from those obtained from photoheterotrophically grown cells in several ways: (a) there are qualitative and quantitative variations in the cytochrome composition; (b) electron-transport rates are unusually low in the cytochrome b to cytochrome c region; (c) light-induced ATP synthesis is dependent on the ability of the alternate respiratory pathway to maintain the Q10-cytochrome b complex in a partially oxidized state; (d) a non-energy-conserving NADH-dehydrogenase activity dominates the respiratory activity. In addition, data obtained with both wild-type and mutant cells that contain altered electron-transport systems tend to exclude a role of the redox chain as ATP-producing machinery during anaerobic/dark growth.  相似文献   

8.
Absorption, linear dichroism and circular dichroism spectra of Rhodopseudomonas capsulata (wild-type-St. Louis strain, mutant Y5 and mutant Ala+) are particularly sensitive to the nature of the light-harvesting bacteriochlorophyll-carotenoid-protein complexes. Evidence for exciton-type interactions is seen near 855 nm in the membranes from the wild-type and from mutant Y5, as well as in an isolated B-800 + 850 light-harvesting complex from mutant Y5. The strong circular dichroism that reflects these interactions is attenuated more than 10-fold in membranes from the Ala+ mutant, which lacks both B-800 + 850 and colored carotenoids and contains only the B-875 light-harvesting complex. These results lead to the conclusion that these two light-harvesting complexes have significantly different chromophore arrangements or local environments.  相似文献   

9.
1. The effects of varying the ambient oxidation/reduction potential on the redox changes of cytochromes c, cytochromes b and P605 induced by a laser flash in chromatophores from Rhodopseudomonas capsulata Ala Pho+ have been investigated.2. The appearance and attenuation of the changes with varying ambient redox potential show that, of the cytochromes present, cytochromes c with Em7 = 340 mV and 0 mV, and cytochrome b, Em7 = 60 mV were concerned with photosynthetic electron flow.3. The site of action of antimycin was shown to be between cytochrome b60 and a component, as yet unidentified, called Z.4. The appearance or attenuation of laser-induced changes of cytochromes c0 and b60 on redox titration was dependent on pH, but no effect of pH on the cytochrome c340 titration was observed.5. The dependence on ambient redox potential of the laser-induced bleaching at 605 nm enabled identification of the mid-point potentials of the primary electron donor (Em7 = 440 mV) and acceptor (Em7 = ?25 mV).6. The interrelationship of these electron carriers is discussed with respect to the pathway of cyclic electron flow.  相似文献   

10.
Arne Schumacher  Gerhart Drews 《BBA》1979,547(3):417-428
Cells of Rhodopseudomonas capsulata, strain 37b4, leu?, precultivated anaerobically under low light intensity, were exposed to high light intensity (2000 W · m?2). The cells grew with a mass doubling time of 3 h. The synthesis of bacteriochlorophyll (BChl) began after two doublings of cell mass. Reaction center and light-harvesting BChl I (B-875) were the main constituents of the photosynthetic apparatus incorporated into the membrane. The size of the photosynthetic unit (total BChl/reaction center) decreased and light-harvesting BChl I became the dominating BChl species. Concomitant with the appearance of the different spectral forms of BChl the respective proteins were incorporated into the membrane, i.e. the three reaction center polypeptides, the polypeptide associated with light-harvesting BChl I, the two polypeptides associated with BChl II. A polypeptide of an apparent molecular weight of 45 000 was also incorporated. A lowering of the light intensity to 7 W · m?2 resulted in a lag phase of growth for 6 h. Afterwards, the time for doubling of cell mass was 11 h. The concentration of all three BChl complexes (reaction center, light-harvesting BChl I and II complexes)/cell and per membrane protein increased immediately. Also the size of the photosynthetic unit and the amount of intracytoplasmic membranes/cell increased.The activities of photophosphorylation, succinate dehydrogenase, NADH dehydrogenase and NADH oxidation (respiratory chain)/membrane protein are higher in membrane preparations isolated from cells grown at high light intensities than in such preparations from cells grown at low light intensities.  相似文献   

11.
12.
Two ferredoxins from nitrogen-fixing cells of the phototrophic bacterium Rhodopseudomonas capsulata, strain B10, are purified to a homogeneous state and characterized. The molecular mass of ferredoxin I is about 12 kDa and that of ferredoxin II, 18 kDa. Ferredoxin I contains 8 Fe2+ and 8 S2?; ferredoxin II has 4 Fe2+ and 4 S2? per molecule. The redox potential of ferredoxin I is about ?270 mV and that of ferredoxin II ?419 mV. Ferredoxin I is more labile to the action of O2, O?2, H2O2 and heating. The ferredoxins are also different in their absorption and EPR spectra, amino acid composition and electron-transfer activity to Rps. capsulata nitrogenase: both C2H2 reduction and H2 evolution by Rps. capsulata nitrogenase proceed faster in the presence of ferredoxin I than in case of ferredoxin II. Synthesis of ferredoxin I takes place only in Rps. capsulata nitrogen-fixing cells grown in light under anaerobic conditions whereas ferredoxin II formation does not depend on the source of nitrogen or the growth medium, though the amount of ferredoxin II varies with the growth conditions. Its highest level has been found in the cells grown in lactate-limited medium in the presence of CO2 and light or in the presence of glutamate in darkness under anaerobic conditions.  相似文献   

13.
The photosynthetic bacterium, Rhodopseudomonas capsulata, could be cultured anaerobically in the absence of light on a synthetic medium with glucose as the carbon source only when dimethyl sulfoxide (DMSO) was added. The extent of growth was proportional to both DMSO and glucose concentrations. Optimal growth was achieved with 20 mm DMSO and 0.25% glucose. Under the best conditions, cells divided with a doubling time of 12 h. Pyruvate also supported the anaerobic dark growth of R. capsulata when DMSO was present. R. capsulata, R. sphaeroides, and R. palustris strains were all able to grow under anaerobic dark conditions with DMSO. Experiments using [14C]DMSO showed that more than 95% of the 14C was converted by cultures of R. capsulata to a volatile compound, identified as dimethyl sulfide (DMS) by gas chromatography, thus demonstrating that DMSO was being reduced to DMS during growth. These results indicate that R. capsulata requires a terminal electron acceptor for anaerobic dark growth and that DMSO can serve that function.  相似文献   

14.
A soluble ferredoxin was purified from the photosynthetic bacterium Rhodopseudomonas capsulata and characterized. Unlike Rhodospirillum rubrum, where two soluble ferredoxins have been found, only a single species was found in Rps. capsulata. The amino acid composition, ultraviolet-visible spectral properties, molecular weight (12000) and biological activity were determined. The ultraviolet-visible spectrum is similar to that of other bacterial ferredoxins, with a maximum when oxidized at 380 nm (? = 26.1 · 103 M-1 · cm-1). The possible roles of this ferredoxin in the cellular metabolism are discussed.  相似文献   

15.
1. The cytochromes of chromatophores from photosynthetically grown Rhodopseudomonas capsulata have been characterised both spectrally, using the carotenoid free mutant Ala Pho+, and thermodynamically, using the technique of redox titrations. Five cytochromes were present; two cytochromes b, E0 = 60 mV at pH 7.0; and three cytochromes c, E0 = 340 mV, Et?0 = 120 mV, E0 = 0 mV at pH 7.0.2. Redox titrations at different values of pH indicated that the mid point potentials of all the cytochromes varied with pH over some parts of the range between pH 6 and 9, with the possible exception of cytochrome c340.3. The effects of succinate and NADH on the steady state reduction of the cytochromes are reported. Succinate could reduce cytochromes c340, c120 and b60; NADH could reduce cytochromes c340, c120, b60 and b?25. Cytochrome c0 could be reduced by dithionite but not by the other substrates tested.  相似文献   

16.
Trimethylamine N-oxide (TMAO) can function as an electron acceptor in the anaerobic metabolism of both Rhodopseudomonas capsulata and Escherichia coli. In both bacteria, anaerobic growth in the presence of TMAO induces a system that can reduce TMAO to trimethylamine (TMA). Comparative studies, however, show that TMAO reduction serves different purposes in the organisms noted. In E. coli, anaerobic growth on sugars does not require the presence of TMAO, but in cells induced for TMAO reductase, TMAO can act as the terminal electron acceptor for membrane-associated oxidative phosphorylation. Anaerobic dark growth of R. capsulata is dependent on the presence of TMAO (or an analog) and in this organism a soluble system catalyzes anaerobic oxidation of NADH with TMAO. The mechanism, in R. capsulata, appears to involve a flavoprotein of the flavodoxin type and presumably represents a system for maintenance of redox balance during anaerobic dark fermentation of hexoses and related compounds.  相似文献   

17.
Monospecific antibodies have been prepared against cytochrome c2 from Rhodopseudomonas spheroides and Rhodopseudomonas capsulata, and against cytochrome c′ from Rps. capsulata. These antibodies precipitated their respective antigens, but did not cross react with a wide range of procaryotic or eucaryotic cytochromes, or with other bacterial proteins. The cytochromes produced during aerobic growth were immunologically indistinguishable from those produced during photosynthetic growth.Cytochrome c2 is located in vivo in the periplasmic space between the cell wall and the cell membrane, and when chromatophores are prepared from whole cells the cytochrome becomes trapped inside these vesicles. The implications of these results to energy coupling in the photosynthetic bacteria are discussed.  相似文献   

18.
19.
The magnetic field effects on bacteriochlorophyll fluorescence in six strains of Rhodopseudomonas capsulata were investigated. All strains exhibit an increase in fluorescence upon application of a magnetic field. Large magnetic field effects are shown to arise in mutants which contain the B800–850 complex as the only bacteriochlorophyll-containing protein. These fluorescence increases are observed only with carotenoid excitation and are best described by a carotenoid singlet heterofission mechanism. Variations in the magnitudes of the magnetic field effects for the Rps. capsulata strain arise from energy differences in the excited states of the molecules involved in the process. In order to determine the contribution from reaction centers to the magnetic field effects observed in the mutants which contain all three pigment-protein complexes, reaction centers were isolated from these strains. The reaction center contribution to the magnetic field effect on fluorescence in whole cells was determined to be smaller than the antenna contribution when carotenoid excitation was employed.  相似文献   

20.
A.J. Clark  N.P.J. Cotton  J.B. Jackson 《BBA》1983,723(3):440-453
(1) Under conditions in which membrane potential (Δψ) was the sole contributor to the proton-motive force, the steady-state rate of ATP synthesis in chromatophores increased disproportionately when Δψ was increased: the rate had an approximately sixth-power dependence on Δψ. (2) Simultaneous measurements showed that the dissipative ionic current (JDIS) across the chromatophore membrane had a related dependence on Δψ, i.e., the membrane conductance increased markedly as Δψ increased. (3) For comparable Δψ values, JDIS was greater in phosphorylating than in non-phosphorylating chromatophores. For comparable actinic light intensities, Δψ was smaller in phosphorylating than in non-phosphorylating chromatophores. (4) At either low pH or in the presence of venturicidin, oligomycin or dicyclohexylcarbodiimide to inhibit ATP synthesis, JDIS was substantially depressed, particularly at high Δψ. Even under these conditions the membrane conductance was dependent on Δψ. (5) Also in intact cells, JDIS was depressed in the presence of venturicidin. Points 1–5 are interpreted in terms of a Δψ -driven H+ flux through the F0 channel of the ATPase synthase. The high-power dependence of the F0 conductance on Δψ determines the dependence of the rate of ATP synthesis on Δψ. The Δψ -dependent conductance of F0 dominates the electrical properties of the membrane. In chromatophores the ionic current accompanying ATP synthesis was more than 50% of the total membrane ionic current at maximal Δψ. (6) The rate of cyclic electron transport was calculated from JDIS. This led to an estimate of 0.77 ± 0.22 for the ATP2e? ratio and of 3.5 ± 1.3 for the H+ATP ratio. (7) Severe inhibition of the electron-transport rate by decreasing the light intensity led to an almost proportionate decrease in the rate of ATP synthesis. The chromatophores were able to maintain proportionality by confining electron-transport phosphorylation to a narrow range of Δψ. This is a consequence of the remarkable conductance properties of the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号