首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
血管性痴呆(vascular dementia,VD)是指由各种脑血管病,包括缺血性脑血管病、出血性脑血管病及急性与慢性缺氧性脑血管病引起的脑功能障碍,进而产生认知功能障碍的临床综合征。血管性痴呆是一种慢性进行性疾病,被认为是仅次于阿尔兹海默症,导致痴呆的第2位原因。目前,血管性痴呆的发病机制尚不明确,有可能与炎症、神经元损伤、胆碱能系统功能障碍、脑白质病变及氧化应激等有关。其中,炎症反应在急性与慢性脑缺血继发性脑损伤中起主要作用。抑制炎症能改善血管性痴呆动物模型的症状,显示炎症可能在血管性痴呆发病机制中发挥重要作用。参与炎症反应的相关因子,如细胞因子等可对中枢神经系统造成损伤。同时,炎症相关因子会触发炎症级联反应,加重脑损伤。本文总结了有关炎症相关因子参与导致血管性痴呆的各种病理损害和促进其发生发展的分子机制的最新研究进展,这些都有助于了解炎症相关因子在血管性痴呆发病机制中的作用。  相似文献   

2.
Proteins that regulate the coagulation cascade, including thrombin, are elevated in the brains of Alzheimer's disease (AD) patients. While studies using amyloid-based AD transgenic mouse models have implicated thrombin as a protein of interest, the role of thrombin in tau-based animal models has not been explored. The current study aims to determine how inhibiting thrombin could alter oxidative stress, inflammation, and AD-related proteins in a tau-based mouse model, the Tg4510. Aged Tg4510 mice were treated with the direct thrombin inhibitor dabigatran or vehicle for 7 days, brains collected, and western blot and data-independent proteomics using mass spectrometry with SWATH-MS acquisition performed to evaluate proteins related to oxidative stress, intracellular signaling, inflammation, and AD pathology. Dabigatran reduced iNOS, NOX4, and phosphorylation of tau (S396, S416). Additionally, dabigatran treatment increased expression of several signaling proteins related to cell survival and synaptic function. Increasing evidence supports a chronic procoagulant state in AD, highlighting a possible pathogenic role for thrombin. Our data demonstrate that inhibiting thrombin produces alterations in the expression of proteins involved in oxidative stress, inflammation, and AD-related pathology, suggesting that thrombin-mediated signaling affects multiple AD-related pathways providing a potential future therapeutic target.  相似文献   

3.
Reactive oxygen species, cell signaling, and cell injury   总被引:31,自引:0,他引:31  
Oxidative stress has traditionally been viewed as a stochastic process of cell damage resulting from aerobic metabolism, and antioxidants have been viewed simply as free radical scavengers. Only recently has it been recognized that reactive oxygen species (ROS) are widely used as second messengers to propagate proinflammatory or growth-stimulatory signals. With this knowledge has come the corollary realization that oxidative stress and chronic inflammation are related, perhaps inseparable phenomena. New pharmacological strategies aimed at supplementing antioxidant defense systems while antagonizing redox-sensitive signal transduction may allow improved clinical management of chronic inflammatory or degenerative conditions, including Alzheimer's disease. Introduction of antioxidant therapies into mainstream medicine is possible and promising, but will require significant advances in basic cell biology, pharmacology, and clinical bioanalysis.  相似文献   

4.
Assessment of tissue free radical production is routinely accomplished by measuring secondary by-products of redox reactions and/or diminution of key antioxidants such as reduced thiols. However, immuno-spin trapping, a newly developed immunohistochemical technique for detection of free radical formation, is garnering considerable interest as it allows for the visualization of 5,5-dimethyl-1-pyrroline N-oxide (DMPO)-adducted molecules. Yet, to date, immuno-spin trapping reports have utilized in vivo models in which successful detection of free radical adducts required exposure to lethal levels of oxidative stress not reflective of chronic inflammatory disease. To study the extents and anatomic locations of more clinically relevant levels of radical formation, we examined tissues from high-fat (HF) diet-fed mice, a model of low-grade chronic inflammation known to demonstrate enhanced rates of reactive species production. Mice subjected to 20 weeks of HF diet displayed increased free radical formation (anti-DMPO mean fluorescence staining) in skeletal muscle (0.863±0.06 units vs 0.512±0.07 units), kidney (0.076±0.0036 vs 0.043±0.0025), and liver (0.275±0.012 vs 0.135±0.014) compared to control mice fed normal laboratory chow (NC). Western blot analysis of tissue homogenates confirmed these results showing enhanced DMPO immunoreactivity in HF mice compared to NC samples. The obesity-related results were confirmed in a rat model of pulmonary hypertension and right heart failure in which intense immunodetectable radical formation was observed in the lung and right ventricle of monocrotaline-treated rats compared to saline-treated controls. Combined, these data affirm the utility of immuno-spin trapping as a tool for in vivo assessment of altered extents of macromolecule oxidation to radical intermediates under chronic inflammatory conditions.  相似文献   

5.
Atherosclerosis is a chronic inflammatory disease of the vascular arterial walls. A number of studies have revealed the biological and genetic bases of atherosclerosis, and over 100 genes influence atherosclerosis development. Nrf2 plays an important role in oxidative stress response and drug metabolism, but the Nrf2 signaling pathway is closely associated with atherosclerosis development. During atherosclerosis progression, Nrf2 signaling modulates many physiological and pathophysiological processes, such as lipid homeostasis regulation, foam cell formation, macrophage polarization, redox regulation and inflammation. Interestingly, Nrf2 exhibits both pro- and anti-atherogenic effects in experimental animal models. These observations make the Nrf2 pathway a promising target to prevent atherosclerosis.  相似文献   

6.
Diabetic retinopathy is a chronic low-grade inflammatory disease; however, the mechanisms remain elusive. In the present study, we demonstrated that endoplasmic reticulum (ER) stress was activated in the retina in animal models of diabetes and oxygen-induced retinopathy (OIR). Induction of ER stress by tunicamycin resulted in significantly increased expression of inflammatory molecules in the retina. Inhibition of ER stress by chemical chaperone 4-phenyl butyric acid ameliorated inflammation in cultured human retinal endothelial cells exposed to hypoxia, and in the retinas of diabetic and OIR mice. These findings indicate that ER stress is a potential mediator of retinal inflammation in diabetic retinopathy.  相似文献   

7.
Crohn's disease and ulcerative colitis are clinically, immunologically, and morphologically distinct forms of inflammatory bowel disease (IBD). However, smooth muscle function is impaired similarly in both diseases, resulting in diarrhea. We tested the hypothesis that differential cellular, genetic, and immunological mechanisms mediate smooth muscle dysfunction in two animal models believed to represent the two diseases. We used the rat models of trinitrobenzene sulfonic acid (TNBS)- and dextran sodium sulfate (DSS)-induced colonic inflammations, which closely mimic the clinical and morphological features of Crohn's disease and ulcerative colitis, respectively. DSS inflammation induced oxidative stress initially in mucosa/submucosa, which then propagated to the muscularis externa to impair smooth muscle function. The muscularis externa showed no increase of cytokines/chemokines. On the other hand, TNBS inflammation almost simultaneously induced oxidative stress, recruited or activated immune cells, and generated cytokines/chemokines in both mucosa/submucosa and muscularis externa. The generation of cytokines/chemokines did not correlate with the recruitment and activation of immune cells. Consequently, the impairment of smooth muscle function in DSS inflammation was primarily due to oxidative stress, whereas that in TNBS inflammation was due to both oxidative stress and proinflammatory cytokines. The impairment of smooth muscle function in DSS inflammation was due to suppression of Gα(q) protein of the excitation-contraction coupling. In TNBS inflammation, it was due to suppression of the α(1C)1b subunit of Ca(v)1.2b channels, CPI-17 and Gα(q). TNBS inflammation increased IGF-1 and TGF-β time dependently in the muscularis externa. IGF-1 induced smooth muscle hyperplasia; both IGF-1 and TGF-β induced hypertrophy. In conclusion, both TNBS and DSS induce transmural inflammation, albeit with different types of inflammatory mediators. The recruitment or activation of immune cells does not correlate directly with the intensity of generation of inflammatory mediators. The inflammatory mediators in TNBS and DSS inflammations target different genes to impair smooth muscle function.  相似文献   

8.
Endoplasmic reticulum (ER) stress may be both a trigger and consequence of chronic inflammation. Chronic inflammation is often associated with diseases that arise because of primary misfolding mutations and ER stress. Similarly, ER stress and activation of the unfolded protein response (UPR) is a feature of many chronic inflammatory and autoimmune diseases. In this review, we describe how protein misfolding and the UPR trigger inflammation, how environmental ER stressors affect antigen presenting cells and immune effector cells, and present evidence that inflammatory factors exacerbate protein misfolding and ER stress. Examples from both animal models of disease and human diseases are used to illustrate the complex interactions between ER stress and inflammation, and opportunities for therapeutic targeting are discussed. Finally, recommendations are made for future research with respect to the interaction of ER stress and inflammation.  相似文献   

9.
10.
近年研究发现神经突起导向因子Netrin-1能够抑制白细胞向炎症部位迁移和募集从而避免局部组织炎症反应过度。因此,Netrin-1可能成为未来抗炎治疗新靶点,具有良好的临床应用前景。Netrin-1的抗炎作用在急性腹膜炎、组织再灌注损伤、急性肺损伤,炎症性肠病,角膜炎,急性胰腺炎等动物模型中已有初步的研究结果,一些结果提示Netrin-1的抗炎作用主要通过结合腺苷A2b受体、UNC5B受体实现。对于不同的疾病情况,Netrin-1可同时通过MAPKs、ERKs、p38、NF-k B等多条信号转导途径协同双向调控白细胞的迁移及募集过程,达到减轻组织氧化应激反应,减轻组织器官的过度炎症反应的作用,在各炎症反应模型中证明Netrin-1对重要组织器官起到保护的作用。本文对Netrin-1在多种炎症相关疾病模型中的不同作用及其机制进行分析和总结,并重点讨论相关研究的最新进展。  相似文献   

11.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative condition in which motor neurons are selectively targeted. Although the underlying cause remains unclear, evidence suggests a role for innate immunity in disease pathogenesis. Neuroinflammation in areas of motor neuron loss is evident in presymptomatic mouse models of ALS and in human patients. Efforts aimed at attenuating the inflammatory response in ALS animal models have delayed symptom onset and extended survival. Seemingly conversely, attempts to sensitize cells of the innate immune system and modulate their phenotype have also shown efficacy. Effectors of innate immunity in the CNS appear to have ambivalent potential to promote either repair or injury. Because ALS is a syndromic disease in which glutamate excitotoxicity, altered cytoskeletal protein metabolism, oxidative injury, mitochondrial dysfunction and neuroinflammation all contribute to motor neuron degeneration, targeting inflammation via modulation of microglial function therefore holds significant potential as one aspect of therapeutic intervention and could provide insight into the exclusive vulnerability of motor neurons.  相似文献   

12.
13.
Nonalcoholic fatty liver disease, the most common chronic liver disorder worldwide, comprises conditions from steatosis to nonalcoholic steatohepatitis (NASH) and cirrhosis. NASH is associated with an increased risk of hepatocellular carcinoma. Sesame oil, a healthful food, increases resistance to oxidative stress, inflammation and protects against multiple organ injury in various animal models. We investigated the protective effect of sesame oil against nutritional steatohepatitis in mice. C57BL/6 J mice were fed with methionine-choline deficient (MCD) diet for 28 days to induce NASH. Sesame oil (1 and 2 ml/kg) was treated from 22nd to 28th day. Body weight, steatosis, triglycerides, aspartate transaminase, alanine transaminase, nitric oxide, malondialdehyde, tumor necrosis factor-α, interlukin-6, interleukin-1β, leptin, and transforming growth factor-β1 (TGF-β1) were assessed after 28 days. All tested parameters were higher in MCD-fed mice than in normal control mice. Mice fed with MCD diet for 4 weeks showed severe liver injury with steatosis, oxidative stress, and necrotic inflammation. In sesame-oil-treated mice, all tested parameters were significantly attenuated compared with MCD-alone mice. Sesame oil inhibited oxidative stress, inflammatory cytokines, leptin, and TGF-β1 in MCD-fed mice. In addition, histological analysis showed that sesame oil provided significant protection against fibrotic collagen. We conclude that sesame oil protects against steatohepatitic fibrosis by decreasing oxidative stress, inflammatory cytokines, leptin and TGF-β1.  相似文献   

14.
Diabetes, which is considered as a chronic metabolic disorder leads to an increase in inflammatory cytokines and oxidative stresses. Studies have shown several functional differences in the oxidative stress and inflammatory cytokines responses in diabetic/normal cancerous patients candidate for radiotherapy. Also, radiotherapy as a cancer treatment modality is known as a carcinogen due to oxidative damage via generation of reactive oxygen metabolites and also causing inflammation of the tissue by increasing the inflammatory cytokines. Therefore, the consequence of diabetes on oxidative stress and increased inflammatory factors and synergistic effects of radiotherapy on these factors cause complications in diabetics undergoing radiotherapy. It is considered as one of the most interesting objectives to control inflammation and oxidative stress in these patients. This review aims to concentrate on the influence of factors such as MPO, MDA, IL-1β, and TNF-α in diabetic patients by emphasizing the effects related to radiation-induced toxicity and inflammation by proposing therapeutic approaches which could be helpful in reduction of the complications.  相似文献   

15.
16.
很多研究均发现,热量限制在很多物种中都有延长寿命的作用.这些报道认为,寿命的延长可 能与氧化应激和炎症过程有关.值得注意的是,热量限制调节氧化应激与脂质代谢调控、抑 制细胞凋亡、DNA保护等分子过程有密切关系.最近,有研究者表明,热量限制调控氧化应激和炎症过程是通过胰岛素/胰岛素样生长因子信号通路起作用的.热量限制在所有的动物模型实验中都显示延长寿命,然而,在人类中应用热量限制,可能还存在很多对人体健康问题值得关注.本文就热量限制如何调控寿命的机制的研究进展作一综述.  相似文献   

17.
18.
Age-related, non-communicable chronic inflammatory diseases represent the major 21st century health problem. Especially in Western countries, the prevalence of non-communicable diseases like chronic obstructive pulmonary disease, cardiovascular disease, type 2 diabetes and osteoporosis are exponentially rising as the population ages. These diseases are determined by common risk factors and share an age-related onset. The affected organs display evidence of accelerated ageing, and are hallmarked by chronic inflammation and oxidative stress. The receptor for advanced glycation end products (RAGE) has been implicated in a number of inflammatory diseases and plays a central role in amplifying inflammatory responses. Advanced glycation end product (AGE) formation and accumulation is accelerated under these conditions. Advanced glycation end products are not only linked to RAGE signaling and inflammation, but to various hallmarks of the ageing process. In addition to these biological functions, circulating levels of the soluble form of RAGE and of advanced glycation end products are candidate biomarkers for many age-related inflammatory diseases. The purpose of this review is to provide an overview of the mechanistic connections between RAGE and advanced glycation end products and the processes of inflammation and ageing. Furthermore, through the presented overview of AGE-RAGE alterations that have been described in clinical studies in chronic obstructive pulmonary disease, cardiovascular disease, type 2 diabetes and osteoporosis, and insight obtained from mechanistic in vitro and animal studies, it can be concluded that these AGE-RAGE disturbances are a common contributing factor to the inflammatory state and pathogenesis of these various conditions.  相似文献   

19.
20.
T1D (type 1 diabetes) is an autoimmune disease characterized by lymphocytic infiltration, or inflammation in pancreatic islets called ‘insulitis.’ Comparatively speaking, T2D (type 2 diabetes) is traditionally characterized by insulin resistance and islet β cell dysfunction; however, a number of studies have clearly demonstrated that chronic tissue inflammation is a key contributing factor to T2D. The NLR (Nod-like receptor) family of innate immune cell sensors such as the NLRP3 inflammasome are implicated in leading to CASP1 activation and subsequent IL1B (interleukin 1, β) and IL18 secretion in T2D. Recent developments reveal a crucial role for the autophagy pathway under conditions of oxidative stress and inflammation. Increasingly, research on autophagy has begun to focus on its role in interacting with inflammatory processes, and thereby how it potentially affects the outcome of disease progression. In this review, we explore the pathophysiological pathways associated with oxidative stress and inflammation in T2D. We also explore how autophagy influences glucose homeostasis by modulating the inflammatory response. We will provide here a perspective on the current research between autophagy, inflammation and T2D.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号