首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dispersal is critical step in plant invasions but there is limited information about human-mediated long distance seed dispersal, including in protected areas. Seed dispersal by hikers was quantified for five invasive species (the native Acaena novae-zelandiae, and the non-native weeds Rumex acetosella Anthoxanthum odoratum, Dactylis glomerata and Festuca rubra) in part of Australia’s Kosciuszko National Park. The proportion of seeds remaining attached to trousers and socks was quantified for replicated short (150 m) and long (5,000 m) distance walks. Functions were fitted for each dataset, and parameters compared among species and between trousers and socks. Dispersal data were combined with attachment rates and the number of people undertaking walks to estimate the total number of weed seeds that might be dispersed. The power exponential function gave the best fit for the majority of datasets, indicating that detachment probability decreased with distance. Seeds of all five species were more tightly attached to socks than trousers, with some seeds still present on socks at 5,000 m. Anthoxanthum and Acaena seeds were more tightly attached to clothing than the other species. Theoretically 1.9 million seeds could be dispersed on socks or 2.4 million seeds on trousers through a season but the actual numbers are likely to be much lower because of limited weed seed at the start of the walks. Because of differences in attachment and detachment rates, seeds from Acaena were more likely to be dispersed longer distances. Long distance human-mediated seed dispersal is potentially a major cause of spread of invasive weeds into protected areas that favours some invasive species over others.  相似文献   

2.
Seed dispersal is a key ecological process in tropical forests, with effects on various levels ranging from plant reproductive success to the carbon storage potential of tropical rainforests. On a local and landscape scale, spatial patterns of seed dispersal create the template for the recruitment process and thus influence the population dynamics of plant species. The strength of this influence will depend on the long‐term consistency of spatial patterns of seed dispersal. We examined the long‐term consistency of spatial patterns of seed dispersal with spatially explicit data on seed dispersal by two neotropical primate species, Leontocebus nigrifrons and Saguinus mystax (Callitrichidae), collected during four independent studies between 1994 and 2013. Using distributions of dispersal probability over distances independent of plant species, cumulative dispersal distances, and kernel density estimates, we show that spatial patterns of seed dispersal are highly consistent over time. For a specific plant species, the legume Parkia panurensis, the convergence of cumulative distributions at a distance of 300 m, and the high probability of dispersal within 100 m from source trees coincide with the dimension of the spatial–genetic structure on the embryo/juvenile (300 m) and adult stage (100 m), respectively, of this plant species. Our results are the first demonstration of long‐term consistency of spatial patterns of seed dispersal created by tropical frugivores. Such consistency may translate into idiosyncratic patterns of regeneration.  相似文献   

3.
4.
Mutualisms are one of the main forces shaping species spatial patterns at all geographic scales. In generalised mutualisms, however, the dependence among partners is highly variable in time and space, and therefore, the effect of diffuse mutualisms on species geographic distributions is unclear. Myrmecochorous seeds in Brazilian semi‐arid vegetation are dispersed by several ant species. However, large‐seeded species are especially dependent on dispersal by the giant ant Dinoponera quadriceps, which is the main disperser of such diaspores and the species that provide the longest dispersal distance among ant species in this system. Hence, we hypothesise that the presence of D. quadriceps shapes the distribution of large‐seeded, but not the distribution of small‐seeded myrmecochorous plant species. To evaluate this hypothesis, we modelled the potential distribution of two large‐seeded (which are predominantly dispersed by D. quadriceps) and two small‐seeded (which are barely dispersed by D. quadriceps) Euphorbiaceae species and the potential distribution of D. quadriceps. We analysed the relationship between the occurrence suitability of D. quadriceps and the occurrence suitability of plant species. We found that the potential distribution of both large‐seeded and small‐seeded myrmecochorous plants was unrelated to D. quadriceps occurrence suitability. It means that the disproportional benefits provided by high‐quality disperser at local scales may not emerge at broader geographical scales. In Caatinga vegetation, diaspores are submitted to strong abiotic filters that constraint seed germination and establishment after the dispersal phase. Such abiotic filters may dilute the initial benefit provided by long‐distance dispersers. Therefore, we suggest that in dry environments like the Caatinga, the benefits of long‐distance removals should be outweighed by the risk of reach new habitats with unfavourable conditions for germination and establishment.  相似文献   

5.
Leaf monkeys are known to be leaf eaters, and thus, their potential role as seed dispersers has been neglected. However, they do also feed on fruits. To examine the role of leaf monkeys as endozoochorous seed dispersers, we studied the Javan lutung (Trachypithecus auratus) in Indonesia. We compared multiple aspects of seed dispersal processes (amount and diversity of seeds ingested, dispersal distance, and germination rate) of lutungs with that of the sympatric long‐tailed macaque (Macaca fascicularis). Over the study period, 54 percent of the lutung feces contained intact seeds, which was equivalent to the macaque feces contained seeds (62%). Seeds of at least six plant species were detected in the lutung feces, which was less than those found in the macaque feces (>19 plant species). The main species of seeds defecated by both lutungs and macaques was Ficus spp. (seed size: 0.7 mm). Seed shadow, estimated from travel distance (range: 1–299 m) and gut passage rate (24–96 h), had a unimodal‐distribution with a peak at 51–100 m, and was shorter than that reported in published accounts of macaques and other similar and smaller sized frugivores. Finally, germination rates of Ficus spp. seeds ingested by both lutungs and macaques were lower than that of the control seeds. These results imply that the dispersal effectiveness of lutungs would be lower than that of the sympatric primate frugivores. However, at a population level, lutungs could play a significant role as seed dispersers for the small‐seeded species, and therefore, more research into their frugivorous habits is warranted.  相似文献   

6.
Humans can unintentionally disperse plant propagules (herein referred to as seeds) including weed seeds from clothing when hiking. There is limited experimental or observational information, however, about unintended human‐mediated seed dispersal, particularly from different types of clothing. We experimentally assessed the probability of seed detaching from socks and trousers along a 5 km standardized route for eight common environmental weeds: Bidens pilosa L., Chloris gayana Kunth., Conyza canadensis L., Cynodon dactylon L., Drymaria cordata (L.) Willd. ex Schult., Poa annua L., Paspalum urvillei Steud. and Sporobolus elongatus R.Br. Seed detachment varied among species on both types of clothing, but seeds more easily detached from trousers than socks. When different models were fitted to the data, a three‐parameter generalized exponential model with curves provided the best fit. The curves were leptokurtic, with peak close to the seed source and a long flat tail, which indicates that most seeds dispersed from clothing fall close (within 5 m) to the point of attachment with only a small proportion of seeds dispersed over long distances. Combining attachment and detachment data for the same species, we estimated the actual numbers of seeds potentially dispersed over a hike of 5 km. The study indicates that most seeds are likely to be dispersed at the start of walks, although the actual number of seeds will vary depending on several factors such as the behaviour of the hiker and the amount of weed seeds present at the start of the walk. Those few seeds dispersed much further may, however, be more important in terms of plant invasions. Covering socks with gaiters and avoiding walking through weedy areas such as road edges and car parks before starting walks could minimize the risk of seeds attaching to clothing and hence being dispersed.  相似文献   

7.
Directed dispersal by animal vectors has been found to have large effects on the structure and dynamics of plant populations adapted to frugivory. Yet, empirical data are lacking on the potential of directed dispersal by rotational grazing of domestic animals to mediate gene flow across the landscape. Here, we investigated the potential effect of large‐flock shepherding on landscape‐scale genetic structure in the calcareous grassland plant Dianthus carthusianorum, whose seeds lack morphological adaptations to dispersal to animals or wind. We found a significant pattern of genetic structure differentiating population within grazed patches of three nonoverlapping shepherding systems and populations of ungrazed patches. Among ungrazed patches, we found a strong and significant effect of isolation by distance (r = 0.56). In contrast, genetic distance between grazed patches within the same herding system was unrelated to geographical distance but significantly related to distance along shepherding routes (r = 0.44). This latter effect of connectivity along shepherding routes suggests that gene flow is spatially restricted occurring mostly between adjacent populations. While this study used nuclear markers that integrate gene flow by pollen and seed, the significant difference in the genetic structure between ungrazed patches and patches connected by large‐flock shepherding indicates the potential of directed seed dispersal by sheep across the landscape.  相似文献   

8.
Understanding how invasive species establish and spread is vital for developing effective management strategies for invaded areas and identifying new areas where the risk of invasion is highest. We investigated the explanatory power of dispersal histories reconstructed based on local‐scale wind data and a regional‐scale wind‐dispersed particle trajectory model for the invasive seed chalcid wasp Megastigmus schimitscheki (Hymenoptera: Torymidae) in France. The explanatory power was tested by: (1) survival analysis of empirical data on M. schimitscheki presence, absence and year of arrival at 52 stands of the wasp's obligate hosts, Cedrus (true cedar trees); and (2) Approximate Bayesian analysis of M. schimitscheki genetic data using a coalescence model. The Bayesian demographic modeling and traditional population genetic analysis suggested that initial invasion across the range was the result of long‐distance dispersal from the longest established sites. The survival analyses of the windborne expansion patterns derived from a particle dispersal model indicated that there was an informative correlation between the M. schimitscheki presence/absence data from the annual surveys and the scenarios based on regional‐scale wind data. These three very different analyses produced highly congruent results supporting our proposal that wind is the most probable vector for passive long‐distance dispersal of this invasive seed wasp. This result confirms that long‐distance dispersal from introduction areas is a likely driver of secondary expansion of alien invasive species. Based on our results, management programs for this and other windborne invasive species may consider (1) focusing effort at the longest established sites and (2) monitoring outlying populations remains critically important due to their influence on rates of spread. We also suggest that there is a distinct need for new analysis methods that have the capacity to combine empirical spatiotemporal field data, genetic data, and environmental data to investigate dispersal and invasion.  相似文献   

9.
Seeds of many Amaryllidaceae are unorthodox (recalcitrant) and toxic, and cannot survive ingestion, yet are packaged in brightly colored fruits suggestive of zoochory. Seed dispersal and germination of the understory amaryllid, Clivia miniata, were investigated in KwaZulu‐Natal, South Africa. Motion‐activated cameras revealed that samango monkeys (Cercopithecus mitis labiatus) are the primary disperser of C. miniata seeds. They eat the mesocarp and, to a lesser extent, the exocarp, and spit the large (13 mm diameter) seeds whole and cleaned onto the forest floor. Most seeds were dispersed farther than 1 m from the parent. Experimental removal of the fruit pulp had a small positive effect on the rate of seed germination, but did not affect subsequent seedling growth rates. The main advantages of monkey dispersal of Clivia seeds appear to be short‐distance dispersal away from the dense foliage of clumped parent plants and occasional long‐distance dispersal through cheek‐pouching behavior.  相似文献   

10.
A high capacity for long‐distance dispersal is a key to success for species confronted with environmental heterogeneity, habitat modification, fragmentation and loss. However, dispersal capacity is difficult to quantify and therefore poorly known in most taxa. Here, we report on a test for an association of variation in dispersal capacity with variable colouration of noctuid moths. First, using data from 12 experienced lepidopterologists, we showed that despite variation among experts in average assessments, different species are consistently classified as having non‐variable, variable or highly variable colour patterns when assessed by different experts. We then compared the incidence of non‐resident species with high inter‐individual variation in colour patterns recorded on the isolated island Utklippan (n = 47), with that in a species pool of potential long‐distance dispersers from the nearest mainland (n = 295). Species with high inter‐individual colour pattern variation were over‐represented on the island compared with species having non‐variable colouration. This finding constitutes rare evidence from the wild of long‐distance dispersal, measured on a spatial scale relevant for moths when tracking habitats in fragmented and changing landscapes or when keeping pace with environmental challenges associated with climate change. Finally, we showed that Swedish noctuid moths classified as agricultural pests (n = 28) had more variable colour patterns compared with non‐pests (n = 368). The majority of agricultural pests were also recorded on the isolated island, an outcome that is indicative of pest species having high dispersal capacity. Data on colour pattern variation may thus offer a simple and cost‐effective proxy to estimate dispersal capacity and can also help identify potential pest species. Our findings are potentially useful when modelling and predicting population and range dynamics of species in spatiotemporally heterogeneous environments, with direct implications for conservation biology and pest management.  相似文献   

11.
Movement patterns of animals can vary dramatically as a function of their reproductive cycle or social structure; however, little is known about how changes in the social structure of dispersers affect patterns of seed dispersal. We examined the movement patterns of the forest‐dwelling and cooperatively breeding Puff‐throated Bulbul (Alophoixus pallidus) in relation to different stages of their reproductive cycle, time of day, and group size, to determine potential impacts on the shape and scale of dispersal curves generated using a combination of gut passage time and displacement distance data. There were significant differences in dispersal distances depending on group size, season (breeding, non‐breeding), incubation (vs. other times of the year), and time of the day. The estimated median seed dispersal distance was 28 m. The median dispersal distances produced by birds in larger groups were longer than those of smaller groups (29 m vs. 25 m). During the breeding season, median dispersal distances were longer than during the non ‐ breeding season (31 m vs. 25 m), but the median dispersal distances were significantly shorter during incubation than during outside incubation (24 m vs. 28 m). The median dispersal distance produced in the early morning (30 m) was also longer than that of other times of the day (23 m late morning, 28 m early afternoon, and 26 m late afternoon). This study suggests that various aspects of an animal's behavior are likely to have significant effects on seed shadows and that this may vary significantly even among individuals of the same species.  相似文献   

12.
Dispersal is a fundamental ecological process, yet demonstrating the occurrence and importance of long‐distance dispersal (LDD) remains difficult, having rarely been examined for widespread, non‐coastal plants. To address this issue, we integrated phylogenetic, molecular dating, biogeographical, ecological, seed biology and oceanographic data for the inland Urticaceae. We found that Urticaceae originated in Eurasia c. 69 Ma, followed by ≥ 92 LDD events between landmasses. Under experimental conditions, seeds of many Urticaceae floated for > 220 days, and remained viable after 10 months in seawater, long enough for most detected LDD events, according to oceanographic current modelling. Ecological traits analyses indicated that preferences for disturbed habitats might facilitate LDD. Nearly half of all LDD events involved dioecious taxa, so population establishment in dioecious Urticaceae requires multiple seeds, or occasional selfing. Our work shows that seawater LDD played an important role in shaping the geographical distributions of Urticaceae, providing empirical evidence for Darwin's transoceanic dispersal hypothesis.  相似文献   

13.
Larval dispersal is the key process by which populations of most marine fishes and invertebrates are connected and replenished. Advances in larval tagging and genetics have enhanced our capacity to track larval dispersal, assess scales of population connectivity, and quantify larval exchange among no‐take marine reserves and fished areas. Recent studies have found that reserves can be a significant source of recruits for populations up to 40 km away, but the scale and direction of larval connectivity across larger seascapes remain unknown. Here, we apply genetic parentage analysis to investigate larval dispersal patterns for two exploited coral reef groupers (Plectropomus maculatus and Plectropomus leopardus) within and among three clusters of reefs separated by 60–220 km within the Great Barrier Reef Marine Park, Australia. A total of 69 juvenile P. maculatus and 17 juvenile P. leopardus (representing 6% and 9% of the total juveniles sampled, respectively) were genetically assigned to parent individuals on reefs within the study area. We identified both short‐distance larval dispersal within regions (200 m to 50 km) and long‐distance, multidirectional dispersal of up to ~250 km among regions. Dispersal strength declined significantly with distance, with best‐fit dispersal kernels estimating median dispersal distances of ~110 km for P. maculatus and ~190 km for P. leopardus. Larval exchange among reefs demonstrates that established reserves form a highly connected network and contribute larvae for the replenishment of fished reefs at multiple spatial scales. Our findings highlight the potential for long‐distance dispersal in an important group of reef fishes, and provide further evidence that effectively protected reserves can yield recruitment and sustainability benefits for exploited fish populations.  相似文献   

14.
The natural regeneration of tree species depends on seed and pollen dispersal. To assess whether limited dispersal could be critical for the sustainability of selective logging practices, we performed parentage analyses in two Central African legume canopy species displaying contrasted floral and fruit traits: Distemonanthus benthamianus and Erythrophleum suaveolens. We also developed new tools linking forward dispersal kernels with backward migration rates to better characterize long‐distance dispersal. Much longer pollen dispersal in D. benthamianus (mean distance dp = 700 m, mp = 52% immigration rate in 6 km2 plot, = 7% selfing rate) than in E. suaveolens (dp = 294 m, mp = 22% in 2 km2 plot, = 20%) might reflect different insect pollinators. At a local scale, secondary seed dispersal by vertebrates led to larger seed dispersal distances in the barochorous E. suaveolens (ds = 175 m) than in the wind‐dispersed D. benthamianus (ds = 71 m). Yet, seed dispersal appeared much more fat‐tailed in the latter species (15%–25% seeds dispersing >500 m), putatively due to storm winds (papery pods). The reproductive success was correlated to trunk diameter in E. suaveolens and crown dominance in D. benthamianus. Contrary to D. benthamianus, E. suaveolens underwent significant assortative mating, increasing further the already high inbreeding of its juveniles due to selfing, which seems offset by strong inbreeding depression. To achieve sustainable exploitation, seed and pollen dispersal distances did not appear limiting, but the natural regeneration of E. suaveolens might become insufficient if all trees above the minimum legal cutting diameter were exploited. This highlights the importance of assessing the diameter structure of reproductive trees for logged species.  相似文献   

15.
Abstract Ant seed dispersal distances are typically small, averaging less than 1 m in published studies. Here, a new record (180 m) for ant seed dispersal distance is reported, and preliminary observations are made on the interaction between meat ants Iridomyrmex viridiaeneus Viehmeyer (Hymenoptera: Formicidae) and diaspores of the sandhill wattle, Acacia ligulata A. Cunn. ex Benth. (Fabaceae) in Kinchega National Park, New South Wales (NSW), Australia. Iridomyrmex viridiaeneus moved diaspores over distances of 7–180 m (mean 93.9 m) from the source trees to their nests, removed the arils underground and discarded the seeds over a 3000‐m2 area surrounding the nest. A germination trial determined that the viability of discarded seeds was 40%, with 80% of the viable seeds in a dormant condition. Although the cumulative effects of I. viridiaeneus on A. ligulata recruitment require further investigation, this study and others raise the possibility that myrmecochorous systems in the Australian arid zone may be characterized by longer dispersal distances than those in other parts of the world. Long‐distance seed movement by ants lends credence to the hypothesis that distance dispersal (in contrast to directed dispersal) could be of benefit to myrmecochorous plants.  相似文献   

16.
Questions: For wetland plants, dispersal by wind is often overlooked because dispersal by water is generally assumed to be the key dispersal process. This literature review addresses the role of seed dispersal by wind in wetlands. Why is wind dispersal relevant in wetlands? Which seeds are dispersed by wind and how far? And how can our understanding of wind dispersal be applied to wetland conservation and restoration? Methods: Literature review. Results and conclusions: Wind is a widely available seed dispersal vector in wetlands and can transport many seeds over long distances. Unlike water, wind can transport seeds in all directions and is therefore important for dispersal to upstream wetlands and to wetlands not connected by surface water flows. Wind dispersal transports seeds to a wider range of sites than water, and therefore reaches more sites but with lower seed densities. Many wetland plant species have adaptations to facilitate wind dispersal. Dispersal distances increase with decreasing falling velocity of seeds, increasing seed release height and selective release mechanisms. Depending on the adaptations, seeds may be dispersed by wind over many km or only a few m. The frequency of long‐distance wind dispersal events depends on these adaptations, the number of produced seeds, the structure of the surrounding vegetation, and the frequency of occurrence of suitable weather conditions. Humans reduce the frequency of successful long‐distance wind dispersal events in wetlands through wetland loss and fragmentation (which reduce the number and quality of seeds) and eutrophication (which changes the structure of the vegetation so that seed release into the wind flow becomes more difficult). This is yet another reason to focus on wetland conservation and restoration measures at increased population sizes, prevention of eutrophication, and the restoration of sites at short distances from seed sources.  相似文献   

17.
Quantifying dispersal within wild populations is an important but challenging task. Here we present a method to estimate contemporary, individual‐based dispersal distance from noninvasively collected samples using a specialized panel of 96 SNPs (single nucleotide polymorphisms). One main issue in conducting dispersal studies is the requirement for a high sampling resolution at a geographic scale appropriate for capturing the majority of dispersal events. In this study, fecal samples of brown bear (Ursus arctos) were collected by volunteer citizens, resulting in a high sampling resolution spanning over 45,000 km2 in Gävleborg and Dalarna counties in Sweden. SNP genotypes were obtained for unique individuals sampled (n = 433) and subsequently used to reconstruct pedigrees. A Mantel test for isolation by distance suggests that the sampling scale was appropriate for females but not for males, which are known to disperse long distances. Euclidean distance was estimated between mother and offspring pairs identified through the reconstructed pedigrees. The mean dispersal distance was 12.9 km (SE 3.2) and 33.8 km (SE 6.8) for females and males, respectively. These results were significantly different (Wilcoxon's rank‐sum test: P‐value = 0.02) and are in agreement with the previously identified pattern of male‐biased dispersal. Our results illustrate the potential of using a combination of noninvasively collected samples at high resolution and specialized SNPs for pedigree‐based dispersal models.  相似文献   

18.
Understanding the functional role of animal species in seed dispersal is central to determining how biotic interactions could be affected by anthropogenic drivers. In the Monte Desert, mammals play different functional roles in Prosopis flexuosa seed dispersal, acting as opportunistic frugivores (endozoochorous medium‐sized and large mammals) or seed hoarders (some small sigmodontine rodents). Our objective was assessing the functional role of Microcavia australis, a small hystricognathi rodent, in the fruit removal and seed deposition stages of P. flexuosa seed dispersal, compared to sympatric sigmodontine rodents. In situ, we quantified fruit removal by small rodents during non‐fruiting and fruiting periods, and determined the distance seeds were transported, particularly by M. australis. In laboratory experiments, we analysed how M. australis stores seeds (through scatter‐ or larder‐hoarding) and how many seeds are left in caches as living seeds, relative to previous data on sigmodontine rodents. To conduct field studies, we established sampling stations under randomly chosen P. flexuosa trees at the Ñacuñán Man and Biosphere Reserve. We analysed fruit removal by small rodents and seed dispersal distance by M. australis using camera traps focused on P. flexuosa fruits covered with wire screen, which only allowed entry of small animals. In laboratory trials, we provided animals with a known number of fruits and assessed seed conditions after removal. Small rodents removed 75.7% of fruit supplied during the non‐fruiting period and 53.2% during the fruiting period. Microcavia australis and Graomys griseoflavus were the main fruit removers. Microcavia australis transported seeds to a mean distance of 462 cm and cached seeds mainly in scatter‐hoards, similarly as Eligmodontia typus. All transported seeds were left in fruit segments or covered only by the endocarp, never as predated seeds. Microcavia australis disperses P. flexuosa seeds by carrying fruits away from a source to consume them and then by scatter‐hoarding fruits and seeds.  相似文献   

19.
Successful forest expansion into grassland can be limited by seed dispersal and adverse conditions for tree seedlings in the grassland environment. In the high‐elevation Andes, human‐induced fragmentation has exacerbated the patchy distribution of Polylepis forests, threatening their unique biological communities and spurring restoration interest. Studies of Polylepis forest extent in Peru suggest that forest borders have remained stable over the past century despite decreasing anthropogenic disturbance, suggesting that tree seedling recruitment is being limited in the open grassland habitat. We studied natural seedling dispersion patterns of Polylepis sericea and Polylepis weberbaueri (Rosaceae) at forest–grassland edges across a range of environmental conditions to examine seedling recruitment and colonization of grasslands in Huascaran National Park (Peru). Using data from 2367 seedlings found in 48 forest–grassland edge plots (15 m × 15 m) at forest patches between 3900–4500 masl, we employed generalized mixed modelling to identify the significant associations of seedling densities with environmental covariates. In addition, we compared these associations to patterns of adult presence on the landscape. Seedling densities were associated with a combination of variables varying within (distance to forest edge) and among (elevation and dry season solar irradiation) plots across the landscape. For both species, seedling densities decreased with increasing distance away from the forest in a manner consistent with short‐distance seed dispersal by wind. Our results suggest that such short‐distance dispersal may slow forest expansion, but that there also appear to be substantial post‐dispersal limitations to seedling establishment in the grassland. Polylepis sericea densities decreased with elevation, while P. weberbaueri increased with elevation and decreased with solar irradiation. Associations of adult presence with elevation and solar irradiation mirrored those of seedling densities. Management of areas with forest patches dominated by these species should consider these differences in their environmental tolerances, particularly during species selection and zonation for reforestation.  相似文献   

20.
Seed and pollen dispersal shape patterns of gene flow and genetic diversity in plants. Pollen is generally thought to travel longer distances than seeds, but seeds determine the ultimate location of gametes. Resolving how interactions between these two dispersal processes shape microevolutionary processes is a long‐standing research priority. We unambiguously isolated the separate and combined contributions of these two dispersal processes in seedlings of the animal‐dispersed palm Oenocarpus bataua to address two questions. First, what is the spatial extent of pollen versus seed movement in a system characterized by long‐distance seed dispersal? Second, how does seed dispersal mediate seedling genetic diversity? Despite evidence of frequent long‐distance seed dispersal, we found that pollen moves much further than seeds. Nonetheless, seed dispersal ultimately mediates genetic diversity and fine‐scale spatial genetic structure. Compared to undispersed seedlings, seedlings dispersed by vertebrates were characterized by higher female gametic and diploid seedling diversity and weaker fine‐scale spatial genetic structure for female gametes, male gametes and diploid seedlings. Interestingly, the diversity of maternal seed sources at seed deposition sites (N em) was associated with higher effective number of pollen sources (N ep), higher effective number of parents (N e) and weaker spatial genetic structure, whereas seed dispersal distance had little impact on these or other parameters we measured. These findings highlight the importance maternal seed source diversity (N em) at frugivore seed deposition sites in driving emergent patterns of fine‐scale genetic diversity and structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号